module 3 lessons 3 & 4 merged

of 15 /15
Module 3 Lesson 3 & 4 merged.notebook 1 January 21, 2015 Jan 298:43 AM Homework Review Lesson 1 #1a, 5, 6, 7 & Lesson 2 1a b. Explain how you found the opposite of each point. To graph each point, I started at zero and moved right or left based on the sign and number (to the right for a positive number and to the left for a negative number). To graph the opposites, I started at zero, but this time I moved in the opposite direction the same number of times.

Author: mlabuski

Post on 14-Jul-2015

52 views

Category:

Documents


1 download

Embed Size (px)

TRANSCRIPT

  • Module3Lesson3&4merged.notebook

    1

    January21,2015

    Jan298:43AM

    Homework Review Lesson 1 #1a, 5, 6, 7 & Lesson 2

    1a

    b. Explainhowyoufoundtheoppositeofeachpoint.

    Tographeachpoint,Istartedatzeroandmovedrightorleftbasedonthesignandnumber(totherightforapositivenumberandtotheleftforanegativenumber).Tographtheopposites,Istartedatzero,butthistimeImovedintheoppositedirectionthesamenumberoftimes.

  • Module3Lesson3&4merged.notebook

    2

    January21,2015

    Jan2910:34AM

  • Module3Lesson3&4merged.notebook

    3

    January21,2015

    Jan2910:36AM

  • Module3Lesson3&4merged.notebook

    4

    January21,2015

    Aug265:45PM

    MODULE3RationalNumbersTopicA:UnderstandingPositiveandNegativeNumbersonthe

    NumberLine

    Lesson3:RealWorldPositiveandNegativeNumbersandZeroLesson4:TheOppositeofaNumberStudentOutcomes

    Studentsusepositiveandnegativenumberstoindicateachange(gainorloss)inelevationwithafixedreferencepoint,temperature,andthebalanceinabankaccount.

    Studentsusevocabularypreciselywhendescribingandrepresentingsituationsinvolvingintegers;forinstance,anelevationof10feetisthesameas10feetbelowthefixedreferencepoint.

    Studentswillchooseanappropriatescaleforthenumberlinewhengivenasetofpositiveandnegativenumberstograph.

    StudentOutcomes

    Studentsunderstandthateachnonzerointeger,a,hasanopposite,denoteda;andthataandaareoppositesiftheyareonoppositesidesofzeroandarethesamedistancefromzeroonthenumberline.

    Studentsrecognizethenumberzeroisitsownopposite.

    Studentsunderstandthatsinceallcountingnumbersarepositive,itisnotnecessarytoindicatesuchwithaplussign.

  • Module3Lesson3&4merged.notebook

    5

    January21,2015

    Jan298:44AM

    Example1:ALookatSealLevelThepicturebelowshowsthreedifferentpeopleparticipatinginactivitiesatthreedifferentelevations.Whatdoyouthinkthewordelevationmeansinthissituation?

  • Module3Lesson3&4merged.notebook

    6

    January21,2015

    Jan298:44AM

    ExercisesRefer back to Example 1. Use the following information to answer the questions.

    The diver is 30 feet below sea level. The sailor is at sea level. The hiker is miles (10,560 feet) above sea level.

    1. Write an integer to represent each situation.

    diver: ___________

    sailor: ___________

    hiker: ___________

  • Module3Lesson3&4merged.notebook

    7

    January21,2015

    Jan298:44AM

    2. Use an appropriate scale to graph each of the following situations on the number line to the right. Also, write an integer to represent both situations.

    a. A hiker is 15 feet above sea level.

    b. A diver is 20 feet below sea level

  • Module3Lesson3&4merged.notebook

    8

    January21,2015

    Jan2910:52AM

    3. For each statement there are two related statements: Circle the statement that is correct. Then correct the other statement.

    a. A submarine is submerged 800 feet below sea level.i. The depth of the submarine is -800 feet below sea level.

    ii. 800 feet below sea level can be represented by the integer -800.

    b. The elevation of a coral reef with respect to sea level is given as -250 feet.

    i. The coral reef is 250 feet below sea level.

    ii. The depth of the coral reef is -250 feet below sea level.

  • Module3Lesson3&4merged.notebook

    9

    January21,2015

    Jan2910:55AM

    Lesson 4 EveryNumberhasanOppositeExample1:EveryNumberhasanOpposite

    Locatethenumber8anditsoppositeonthenumberline.Explainhowtheyarerelatedtozero.

  • Module3Lesson3&4merged.notebook

    10

    January21,2015

    Jan2911:10AM

  • Module3Lesson3&4merged.notebook

    11

    January21,2015

    Jan2911:11AM

    2. Locate the opposites of the numbers on the number line.

    a. 9

    b. -2

    c. 4

    d. -7

  • Module3Lesson3&4merged.notebook

    12

    January21,2015

    Jan2911:14AM

    3. Write the integer that represents the opposite of each situation. Explain what zero means in each situation.

    a. 100 feet above sea level.

    b. 32 degrees below zero.

    c. A withdrawal of $25.

  • Module3Lesson3&4merged.notebook

    13

    January21,2015

    Jan2911:17AM

    Example2:ARealWorldExample

    MariadecidestotakeawalkalongCentralAvenuetopurchaseabookatthebookstore.Onherway,shepassestheFurryFriendsPetShopandgoesintolookforanewleashforherdog.TheFurryFriendsPetShopissevenblockswestofthebookstore.Aftersheleavesthebookstore,sheheadseastforsevenblocksandstopsatRaysPetShoptoseeifshecanfindanewleashatabetterprice.Whichlocations,ifany,arethefurthestfromMariawhilesheisatthebookstore?

    Determineanappropriatescaleandmodelthesituationonthenumberlinebelow.

    Explainyouranswer.Whatdoeszerorepresentinthesituation?

  • Module3Lesson3&4merged.notebook

    14

    January21,2015

    Jan2911:20AM

    Readeachsituationcarefullyandanswerthequestions.

    4. Onanumberline,locateandlabelacreditof$15andadebitforthesameamountfromabankaccount.Whatdoeszerorepresentinthissituation?

    5. Onanumberline,locateandlabel20Cbelowzeroand20Cabovezero.Whatdoeszerorepresentinthissituation?

    6. Aprotonrepresentsapositivecharge.Writeanintegertorepresent5protons.Anelectronrepresentsanegativecharge.Writeanintegertorepresent3electrons.

  • Module3Lesson3&4merged.notebook

    15

    January21,2015

    Nov172:29PM

    Closing

    Please take out your exit ticket for Lessons 3 & 4, close your binder, and complete the exit ticket. This will be collected.

    Whatistherelationshipbetweenanynumberanditsoppositewhenplottedonanumberline?

    Anonzeronumberanditsoppositeareboththesamedistanceawayfromzeroonanumberline,buttheyareonoppositesidesofzero.

    Howwouldyouusethisrelationshiptolocatetheoppositeofagivennumberonthenumberline?

    Iwouldusethegivennumbertofindthedistancefromzeroontheoppositeside.

    Willthisprocessworkwhenfindingtheoppositeofzero?

    No,becausezeroisitsownopposite.

    Page 1Page 2Page 3Page 4Page 5Page 6Page 7Page 8Page 9Page 10Page 11Page 12Page 13Page 14Page 15