modelling the grazing system: grazing system model for … · modelling the grazing system: grazing...

27
Modelling the grazing system: Grazing system model for the "pampa húmeda argentina" Carlos Manuel Méndez Acosta Ing. Agr., M.Sc. Universidad de La Plata. PhD. Edingurgh University. Ex researcher in INTA Balcarce. Private Adviser. Asocación Argentina de Consorcios Regionales de Experimentación Agrícola Calle 19 nro. 1045 7620-Balcarce, Argentina Phone-fax: +54 223 (15) 521-3064 e-mail adress: [email protected] Julio C. Arosteguy Ing. Agr., MBA. Private adviser. Researcher Universidad Católica Argentina. Facultad de Ciencias Agrarias Cap. R. Freire 183 1426-Buenos Aires, Argentina Phone/Fax: +54 11 4553-5235 e-mail address: [email protected]

Upload: duongcong

Post on 20-Jun-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Modelling the grazing system: Grazing system model for … · Modelling the grazing system: Grazing system model ... animals, parasites and ... Modelling the grazing system: Grazing

Modelling the grazing system: Grazing system model

for the "pampa húmeda argentina"

Carlos Manuel Méndez Acosta

Ing. Agr., M.Sc. Universidad de La Plata. PhD. Edingurgh University.

Ex researcher in INTA Balcarce. Private Adviser.

Asocación Argentina de Consorcios Regionales de Experimentación Agrícola

Calle 19 nro. 1045

7620-Balcarce, Argentina

Phone-fax: +54 223 (15) 521-3064

e-mail adress: [email protected]

Julio C. Arosteguy

Ing. Agr., MBA. Private adviser.

Researcher Universidad Católica Argentina.

Facultad de Ciencias Agrarias

Cap. R. Freire 183

1426-Buenos Aires, Argentina

Phone/Fax: +54 11 4553-5235

e-mail address: [email protected]

Page 2: Modelling the grazing system: Grazing system model for … · Modelling the grazing system: Grazing system model ... animals, parasites and ... Modelling the grazing system: Grazing

Innovation is regarded as an important factor for increasing profitability on the beef cattle enterprise.

However, the profitability of the grazing systems depends not only on the simple applications of a

technique such as fertilisers or pasture varieties but on the processes involved as well.

Grazing systems include several components such as climate, soil, plants, animals, parasites and

diseases, and complex interactions between components. In complex environments consequences

of actions are often no very clear for decision-makers. Due to the complexity and the dynamic

behaviour of the system there is a time gap between decision and the evidence of the

consequences of the decision itself, that makes the decision process even more difficult. This paper

provides a System Dynamics approach reflecting the interactions inside the system and between

the system an its environment. The system Dynamics model gives an insight of the dynamics

consequences of decisions in innovation management and allows testing different innovation

strategies.

A model of the seasonal grass and clover pasture growth and live weight response of grazing

heifers was built using first order differential equations to earn insight on the dynamics behaviour on

the systems.

Herbage growth is estimated from known relationships with radiation received, leaf area exposed,

soil moisture, mineral nutrition and herbage removed by grazing. Changes in soil moisture are

estimated from rainfall and calculated evaporation. Live weight change of the grazing animals is

calculated as a function of the intake, digestibility, and the partitioning of metabolizable energy

between maintenance and weight change.

Key words: modelling, beef cattle, grazing systems, management

ABSTRACT

Page 3: Modelling the grazing system: Grazing system model for … · Modelling the grazing system: Grazing system model ... animals, parasites and ... Modelling the grazing system: Grazing

The management of innovation in grazing systems is located in a highly complex and dynamic

environment.

There are complex interactions inside the system and between the system and the environment. In

complex systems consequences of actions are often not very clear for decision-makers. Because of

the complexity and the dynamic behaviour of the system there is a time gap between the decision

and the evidence of the consequences of the decision itself that makes the decision process even

more difficult.

Decision-making at this level of complexity can not be simplified as a cause effect model, but may be

supported by formalised and more complex models.

The system Dynamic approach may offer the framework to understand the complexity and inherent

dynamic of the innovation process in the grazing system.

A system dynamics model gives an insight of the dynamics consequences of decision in innovation

management and allows testing different innovation strategies.

The grazing system includes several components such as climate, soil, plants, animals, parasites,

diseases and complex interactions between the components.

In this paper special attention is drawn on modelling grazing systems in a specific site and set of

climatic condition in the south east of Buenos Aires of Argentina.

The model was built using data from the literature to synthesise the relationships into a dynamic

model to help for a better understanding of the system.

INTRODUCTION

Page 4: Modelling the grazing system: Grazing system model for … · Modelling the grazing system: Grazing system model ... animals, parasites and ... Modelling the grazing system: Grazing

A simple System Dynamics model as showed in Appendix serves as a first approach

integrating the concepts described above linking the basic components together into a

feedback structure.

Modelling herbage accumulation was developed using climate and other data as inputs

(Arosteguy et. al. 1981. McKenzie et. al. 1999). The model is multiplicative; that is, the factors

affecting herbage accumulation are combined by multiplying all together (Forrester 1969). A

notional maximum daily herbage accumulation rate under ideal conditions was assumed and

each of the factors influencing this rate was converted to a value or index ranging from 0 to1.

A value of 1 indicates that factor is non-limiting and a value of 0 indicates zero growth.

THE MODEL

Page 5: Modelling the grazing system: Grazing system model for … · Modelling the grazing system: Grazing system model ... animals, parasites and ... Modelling the grazing system: Grazing

The maximum daily herbage accumulation rate was modified by leaf area index and incoming

radiation (Black 1964, Brown and Blaser 1968)

The temperature index was similar to that described by Mc Kenzie et. al. (1999). The soil fertility

effect was derived from data published by Arosteguy and Gardner 1976 and Marino et. al. 1995.

Reproductive growth is assumed to increase herbage accumulation rate of the vegetative growth and

it is introduced on a seasonal basis.

The moisture response was calculated as a soil water balance generated by rainfall and estimated

evapotranspiration. Evapotranspiration was calculated from Doorembos and Pruitt (1974)

HERBAGE GROWTH RATE

Page 6: Modelling the grazing system: Grazing system model for … · Modelling the grazing system: Grazing system model ... animals, parasites and ... Modelling the grazing system: Grazing

The daily intake rate of pasture by the grazing steers was related to herbage weight (Hodgson,

1990).

The amount of metabolizable energy derived from the digested pasture is calculated as

suggested by Blaxter ( 1964). The rate of live weight change is calculated after allowing for the

maintenance requirements, if intake of metabolizable energy exceeds maintenance them live

weight gain is calculated after Blaxter (1967).

Compensatory live weight gains after an intake restriction was simulated after Verde (1973).

LIVE WEIGHT OF STEERS

Page 7: Modelling the grazing system: Grazing system model for … · Modelling the grazing system: Grazing system model ... animals, parasites and ... Modelling the grazing system: Grazing

There is incorporated an economic analysis. It is calculated a gross

margin of the beef cattle enterprise, AACREA (1989) .

ECONOMICS ANALYSIS

Page 8: Modelling the grazing system: Grazing system model for … · Modelling the grazing system: Grazing system model ... animals, parasites and ... Modelling the grazing system: Grazing

Prediction of the weight herbage available agreed with measured values Arosteguy et. al. (1981).

The daily growth accumulation rate for two series of climatic data is showed in the Appendix.

Prediction of soil moisture content agreed well with pattern of the measured values Arosteguy et.

al. (1981). The variation of soil moisture content for the two series of climatic data is showed in

Appendix.

The daily animal intake and the daily live weight gain were not validated with real data and are

showed in the Appendix. However seasonal animal live weight gain and the annual beef

production per unit of area agreed well with experimental unpublished data Fernández Grecco

(2002). Conference in26 the Meeting of AAPA. Bs.As. Nov. 2002.

MODEL PERFORMANCE

Page 9: Modelling the grazing system: Grazing system model for … · Modelling the grazing system: Grazing system model ... animals, parasites and ... Modelling the grazing system: Grazing

The System Dynamics model presented here links in daily steps the components and interactions of

a Grazing System and evaluates the economics results of the beef cattle production.

From the feedback perspective all the relevant interactions which cause the behaviour of a Grazing

System were represented.

Further development stages of the model are likely to provide the scope to control and vary

individually innovation strategies such as use of fertilisers, fodder conservation from pasture, and

evaluate the relative benefits balance against the relative costs.

CONCLUSION AND FURTHER RESEARCH

Page 10: Modelling the grazing system: Grazing system model for … · Modelling the grazing system: Grazing system model ... animals, parasites and ... Modelling the grazing system: Grazing

REFERENCES

AACREA, 1979. Normas para la determinación de resultados de empresas agropecuarias.

Convenio AACREA – Banco Río.

Arosteguy, J.C. y Gardner, A.L., 1976, Prod. An. 6: 680-687.

Arosteguy, J.C., Bravo, B.F., Fujita, H.O., y López Sauvidet, C., l98l. Prod. An., A.A.P.A.,

7:453-452.

Blaxter, K.L., 1964, Proc. Nutr. Soc. 23: 62-71.

Blaxter, K.L. 1967, in G. A. Lodge and G.E. Laming (ed.), Butterworths, London, p.329.

Black, J.N., l964, Australia. J. App. Ecol. 1: 3-18.

Brown, R.H., and Blaser R.E., l968, Herb. Abs. 38: 1-9.

Doorembos, J. And Pruitt, W.O., 1974, in FAO Irrigation and Drainage Paper. Rome. 35p.

Forrester,. J.W., l969. Urban Dynamics. MIT Press, Cambridege, Mass.

Hodgson J., 1990, Grazing Management: Science into Practice: Longmans, UK.

Marino, M.A., Mazzanti, A. y Echeverría H.E.,1995, Rev. Arg. Prod. Anim. 15 (1): 179-182.

Mc Kenzie B.A., Kemp, D.J., Moot, C., Matthew and Lucas, R.J. 1999. In New Zealand

Pasture and Crop Science. Ed. by White and Hodgson. Pp. 29-44.

Verde, Luis, 1973. Crecimiento compensatorio. Serie Materiales Didácticos, INTA Balcarce.

Page 11: Modelling the grazing system: Grazing system model for … · Modelling the grazing system: Grazing system model ... animals, parasites and ... Modelling the grazing system: Grazing

Modelling the grazing system: Grazing system model

for the "pampa húmeda argentina"

Appendix

Page 12: Modelling the grazing system: Grazing system model for … · Modelling the grazing system: Grazing system model ... animals, parasites and ... Modelling the grazing system: Grazing

Herbage mass

Leaf area

Herbage

accumulation rate

PhotosynthesisSoil moisture

RainfallTemperature

Intake

DWG

Live weigth

S

S

S

S

S

S

O

SO

SS

S

S

<Temperature>

<Rainfall>

CONCEPTUALIZATION

CAUSUAL DIAGRAM

Page 13: Modelling the grazing system: Grazing system model for … · Modelling the grazing system: Grazing system model ... animals, parasites and ... Modelling the grazing system: Grazing

Herbage mass

Leaf area

Herbage

accumulation rate

PhotosynthesisSoil moisture

RainfallTemperature

Intake

DWG

Live weigth

S

S

S

S

S

S

O

SO

SS

S

S

<Temperature>

<Rainfall>

Stocking rateS

Quality of feed

Managementtechnique of the

cattle(compensatory

growth)

S

S

CAUSUAL DIAGRAM

CONCEPTUALIZATION

Page 14: Modelling the grazing system: Grazing system model for … · Modelling the grazing system: Grazing system model ... animals, parasites and ... Modelling the grazing system: Grazing

Herbage mass

Leaf area

Herbage

accumulation rate

PhotosynthesisSoil moisture

RainfallTemperature

Intake

DWG

Live weigth

S

S

S

S

S

S

O

SO

SS

S

S

<Temperature>

<Rainfall>

Stocking rateS

Quality of feed

Managementtechnique of the

cattle(compensatory

growth)

S

S

Economic result O

S

O

CAUSUAL DIAGRAM

CONCEPTUALIZATION

Page 15: Modelling the grazing system: Grazing system model for … · Modelling the grazing system: Grazing system model ... animals, parasites and ... Modelling the grazing system: Grazing

Cattle beef produ…?

Cattle beef

production

Herbage accu…?

Herbage

accumulation

rate

Economic result ?

Economic result

Climate ?

Climate

Compensatory …?

Compensatory

growth

Grazing system model

for the "pampa húmeda argentina"Mendez Acosta, Carlos (U.C.A.) and Arosteguy, Julio (AACREA)

Click to go...

DESIGN OF THE MODEL

DASHBOARD

Page 16: Modelling the grazing system: Grazing system model for … · Modelling the grazing system: Grazing system model ... animals, parasites and ... Modelling the grazing system: Grazing

lluvias

?

temp

?

hel

?

duracion del dia

?

tenv a

?

v iento

?

140?

capacidad de almacenaje

20?

hum inicial

0.9500

ef ect lluv ia

0.8500

ef suel

Parameters of climatic and soil conditions

Las funciones gráficas permiten ingresar los datos

de manera manual. El modelo corre un año. El

intervalo es diario. De esa forma se deben informar,

por ejemplo la lluvia, de forma diaria.

Para ello hay que hacer doble "click" sobre el gráfico

a modificar.

Se debe informar el efecto suelo y

el efecto lluvia. Para ello se debe

emplear los "sliders" ubicados

más abajo.

Asimismo, se debe informar la

humedad inicial y la capacidad de

retención de agua del suelo.

DESIGN OF THE MODEL

DASHBOARD: CLIMATIC AND SOIL CONDITION

Page 17: Modelling the grazing system: Grazing system model for … · Modelling the grazing system: Grazing system model ... animals, parasites and ... Modelling the grazing system: Grazing

0.0

4.0

8.0

1.0

?

carga

200?

peso inicial

ecuacion de consumo

? 420?

peso de v enta

Parameters of cattle management

Se debe informar

cuántos animales

por hectárea van a

pastorear la

pradera.

Esta información

solamente se

suministra al

comienzo de la

simulación

A medida que el animal

aumenta su peso, el

mismo reduce

porcentualmente su

ingesta. Esta relación se

puede modificar haciando

dobre "click" sobre el

gráfico.

Esta información

solamente se suministra

al comienzo de la

simulación

Con estos dos "sliders"

se debe informar los

pesos de inicio y fin del

engorde.

Esta información se

puede suministrar en

cualquier momento de

la simulación.

El modelo permite emplear el concepto de crecimiento

compensatorio. Para ello debe ingresar cierta informacion

en l asiguiente pantalla.

Compensatory growth

DESIGN OF THE MODEL

DASHBOARD: CATTLE MANAGEMENT

Page 18: Modelling the grazing system: Grazing system model for … · Modelling the grazing system: Grazing system model ... animals, parasites and ... Modelling the grazing system: Grazing

0?

Kg suplemento por dia500

1800

3000

1800

?

disp inicial2.4500?

ENm suplemento

1.5500?

ENp suplemento

0

50

100

10

?

tasa de desperdicioENm pastura

?

ENp pastura

?

Se debe informar la energía neta

para mantenimiento y para

ganancia de la pastura.

Las funciones graficas permiten

trabajar con valores estacionales

correspondientes a distintos

estados vegetativos de la misma.

Esta información solamente se

suministra al comienzo de la

simulación

Parameters of food management, pasture conditions and type of

suplement

Se debe informar la

disponibilidad inicial de forraje.

Asimismo, se puede informar la

tasa de forraje no aprovechable.

Esta información solamente se

suministra al comienzo de la

simulación

Mediante estos tres "sliders", se

informa la concentración energética

del suplemento, y la cantidad del

mismo empleada durante la

simulación.

Esta información se puede

suministrar, y cambiar, a lo largo de

la simulación.

DESIGN OF THE MODEL

DASHBOARD: FOOD MANAGEMENT, PASTURE AND SUPLEMENT CONDITIONS

Page 19: Modelling the grazing system: Grazing system model for … · Modelling the grazing system: Grazing system model ... animals, parasites and ... Modelling the grazing system: Grazing

2.0?

precio kg carne

0.4?

precio kg suplemento

20?

costo sanidad por cab por año

40?

costo mano de obra por cab por año

0?

otros costos por cab por año

Economics data and financial budget

Con este "slider" se debe informar el precio del kilo vivo de

venta. Los valores de estos sliders pueden variarse durante la

simulación.

Con este "slider" se debe informar el precio del suplemento:

maíz, rollos, etc.

Con este "slider" se debe indicar el costo de la mano de obra

ganadera, informada por cabeza y por año.

Con este "slider" se debe indicar el costo de sanidad,

informada por cabeza y por año.

Con este "slider" se puede informar otros costos directos de

la invernada. Los valores de estos sliders pueden variarse

durante la simulación.

DESIGN OF THE MODEL

DASHBOARD: ECONOMICS DATA AND FINANCIAL BUDGET

Page 20: Modelling the grazing system: Grazing system model for … · Modelling the grazing system: Grazing system model ... animals, parasites and ... Modelling the grazing system: Grazing

eqn on?~

cambio en las condiciones

Aleatorio NO

0.5

lim inf rdm

1.3

lim supr rdm

Stochastic parameters

Aleatorio SI

A las condiciones climáticas

informadas se las puede

"mejorar " o "empeorar" mediante

el "slider" que está abajo.

Para ello debe "clickear" el botón

de la izquierda hasta que

desparezca la leyenda "eqn on", y

entonces debe informar el

porcentaje de "mejora" o

"desmejora" en las condiciones

climáticas.

El modelo se transforma en

estocástico con el "swtch" que

se encuentra más abajo.

Para ello debe asegurarse que

el "slider" de la primer

columna se encuentra con la

leyenda "eqn on".

La aleatoriedad surge de la

generación de números aleatorios

que afectarán las condiciones

climáticas.

Se debe informar el límite inferior y

el superior de tal generación. Por

defecto las condiciones

empeorarán un 50% y mejorarán

un 30%.

DESIGN OF THE MODEL

DASHBOARD: STOCHASTICS PARAMETERS

Page 21: Modelling the grazing system: Grazing system model for … · Modelling the grazing system: Grazing system model ... animals, parasites and ... Modelling the grazing system: Grazing

DESIGN OF THE MODEL

RESULTS OBTAINED: HERBAGE ACCUMULATION

Page 22: Modelling the grazing system: Grazing system model for … · Modelling the grazing system: Grazing system model ... animals, parasites and ... Modelling the grazing system: Grazing

DESIGN OF THE MODEL

RESULTS OBTAINED: BEEF PRODUCTION

Page 23: Modelling the grazing system: Grazing system model for … · Modelling the grazing system: Grazing system model ... animals, parasites and ... Modelling the grazing system: Grazing

DESIGN OF THE MODEL

RESULTS OBTAINED: ECONOMICS RESULTS

Page 24: Modelling the grazing system: Grazing system model for … · Modelling the grazing system: Grazing system model ... animals, parasites and ... Modelling the grazing system: Grazing

disponibilidad

crecd

iaf radexf

smoi

lluvef ect evapr

ef suel

ef etemp

ef iaf

evapf actra

tlum

f actor tlum

capacidad de almacenaje smop

ef ect lluv ia

f actw

f acted

tlum

~

nro mes

f actf t

f actv i

f actea

rad

dia

escurrimiento

rds

rdn

ef rad

ef radiaf

ef humed

ll

tv

h

v

t

desperdicio

tasa de desperdicio

Herbage accumulation rate

DESIGN OF THE MODEL

STOCKS AND FLOWS DIAGRAMS : HERBAGE ACCUMULATION RATE

Page 25: Modelling the grazing system: Grazing system model for … · Modelling the grazing system: Grazing system model ... animals, parasites and ... Modelling the grazing system: Grazing

DESIGN OF THE MODEL

STOCKS AND FLOWS DIAGRAMS : CATTLE BEEF PRODUCTION

peso v ivo

kg engorde indiv idual

ADPV

ENmant

Kg mant

Kg prod

kg v enta

EN prod

peso inicial

consumo total

~

ecuacion de consumo

carga

peso v ivo

prod carne por ha

carne vendida

nro de ventanro de ventas

prod carne por animal

disponibilidad

eq v req

eq v rec

b forrajero

pasto consumido

ENm racion 2

ENp racion 2

Kg suplemento por dia

consumo de pasto por cab

consumo total por cab

peso de v enta

coef aum compensatorio

consumo indiv idual

Automatico: Crec Compensatorio SI

Manejo: Crec compensatorio SI

Kg mant cons

Cattle beef production

Page 26: Modelling the grazing system: Grazing system model for … · Modelling the grazing system: Grazing system model ... animals, parasites and ... Modelling the grazing system: Grazing

DESIGN OF THE MODEL

STOCKS AND FLOWS DIAGRAMS : COMPENSATORY GROWTH

peso v ivo

~

ecuacion de consumo

consumo total

carga

consumo teorico

consumo real

aum restriccion

Kg mant

aum restriccion

periodo restriccionper compensatorio

dism per guardado

~

coef compensacion

aum restriccion 2 periodo guardado

rel restriccion realimentacion

dism coef compensatorio

aum coef compensatorio

coef aum compensatorio

dif teorico real

Manejo: Crec compensatorio SI

aum Kg mant

Kg mant cons

dism Kg mant

Compensatory growth

Page 27: Modelling the grazing system: Grazing system model for … · Modelling the grazing system: Grazing system model ... animals, parasites and ... Modelling the grazing system: Grazing

Notice

Further information on the System Dynamics model (model equations) and subsequent

steps of model development are available on request.