modelling of spectral line shapes in electrodeless discharge lamps

26
IAPS, University of Latvia COST 529, April 12-16, Madeira, Portugal Modelling of spectral line shapes in electrodeless discharge lamps G. Revalde 1 , N. Denisova 2 , A.Skudra 1 1 High-resolution spectroscopy and light source technology laboratory, Institute of Atomic Physics and Spectroscopy, University of Latvia 2 Institute of Theoretical and Applied Mechanics, Novosibirsk, Russia E-mail: [email protected] Web: http://www.atomic-physics.lv

Upload: floyd

Post on 23-Feb-2016

28 views

Category:

Documents


1 download

DESCRIPTION

Modelling of spectral line shapes in electrodeless discharge lamps. G. Revalde 1 , N. Denisova 2 , A.Skudra 1 1 High-resolution spectroscopy and light source technology laboratory, Institute of Atomic Physics and Spectroscopy, University of Latvia - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Modelling of spectral line shapes in electrodeless discharge lamps

IAPS,University of Latvia

COST 529, April 12-16, Madeira, Portugal

Modelling of spectral line shapes in electrodeless discharge lamps

G. Revalde1, N. Denisova2, A.Skudra1

1 High-resolution spectroscopy and light source technology laboratory, Institute of Atomic Physics and Spectroscopy, University of Latvia2 Institute of Theoretical and Applied Mechanics, Novosibirsk, Russia

E-mail: [email protected]: http://www.atomic-physics.lv

Page 2: Modelling of spectral line shapes in electrodeless discharge lamps

IAPS,University of Latvia

COST 529, April 12-16, Madeira, Portugal

     

Electrodeless lamps:   

Bright radiators in the broad spectral range (VUV - IR);

Filled with a gas or metal vapor+buffer gas;

No electrodes – long working life

Inductive coupled/ capacitatively coupled;

Hf, Rf Electromagnetic field excitation;

Different designs and types in dependence on application

Page 3: Modelling of spectral line shapes in electrodeless discharge lamps

IAPS,University of Latvia

COST 529, April 12-16, Madeira, Portugal

Our experience and technology:  

manufacturing of electrodeless lamps containing such elements as Sn, Cd, Hg, Zn, Pb, As, Sb, Bi, Fe, Tl, In, Se, Te, Rb, Cs, I2, H2, He, Ne, Ar, Kr, Xe as well as combined Hg-Cd, Hg-Zn, Hg-Cd-Zn, Se-Te etc (also isotope fillings, as example Hg202) etc.

for different applications

Page 4: Modelling of spectral line shapes in electrodeless discharge lamps

IAPS,University of Latvia

COST 529, April 12-16, Madeira, Portugal

Examples

300 400 500 600 7000

1000

2000

3000

4000

Inte

nsity

, rel

. un.

Wavelength, nm

He

200 300 400 500 600 700 8000

1000

2000

3000

4000

Inte

nsity

, rel

. un.

Wavelength, nm

Hg

Page 5: Modelling of spectral line shapes in electrodeless discharge lamps

IAPS,University of Latvia

COST 529, April 12-16, Madeira, Portugal

Spectral line profile is important

• to control self-absorption or radiation trapping for design consideration of low pressure lamps for lighting

application - resonance radiation of Hg at 185 nm and 254 nm

in all cases when narrow spectral line is necessary – for atomic absorption, optical pumping, quantum standards, for spectral reference

• to get important plasma parameters (such as gas temperature, lower state density, collisional broadening)

Page 6: Modelling of spectral line shapes in electrodeless discharge lamps

IAPS,University of Latvia

COST 529, April 12-16, Madeira, Portugal

Example of atomic absorption spectrometry

• Narrow, not self-absorbed spectral line is neccessary -- >

to get high differential cross section of atomic absorption --> low limits of detection

Page 7: Modelling of spectral line shapes in electrodeless discharge lamps

IAPS,University of Latvia

COST 529, April 12-16, Madeira, Portugal

• But with self-absorption dependent on– working regime– filling pressure,– filling content– lamp geometry– excitation geometry

Possibilty to avoid the self-absorption – optimisation of all parameters

Page 8: Modelling of spectral line shapes in electrodeless discharge lamps

IAPS,University of Latvia

COST 529, April 12-16, Madeira, Portugal

Capillary

Lamp

Capillary

Monochromator

Power supply

Fabry – Perrot interferometerPhotomultiplierComputer

LensLens

Vacuum chamberAmplifier

Line profile measurements

High-resolution scanning Fabry-Perrot interferometer

Page 9: Modelling of spectral line shapes in electrodeless discharge lamps

IAPS,University of Latvia

COST 529, April 12-16, Madeira, Portugal

High-resolution scanning Zeeman spectrometer for resonance lines

Hme

c

41

Page 10: Modelling of spectral line shapes in electrodeless discharge lamps

IAPS,University of Latvia

COST 529, April 12-16, Madeira, Portugal

Hg 253,7 nm• Natural filling Hg 202 isotope

In dependence on the Tcold spot

On the working regime

Page 11: Modelling of spectral line shapes in electrodeless discharge lamps

IAPS,University of Latvia

COST 529, April 12-16, Madeira, Portugal

Line shape modeling

Observed spectral line profile: f x f x y f y dy x( ) `̀ ( ) (̀ ) ( )

,

where f ’(x) - real profile, f’’(x) - instrumental function, (x) - function characterising random errors. Task –to get real spectral line profile and parameters characterising plasma by means of a quite universal program for spectral line shape fitting. Model include:

1)

G I

T

G

G

( ) exp ln

,

0 00

2

7

4 2

7 16 10 1

; Gaussian shape

2) L L

L

( )

0

02 24

,

where L =nat+coll+res. Lorentzian shape

Page 12: Modelling of spectral line shapes in electrodeless discharge lamps

IAPS,University of Latvia

COST 529, April 12-16, Madeira, Portugal

3) Voigt profile

V a a y dya y

( , ) exp( )( )

2

2 2 , where yG

( ) ln 2 ,

aL

G

ln 2 ,

2 20( ) ln G

4) self-absorption drdxxnxvPsrvPrnIvIr

aaee

)(),(exp),()()( 0

, where ;)()(a

aa N

rnrn e

ee N

rnn )(

; N n r dra a

12

( ) ; N n r dre e

( ) , We can assume )(),(),( vPlvPlvP ae ,

drdxxnwPwP

srnwPIvIr

ae

)()()(

exp)()()(0

0

Excitation function E yn rn r

e

a

( )( )( )

Page 13: Modelling of spectral line shapes in electrodeless discharge lamps

IAPS,University of Latvia

COST 529, April 12-16, Madeira, Portugal

;)()(2

)(

1

n

raae dxxnrnnrn E y

n y y

ny y

n

n( )

,

( ) ,

20 1

22 1 2

1

1 , y n x dxar

( ) - relative

number of atoms capable of absorbing the line present per unit cross-section between the point under consideration and the outside of the source

1) )0()(;

!2!)()( 0

0

2

0 PPlk

njnePII

j

j

(Cowan and Dieke)

n Z , P()V() by a=const, k0l - optical density

2) , if n=1 homogenous radiation source

II P

k lk l P

P( )

( )exp ( )

( )

0

002

10

3) if n completely inhomogeneous radiation source

I I P k l PP

( ) ( )exp ( )( )

0 0 0 ,

Page 14: Modelling of spectral line shapes in electrodeless discharge lamps

IAPS,University of Latvia

COST 529, April 12-16, Madeira, Portugal

5) Manifold of HFS and isotope components having intensities I1, I2,,...,Ik

and respective shifts 1 2.. k 6) Convolution of the self-absorbed Voigt profile with an instrument function

a) for Fabry-Perrot I IRR

0

22

1

1 41 2( )

sin,

2

, - opt. diff. of

interfering rays, R- effective refraction coefficient b) absorption profile (Gaussian or Voigt) for Zeeman spectrometer c) numerical or other

7) Generation of random errors (x).

8) Fitting of the modelled function to the experimental using

2

1

2

N

ii criterion

by means of multi-parameter fitting procedure, where ii

i iyy f x

1

( ) are

deviations of the experimental data yi from the theoretical values f(xi) at the position of xi, weighted by the experimental errors yi . 9) Results G (gas temperature), L, (collisions), k0l (nlower), n, instrum, and intensities and shifts

Page 15: Modelling of spectral line shapes in electrodeless discharge lamps

IAPS,University of Latvia

COST 529, April 12-16, Madeira, Portugal

Zeeman spectrometer Fabry-Perrot spectrometer

Necessity to take into account the instrument function, also by a small FWHM value of instrument profile due to the influence on the self-reversal

Examples of experimental and modeled profiles

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,00,0

0,2

0,4

0,6

0,8

1,0

Inte

nisi

ty, r

el. u

n.

Wavenumber, cm-1

Experimental Theoretical Real

Hg202+Ar

253.7 nm,i=160 mA,without cooling

0,0 0,2 0,4 0,6 0,8 1,00,0

0,2

0,4

0,6

0,8

1,0

Inte

nisi

ty, r

el. u

n.Wavenumber, cm-1

Experimental Calculated Real

Hg202+Ar, 10 Torr253.7 nm

i=160 mAt=45oC

Page 16: Modelling of spectral line shapes in electrodeless discharge lamps

IAPS,University of Latvia

COST 529, April 12-16, Madeira, Portugal

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4

0,0

0,2

0,4

0,6

0,8

1,0

Inte

nsity

, re.

un.

Wavenumber, cm-1

Experimental Theoretical Real

Hg202 - 90% +Ar (2 Torr)253.7 nm,i=140 mAwithout thermostabilisation

Optical density 6.8

dopl = 0,044 cm-1(T=488 K)Reff= 0,84%

Hg202/Ar(2 Torr) experimental and modeled profiles of 253.7 nm line, spherical discharge

Page 17: Modelling of spectral line shapes in electrodeless discharge lamps

IAPS,University of Latvia

COST 529, April 12-16, Madeira, Portugal

160 mA, Tc.spot.=72oC

50 mA, Tc.spot.=72oC

Example, Hg 202 (99.8 %) 253,7 nm line

Distribution of the intensitites other isotopic components (0.2 %) also fitted

0,0 0,2 0,4 0,6 0,8 1,0

0,0

0,2

0,4

0,6

0,8

1,0

model experimental real

Inte

nsity

, arb

.un.

Wavenumber, cm-1

0,0 0,2 0,4 0,6 0,8 1,0-0,1

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1,1

Inte

nsity

, rel

. un.

Wavenumber, cm-1

experimental model real

20 30 40 50 60 70 800

50

100

150

200

160 mA

50 mA

Opt

ical

den

sity

, k0l

Temperature, oC

Page 18: Modelling of spectral line shapes in electrodeless discharge lamps

IAPS,University of Latvia

COST 529, April 12-16, Madeira, Portugal

Hg202/Ar capillary

0,0 0,2 0,4 0,6 0,8 1,0

0

5

10

15

20

25

25oC 45oC

Inte

nisi

ty, r

el.u

n.

Wavenumber, cm-1

253. 7 nm

Hg202+Ar, capillary, 10 Torri=160 mA

65oC

0,0 0,5 1,0 1,5 2,0

0,0

0,2

0,4

0,6

0,8

1,0

Inte

nsity

, rel

. un.

Wavenumber, cm-1

experimental theoretical real

Hg 202 +Ar 10 Torr

20 25 30 35 40 45 50 55 60 65 70 75 80

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

160 mA 100 mA

Opt

ical

den

sity

Cold spot temperature, oC

Experiment

Reff = 0,8% (ninstr =0,071 cm-1).

Page 19: Modelling of spectral line shapes in electrodeless discharge lamps

IAPS,University of Latvia

COST 529, April 12-16, Madeira, Portugal

Hg202/Ar (10 Torr) capillary, 253.7 nm line, Tcold spot= 25oC

80 90 100 110 120 130 140 150 160 170360

380

400

420

440

460

480

500

520

540

560

580

600

620

HF generator current, mA

Tem

pera

ture

, K

80 90 100 110 120 130 140 150 160 1700,8

1,0

1,2

1,4

1,6

1,8

2,0

2,2

Opt

ical

den

sity

80 90 100 110 120 130 140 150 160 1700,116

0,118

0,120

0,122

0,124

0,126

0,128

0,130

0,132

Tota

l FW

HM

, cm

-1

The estimated optical density in the line center

The total experimental spectral line FWHM as a function of the HF generator current

The estimated temperature of the emitting atoms

Page 20: Modelling of spectral line shapes in electrodeless discharge lamps

IAPS,University of Latvia

COST 529, April 12-16, Madeira, Portugal

Hg202/Ar (2 Torr) capillary, 253.7 nm line, Tcold spot= 65oC

80 100 120 140 160 180 2003

4

5

6

7

8

9

10

11

12

13

14

Opt

ical

den

sity

HF generator current, mA

Page 21: Modelling of spectral line shapes in electrodeless discharge lamps

IAPS,University of Latvia

COST 529, April 12-16, Madeira, Portugal

Comparison- spherical and capillary

0,6 0,8 1,0 1,2 1,4

0,0

0,2

0,4

0,6

0,8

1,0

Inte

nsity

, rel

.un.

Wavenumber, cm-1

spherical capillary

160 mA and T cold spot =25oC, pAr=10 Torr

Page 22: Modelling of spectral line shapes in electrodeless discharge lamps

IAPS,University of Latvia

COST 529, April 12-16, Madeira, Portugal

Hg visible triplett

0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,350,0

0,2

0,4

0,6

0,8

1,0

Inte

nsity

, rel

.un.

Wavenumber, cm-1

40 mA 100 mA 140 mA

404.7 nm

Experimental 404.7 nm line shapes in dependence on the HF generator current for a HF isotope electrodeless lamp

0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35

0,0

0,2

0,4

0,6

0,8

1,0

Inte

nsity

, rel

. un.

Wavenumber, cm-1

experimental theoretical real

404.7 nm, Hg

Example of the line shape fitting of Hg 404.7 nm line, HF generator current i=100 mA. Fitted parameters wG=0,032 cm-1; wL=0,002 cm-1; R=0,72, kol=1,8, n=13, using the model of Cowan and Dieke

40 60 80 100 120 140

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

300

400

500

600

700

800

900

1000

Opt

ical

den

sity

HF generator current, mA

Temperature, oC

Page 23: Modelling of spectral line shapes in electrodeless discharge lamps

IAPS,University of Latvia

COST 529, April 12-16, Madeira, Portugal

Experimental radial distributions of Hg 404.7 nm line intensity, emitted from HF electrodeless lamp by two different discharge power values.

-1,0 -0,5 0,0 0,5 1,0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

220000

240000

260000

Inte

nsity

, rel

. un.

r/r0

0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35

0,0

0,2

0,4

0,6

0,8

1,0

In

tens

ity, r

el.u

n.

Wavenumber, cm-1

experimental theoretical real

546.1 nm, Hg

Example of the line shape fitting of 546.1 nm Hg line, i=140 mA. Fitted parameters wG=0,033 cm-1; wL=0,002 cm-1; R=0,8; kol=35; with taking into account the measured distributions.

Page 24: Modelling of spectral line shapes in electrodeless discharge lamps

IAPS,University of Latvia

COST 529, April 12-16, Madeira, Portugal

Helium example

Optical density in the line center in dependence on the HF generator current estimated for 501,6 nm and 567,8 nm lines in the helium electrodeless discharge using the model of uniformly excited source.

80 100 120 140 160 180

0,5

0,6

0,7

0,8

0,9

Opt

ical

den

sity

Generator current, mA

501,6 nm 567,8 nm

0 1 2

1

2

3

4

5

6

Inte

nsity

, rel

.un.

Radiuss, cm

28,0 W58,3 W

587.6 nm He

Experimental radial distributions of He 587,6 nm line intensity, emitted from helium HF electrodeless lamp by two different discharge power values.

Page 25: Modelling of spectral line shapes in electrodeless discharge lamps

IAPS,University of Latvia

COST 529, April 12-16, Madeira, Portugal

Thank you for your attention!

Page 26: Modelling of spectral line shapes in electrodeless discharge lamps

IAPS,University of Latvia

COST 529, April 12-16, Madeira, Portugal

0 50 100 150 200 250

1E-3

0.01

0.1

1

10

100

pHg,

torr

Tcold spot, oC

p Hg vapor, Torr