model. - plantphysiol.org filespecies non-seed tissue non-seed tissue eed tissue nadp+ 6pg c ⇒...

32
Table 1: Set of reactions included in the model. H. vulgare T. aestivum, O. sativa, Z. mays dicotyledone species reaction name EC path co equation t seed non-seed tissue t seed non-seed tissue seed non-seed tissue phosphoglucomutase (cPGM) 5.4.2.2 Glyc c G1P c G6P c e [1–3] e [4–7] phosphoglucose isomerase (cPGI) 5.3.1.9 Glyc c F6P c G6P c [2, 3] e [6, 8, 9] 6-phosphofructokinase (cPFK) 2.7.1.11 Glyc c ATP c + F6P c ADP c + F1,6P c e [10] e [11–13] diphosphate-fructose-6-phosphate 1-phosphotrans- ferase 2.7.1.90 Glyc c F6P c + PP c P c + F1,6P c e [14–17] e [6, 9, 11, 18, 19] fructose-bisphosphate aldolase (cALD) 4.1.2.13 Glyc c F1,6P c DHAP c + GAP c e [1, 10] e [6, 9, 12, 19] [20–22] triose phosphate isomerase (cTIM) 5.3.1.1 Glyc c DHAP c GAP c e [1, 17, 23] e [4–6,6,19,24] glyceraldehyde-3-phosphate dehydrogenase (phospho- rylating) 1.2.1.12 Glyc c P c + GAP c + NAD + c NADH c + 1,3BPG c f [25, 26] e [4, 6, 19, 27] phosphoglycerate kinase (cPGlyK) 2.7.2.3 Glyc c ADP c + 1,3BPG c ATP c + 3PG c e [1, 10, 25] e [4–6, 19]; phosphoglycerate mutase (cPGlyM) 5.4.2.1 Glyc c 3PG c 2PG c f [25, 26] e [4, 6, 28–30] phosphopyruvate hydratase (cENOLASE) 4.2.1.11 Glyc c 2PG c PEP c f [25, 26] e [4,4,6,19,31] pyruvate kinase (cPK) 2.7.1.40 Glyc c ADP c + PEP c ATP c + Pyr c [10, 25] e [6, 12] fructose-1,6-bisphosphatase (cFBPAse) 3.1.3.11 Glyc c F1,6P c P c + F6P c [32, 33] [21, 34] pyruvate, phosphate dikinase (cPPDK) 2.7.9.1 Glyc c ATP c+P c + Pyr c PP c + PEP c + AMP c [35] e [4, 6, 19, 35, 35–40] sucrose synthase 2.4.1.13 Suc c sucrose c + UDP c UDPGlc c + Frc c e [1–3, 41] e [4, 6, 9, 19, 42–47] [21] invertase 3.2.1.26 Suc c sucrose c Glc c + Frc c e [48] [49] sucrose phosphate phosphatase 3.1.3.24 Suc c S6P c sucrose c+P c [50–52] e [52] [53] sucrose phosphate synthase 2.4.1.14 Suc c F6P c + UDPGlc c UDP c + S6P c e [1] e [?, 54–58] hexokinase 2.7.1.1 Suc c ATP c + Glc c ADP c + G6P c e [1–3] e [6, 12, 59, 60, 60, 61] fructokinase 2.7.1.4 Suc c ATP c + Frc c ADP c + F6P c e [1–3, 26] e [4, 6, 19, 61, 62] UDPglucose pyrophosphorylase 2.7.7.9 Suc c G1P c + UTP c PP c + UDPGlc c e [2, 3, 63]; [25] e [1, 6, 19, 64] ADPglucose pyrophosphorylase (cAGPase) 2.7.7.27 Suc c ATP c + G1P c PP c + ADPglc c e [2, 3, 14, 16, 65, 66] e [6,67–71,71– 78] nucleoside-diphosphate kinase (cNDPkin: UDP) 2.7.4.6 Pur c ATP c + UDP c ADP c + UTP c e [25, 79] e [19] pyruvate decarboxylase 4.1.1.1 Ferm c Pyr c CO 2 c + AcAl c e [79] [6, 80, 81] alcohol dehydrogenase 1.1.1.1 Ferm c NAD + c + Eth c NADH c + AcAl c e [1, 14, 25] e [4, 82] lactate dehydrogenase 1.1.1.27 Ferm c NAD + c + Lac c NADH c + Pyr c e [79] [6] aldehyde dehydrogenase (NAD + ) (cALDH) 1.2.1.3 Ace c NAD + c + AcAl c NADH c + AcA c e [1] aspartate transaminase (cAAT) 2.6.1.1 Glu c 2OG c + Asp c OAA c + Glu c [25, 83] [6, 19, 84, 85] glutamate-ammonia ligase (cGS, GSI) 6.3.1.2 GG c ATP c + Glu c + NH3 c ADP c+P c + Gln c [25, 86] [6] asparagine synthase (glutamine-hydrolysing) 6.3.5.4 Asp c ATP c + Gln c + Asp c PP c + Glu c + AMP c + Asn c [87] e [88]

Upload: dangdan

Post on 08-Mar-2019

223 views

Category:

Documents


0 download

TRANSCRIPT

Table 1: Set of reactions included in the model.

H. vulgare T. aestivum, O. sativa, Z. mays dicotyledone species

reaction name EC path co equation t seed non-seed

tissue

t seed non-seed

tissue

seed non-seed

tissue

phosphoglucomutase (cPGM) 5.4.2.2 Glyc c G1P c⇔ G6P c e [1–3] e [4–7]

phosphoglucose isomerase (cPGI) 5.3.1.9 Glyc c F6P c⇔ G6P c [2,3] e [6,8,9]

6-phosphofructokinase (cPFK) 2.7.1.11 Glyc c ATP c + F6P c⇒ ADP c + F1,6P c e [10] e [11–13]

diphosphate-fructose-6-phosphate 1-phosphotrans-

ferase

2.7.1.90 Glyc c F6P c + PP c⇔ P c + F1,6P c e [14–17] e [6, 9, 11, 18,

19]

fructose-bisphosphate aldolase (cALD) 4.1.2.13 Glyc c F1,6P c⇔ DHAP c + GAP c e [1,10] e [6,9,12,19] [20–22]

triose phosphate isomerase (cTIM) 5.3.1.1 Glyc c DHAP c⇔ GAP c e [1,17,23] e [4–6,6,19,24]

glyceraldehyde-3-phosphate dehydrogenase (phospho-

rylating)

1.2.1.12 Glyc c P c + GAP c + NAD+ c⇔ NADH c + 1,3BPG c f [25,26] e [4,6,19,27]

phosphoglycerate kinase (cPGlyK) 2.7.2.3 Glyc c ADP c + 1,3BPG c⇔ ATP c + 3PG c e [1,10,25] e [4–6,19];

phosphoglycerate mutase (cPGlyM) 5.4.2.1 Glyc c 3PG c⇔ 2PG c f [25,26] e [4,6,28–30]

phosphopyruvate hydratase (cENOLASE) 4.2.1.11 Glyc c 2PG c⇔ PEP c f [25,26] e [4,4,6,19,31]

pyruvate kinase (cPK) 2.7.1.40 Glyc c ADP c + PEP c⇒ ATP c + Pyr c [10,25] e [6,12]

fructose-1,6-bisphosphatase (cFBPAse) 3.1.3.11 Glyc c F1,6P c⇒ P c + F6P c [32,33] [21,34]

pyruvate, phosphate dikinase (cPPDK) 2.7.9.1 Glyc c ATP c + P c + Pyr c⇔ PP c + PEP c + AMP c [35] e [4, 6, 19, 35,

35–40]

sucrose synthase 2.4.1.13 Suc c sucrose c + UDP c⇔ UDPGlc c + Frc c e [1–3,41] e [4, 6, 9, 19,

42–47]

[21]

invertase 3.2.1.26 Suc c sucrose c⇒ Glc c + Frc c e [48] [49]

sucrose phosphate phosphatase 3.1.3.24 Suc c S6P c⇒ sucrose c + P c [50–52] e [52] [53]

sucrose phosphate synthase 2.4.1.14 Suc c F6P c + UDPGlc c⇔ UDP c + S6P c e [1] e [?, 54–58]

hexokinase 2.7.1.1 Suc c ATP c + Glc c⇒ ADP c + G6P c e [1–3] e [6, 12, 59, 60,

60,61]

fructokinase 2.7.1.4 Suc c ATP c + Frc c⇒ ADP c + F6P c e [1–3,26] e [4, 6, 19, 61,

62]

UDPglucose pyrophosphorylase 2.7.7.9 Suc c G1P c + UTP c⇔ PP c + UDPGlc c e [2,3,63]; [25] e [1,6,19,64]

ADPglucose pyrophosphorylase (cAGPase) 2.7.7.27 Suc c ATP c + G1P c⇔ PP c + ADPglc c e [2, 3, 14, 16,

65,66]

e [6,67–71,71–

78]

nucleoside-diphosphate kinase (cNDPkin: UDP) 2.7.4.6 Pur c ATP c + UDP c⇔ ADP c + UTP c e [25,79] e [19]

pyruvate decarboxylase 4.1.1.1 Ferm c Pyr c⇒ CO2 c + AcAl c e [79] [6,80,81]

alcohol dehydrogenase 1.1.1.1 Ferm c NAD+ c + Eth c⇔ NADH c + AcAl c e [1,14,25] e [4,82]

lactate dehydrogenase 1.1.1.27 Ferm c NAD+ c + Lac c⇔ NADH c + Pyr c e [79] [6]

aldehyde dehydrogenase (NAD+) (cALDH) 1.2.1.3 Ace c NAD+ c + AcAl c⇒ NADH c + AcA c e [1]

aspartate transaminase (cAAT) 2.6.1.1 Glu c 2OG c + Asp c⇔ OAA c + Glu c [25,83] [6,19,84,85]

glutamate-ammonia ligase (cGS, GSI) 6.3.1.2 GG c ATP c + Glu c + NH3 c⇒ ADP c + P c + Gln c [25,86] [6]

asparagine synthase (glutamine-hydrolysing) 6.3.5.4 Asp c ATP c + Gln c + Asp c⇒ PP c + Glu c + AMP c

+ Asn c

[87] e [88]

H. vulgare T. aestivum, O. sativa, Z. mays dicotyledone species

reaction name EC path co equation t seed non-seed

tissue

t seed non-seed

tissue

seed non-seed

tissue

asparaginase 3.5.1.1 Asp c Asn c⇒ Asp c + NH3 c [89] [89]

alanine transaminase 2.6.1.2 Ala c 2OG c + Ala c⇔ Pyr c + Glu c [25] e [4,6,19]

adenylate kinase (cAdK) 2.7.4.3 Pur c ATP c + AMP c⇔ 2 ADP c [90] [6]

aconitate hydratase (cACO) 4.2.1.3 Icit c Cit c⇔ Icit c [1,25] e [4,6,19]

isocitrate dehydrogenase (NADP+) (cICDH) 1.1.1.42 Icit c NADP+ c + Icit c ⇔ NADPH c + 2OG c +

CO2 c

e [25,91] e [4]

malate dehydrogenase (cMalDH) 1.1.1.37 Glyc c NAD+ c + Mal c⇔ NADH c + OAA c [1,17,92] e [4, 6, 19, 24,

93]

phosphoenolpyruvate carboxylase 4.1.1.31 Ana c PEP c + CO2 c⇒ P c + OAA c e [1,94,95] [6,96]

phosphoenolpyruvate carboxykinase (ATP) 4.1.1.49 Ana c ATP c + OAA c⇒ ADP c + PEP c + CO2 c [97] [6]

glyceraldehyde-3-phosphate dehydrogenase (NADP) 1.2.1.9 Glyc c GAP c + NADP+ c⇒ 3PG c + NADPH c e [98,99]

argininosuccinate synthase 6.3.4.5 Arg c ATP c + Asp c + Citru c ⇔ PP c + AMP c +

ArgSucc c

[90] e [6,19,100]

argininosuccinate lyase 4.3.2.1 Arg c ArgSucc c⇔ Fum c + Arg c [90] e [6,100]

glutamate decarboxylase 4.1.1.15 GABA c Glu c⇒ CO2 c + Gaba c [101]

glucan synthase complex / Car c UDPGlc c⇒ UDP c + B-glucan c [102]

UDP-glucose 6-dehydrogenase 1.1.1.22 Car c UDPGlc c + 2 NAD+ c ⇒ 2 NADH c +

UDPGlu c

[90] [103]

UDP-glucuronate decarboxylase 4.1.1.35 Car c UDPGlu c⇒ CO2 c + UDPXyl c [104,105]

UDP-arabinose 4-epimerase 5.1.3.5 Car c UDPAra c⇔ UDPXyl c [106]

arabinoxylan biosynthesis (simpl.) / Car c 3 UDPXyl c + 2 UDPAra c ⇒ 5 UDP c + 5

AraXyl c

[107]

cellulose synthase (UDP-forming) 2.4.1.12 Car c UDPGlc c⇒ UDP c + Cel c [102]

formate-tetrahydrofolate ligase 6.3.4.3 Fol c ATP c + THF c + For c ⇔ ADP c + P c +

FTHF c

[90] e [6,19] [108]

methenyltetrahydrofolate cyclohydrolase 3.5.4.9 Fol c METHF c⇔ FTHF c [109] [109]

methylenetetrahydrofolate dehydrogenase (NADP+) 1.5.1.5 Fol c NADP+ c + METTHF c ⇔ NADPH c +

METHF c

[90] [110]

methylenetetrahydrofolate reductase (NAD(P)H) 1.5.1.20 Fol c NADH c + METTHF c⇒ NAD+ c + MTHF c [90] [4,111]

isocitrate lyase 4.1.3.1 For c Icit c⇒ Succ c + Glx c [112]

glyoxylate oxidase 1.2.3.5 For c Glx c + O2 c⇒ Oxl c [6]

oxalate decarboxylase 4.1.1.2 For c Oxl c⇒ CO2 c + For c [90]

biomassbiosynthesis / BM c see Table S4

methionine adenosyltransferase 2.5.1.6 Met c ATP c + Met c⇒ P c + PP c + SAM c [113] e [4,6,19]

adenosylhomocysteinase 3.3.1.1 Met c SAH c⇔ HOMO-Cys c + ADN c [114] [6]

adenosine kinase 2.7.4.3 Pur c ATP c + ADN c⇒ ADP c + AMP c [90] [6] [115]

homocysteine S-methyltransferase 2.1.1.10 Met c HOMO-Cys c + SAM c⇒ Met c + SAH c [90] [6]

methionine synthase (cMS) 2.1.1.13 Met c MTHF c + HOMO-Cys c⇒ THF c + Met c [113] [19]

glucose-6-phosphate dehydrogenase (c-G6PDH) 1.1.1.49 PPP c G6P c + NADP+ c⇔ NADPH c + GL6P c f [26] [116,117] [6,118]

6-phosphogluconolactonase 3.1.1.31 PPP c GL6P c⇒ 6PG c f [26] [6] [119]

H. vulgare T. aestivum, O. sativa, Z. mays dicotyledone species

reaction name EC path co equation t seed non-seed

tissue

t seed non-seed

tissue

seed non-seed

tissue

phosphogluconate dehydrogenase (decarboxylating) 1.1.1.44 PPP c NADP+ c + 6PG c ⇒ NADPH c + CO2 c +

Ru5P c

[6,19,24,120]

ribulose-phosphate 3-epimerase (cRuPepimerase) 5.1.3.1 PPP c Ru5P c⇔ X5P c f [26] [6] [121]

glycine hydroxymethyltransferase (cSHMT) 2.1.2.1 Fol c METTHF c + Gly c⇔ THF c + Ser c [90] [6] [122]

pyruvate dehydrogenase complex (mPyrDH) 1.2.4.1 TCA m NAD+ m + Pyr m + CoA m⇒ NADH m + Ac-

CoA m + CO2 m

e [1] e [4,6]

citrate synthase 2.3.3.1 TCA m AcCoA m + OAA m⇒ Cit m + CoA m e [1] [6,24,123]

aconitate hydratase (mACO) 4.2.1.3 TCA m Cit m⇔ Icit m e [1] e [4,6,19]

isocitrate dehydrogenase (NADP+) (mICDH) 1.1.1.42 TCA m NADP+ m + Icit m ⇔ NADPH m + 2OG m +

CO2 m

e [25,91] [4,124]

isocitrate dehydrogenase (NAD+) (mICDH) 1.1.1.41 TCA m NAD+ m + Icit m ⇔ NADH m + 2OG m +

CO2 m

[90] e [19,125]

oxoglutarate dehydrogenase (succinyl-transferring) 1.2.4.2 TCA m NAD+ m + CoA m + 2OG m ⇒ NADH m +

SuccCoA m + CO2 m

[126]

succinate-CoA ligase (ADP-forming) 6.2.1.5 TCA m ATP m + CoA m + Succ m⇔ ADP m + P m +

SuccCoA m

[90] e [6,12]

succinate dehydrogenase (ubiquinone) 1.3.5.1 TCA m Succ m + Q m⇔ QH2 m + Fum m [90] e [6,12]

fumarate hydratase 4.2.1.2 TCA m Mal m⇔ Fum m e [1,92] [6]

malate dehydrogenase (mMalDH) 1.1.1.37 TCA m NAD+ m + Mal m⇔ NADH m + OAA m e [1,17,25,92] e [4,6,19,93]

glutamate dehydrogenase 1.4.1.2 Ana m NAD+ m + Glu m ⇔ NADH m + 2OG m +

NH3 m

[127] [128]

aspartate transaminase (mAAT) 2.6.1.1 Ana m 2OG m + Asp m⇔ OAA m + Glu m [25,83] [?, 6,19,84]

malate dehydrogenase (decarboxylating) 1.1.1.39 Ana m NAD+ m + Mal m ⇒ NADH m + Pyr m +

CO2 m

[129]

4-aminobutyrate transaminase 2.6.1.19 GABA m 2OG m + Gaba m⇔ Glu m + SuccSAl m [130] [131]

succinate-semialdehyde dehydrogenase (NAD(P)+) 1.2.1.16 GABA m NADP+ m + SuccSAl m ⇒ NADPH m +

Succ m

[90] [131]

NADH dehydrogenase (ubiquinone) 1.6.5.3 oxP m NADH m + Q m⇒NAD+ m + QH2 m + 2 H ext [132]

cytochrome-c oxidase 1.9.3.1 oxP m QH2 m + 0.5 O2 m⇒ Q m + 2 H ext [90] [6]

H+-exporting ATPase 3.6.3.6 oxP m ADP m + P m + 3 H ext⇔ ATP m [90]

glycine decarboxylase system / Fol m NADH m + Gly m + THF m ⇔ NAD+ m +

CO2 m + NH3 m + METTHF m

glycine hydroxymethyltransferase (mSHMT) 2.1.2.1 Fol m Gly m + METTHF m⇔ Ser m + THF m [90] [6]

phosphoglucomutase (pPGM) 5.4.2.2 Glyc p G1P p⇔ G6P p e [1–3] e [4–6, 9, 19,

100,133]

phosphoglucose isomerase (pPGI) 5.3.1.9 Glyc p F6P p⇔ G6P p [2,3] [134] e [6,9,100,135]

6-phosphofructokinase (pPFK) 2.7.1.11 Glyc p ATP p + F6P p⇒ ADP p + F1,6P p [10] [134] e [?, 9,12] [22]

fructose-bisphosphate aldolase (pALD) 4.1.2.13 Glyc p F1,6P p⇔ DHAP p + GAP p [134] e [6, 9, 12, 19,

100]

H. vulgare T. aestivum, O. sativa, Z. mays dicotyledone species

reaction name EC path co equation t seed non-seed

tissue

t seed non-seed

tissue

seed non-seed

tissue

triose phosphate isomerase (pTIM) 5.3.1.1 Glyc p DHAP p⇔ GAP p [23] [134] e [4, 5, 5, 6, 19,

24,100]

glyceraldehyde-3-phosphate dehydrogenase (NADP+)

(phosphorylating)

1.2.1.13 Glyc p P p + GAP p + NADP+ p ⇔ 1,3BPG p +

NADPH p

[92] [134] e

phosphoglycerate kinase (pPGlyK) 2.7.2.3 Glyc p ADP p + 1,3BPG p⇔ ATP p + 3PG p [10] [136] e [4–6, 19, 100,

137,138]

phosphoglycerate mutase (pPGlyM) 5.4.2.1 Glyc p 3PG p⇔ 2PG p [25,26] [134] e [4, 6, 28–30,

100,137]

phosphopyruvate hydratase (pENOLASE) 4.2.1.11 Glyc p 2PG p⇔ PEP p f [25,26] e [4–6, 19, 31,

100,137]

pyruvate kinase (pPK) 2.7.1.40 Glyc p ADP p + PEP p⇒ ATP p + Pyr p [1,10] [134] e [6, 12, 100,

137]

fructose-1,6-bisphosphatase (pFBPase) 3.1.3.11 Glyc p F1,6P p⇒ P p + F6P p [33] [6] [139]

inorganic diphosphatase 3.6.1.1 Suc p PP p⇒ 2 P p e [2, 3, 14, 16,

26,140]

e [4,100]

ADPglucose pyrophosphorylase (pAGPase) 2.7.7.27 Suc p ATP p + G1P p⇔ PP p + ADPglc p e [2,3,3,14,16,

65]

e [?,19,67,69–

78,141]

starch synthase (simpl.) 2.4.1.21 Suc p ADPglc p⇒ ADP p + starch p e [2, 3, 14, 16,

142]

e [6, 100, 143–

150]

alpha-amylase 3.2.1.1 Str p 3 starch p⇒ Glc p + Malt p e [1] e [6,151]

beta-amylase 3.2.1.2 Str p 2 starch p⇒ Malt p e [1,152] e [6,19]

alpha-glucosidase 3.2.1.20 Str p Malt p⇒ 2 Glc p [152] [153,154]

adenylate kinase (pAdK) 2.7.4.3 En p ATP p + AMP p⇔ 2 ADP p [90] e [6,100]

glucose-6-phosphate dehydrogenase (p2-G6PDH) 1.1.1.49 PPP p G6P p + NADP+ p⇔ NADPH p + GL6P p [26] [116] e [6,100,118]

6-phosphogluconolactonase 3.1.1.31 PPP p GL6P p⇒ 6PG p f [26] [6] [119] [121]

phosphogluconate dehydrogenase (decarboxylating) 1.1.1.44 PPP p NADP+ p + 6PG p ⇒ NADPH p + CO2 p +

Ru5P p

[6,19,24] [155]

ribulose-phosphate 3-epimerase (pRuPepimerase) 5.1.3.1 PPP p Ru5P p⇔ X5P p f [26] [6,19] [155]

ribose-5-phosphate isomerase (pR5P isomerase) 5.3.1.6 PPP p R5P p⇔ Ru5P p [90] e [100]

transketolase (sedoheptulose 7-P - ribose 5-P) 2.2.1.1 PPP p GAP p + S7P p⇔ X5P p + R5P p e [10] e [4,6,100]

transketolase (fructose 6-P - erythrose 4-P) 2.2.1.1 PPP p F6P p + GAP p⇔ X5P p + E4P p e [10] e [4,6,100]

transaldolase 2.2.1.2 PPP p GAP p + S7P p⇔ F6P p + E4P p e [1,10] e [6,100]

phosphoribulokinase 2.7.1.19 Rub p ATP p + Ru5P p⇒ ADP p + Ru1,5P p [156] [157]

ribulose-bisphosphate carboxylase 4.1.1.39 Rub p CO2 p + Ru1,5P p⇒ 2 3PG p e [1] e [158]

3-deoxy-7-phosphoheptulonate synthase 2.5.1.54 Sh p PEP p + E4P p⇒ P p + DAH7P p [90]

3-dehydroquinate synthase 4.2.3.4 Sh p DAH7P p⇒ P p + 3DHQ p [159] e [100]

3-dehydroquinate dehydratase 4.2.1.10 Sh p 3DHQ p⇔ 3DSh p e [100]

shikimate dehydrogenase 1.1.1.25 Sh p NADP+ p + Sh p⇔ NADPH p + 3DSh p [160] [161]

shikimate kinase 2.7.1.71 Sh p ATP p + Sh p⇒ ADP p + Sh3P p [90]

H. vulgare T. aestivum, O. sativa, Z. mays dicotyledone species

reaction name EC path co equation t seed non-seed

tissue

t seed non-seed

tissue

seed non-seed

tissue

3-phosphoshikimate 1-carboxyvinyltransferase 2.5.1.19 Sh p PEP p + Sh3P p⇔ P p + EPSP p [90] e [100]

chorismate synthase 4.2.3.5 Sh EPSP p⇒ P p + Ch p [90] e [4,6]

chorismate mutase 5.4.99.5 Tyr p Ch p⇒ PRE p [162] [6]

aromatic-amino-acid transaminase 2.6.1.57 Tyr p 2OG p + Agn p⇔ Glu p + PRE p [163]

arogenate dehydrogenase 1.3.1.43 Tyr p NAD+ p + Agn p⇒ NADH p + CO2 p + Tyr p [163]

arogenate dehydratase 4.2.1.91 Phe p Agn p⇒ CO2 p + Phe p [164]

ribose-phosphate diphosphokinase (pPRPPS) 2.7.6.1 His p ATP p + R5P p⇔ AMP p + PRPP p [90] [165]

ATP phosphoribosyltransferase 2.4.2.17 His p ATP p + PRPP p⇒ PP p + PR-ATP p [166] e [100,167]

phosphoribosyl-ATP diphosphatase 3.6.1.31 His p PR-ATP p⇒ PP p + PR-AMP p [90]

phosphoribosyl-AMP cyclohydrolase 3.5.4.19 His p PR-AMP p⇒ PR-AICARP p [90] [168]

1-(5-phosphoribosyl)-5-((5-phosphoribosylamino)-

methylideneamino)imidazole-4-carboxamide isomerase

5.3.1.16 His p PR-AICARP p⇒ PRu-AICARP p e [100]

imidazoleglycerol-phosphate synthase 2.4.2.- His p Gln p + PRu-AICARP p ⇒ Glu p + IGP p +

AICAR p

[90] e [100]

imidazoleglycerol-phosphate dehydratase 4.2.1.19 His p IGP p⇒ IAP p [169] [169]

histidinol-phosphate transaminase 2.6.1.9 His p Glu p + IAP p⇒ 2OG p + HolP p [90]

histidinol-phosphatase 3.1.3.15 His p HolP p⇒ P p + Hol p [166]

histidinol dehydrogenase 1.1.1.23 His c 2 NAD+ p + Hol p⇒ 2 NADH p + His p e [100,170]

glutamate dehydrogenase (NAD(P)) 1.4.1.3 GG p NADP+ p + Glu p ⇔ NADPH p + 2OG p +

NH3 p

e [83] [6]

pyrroline-5-carboxylate synthase 2.7.2.11/1.2.1.41 Pro p ATP p + NADPH p + Glu p ⇒ ADP p + P p +

NADP+ p + GluSA p

[171]

Proline biosynthesis: spontaneous reaction / Pro p GluSA p⇒ PyrrC p

pyrroline-5-carboxylate reductase 1.5.1.2 Pro p NADH p + PyrrC p⇔ NAD+ p + Pro p [172] [173]

ornithine-oxo-acid transaminase 1.5.1.12 Arg p 2OG p + Or p⇔ Glu p + GluSA p [174]

amino-acid N-acetyltransferase 2.3.1.1 Arg p AcCoA p + Glu p⇒ CoA p + AcGlu p [90]

acetylglutamate kinase 2.7.2.8 Arg p ATP p + AcGlu p⇒ ADP p + AcGluP p [90] e [100]

N-acetyl-gamma-glutamyl-phosphate reductase 1.2.1.38 Arg p P p + NADP+ p + AcGluSA p ⇔ NADPH p +

AcGluP p

[90] e [6,100]

acetylornithine transaminase 2.6.1.11 Arg p 2OG p + AcOr p⇔ Glu p + AcGluSA p [90] e [100]

aminoacylase 3.5.1.14 Arg p AcOr p⇒ AcA p + Or p [90] [6]

ornithine carbamoyltransferase 2.1.3.3 Arg p Or p + CP p⇔ P p + Citru p [90] e [6,100]

carbamoyl-phosphate synthase 6.3.5.5 Arg p 2 ATP p + CO2 p + Gln p⇒ 2 ADP p + P p +

Glu p + CP p

e [4,6,19]

aspartate kinase 2.7.2.4 Thr p ATP p + Asp p⇔ ADP p + PAsp p [113, 122,

175]

e [176,177]

aspartate-semialdehyde dehydrogenase 1.2.1.11 Thr p P p + NADP+ p + AspSA p ⇔ NADPH p +

PAsp p

[113] e [100]

homoserine dehydrogenase 1.1.1.3 Thr p NAD+ p + HOMO-Ser p⇔ NADH p + AspSA p [178] [179]

H. vulgare T. aestivum, O. sativa, Z. mays dicotyledone species

reaction name EC path co equation t seed non-seed

tissue

t seed non-seed

tissue

seed non-seed

tissue

homoserine kinase 2.7.1.39 Thr p ATP p + HOMO-Ser p ⇒ ADP p + P-HOMO-

Ser p

[113, 175,

180]

[181]

threonine synthase 4.2.3.1 Thr p P-HOMO-Ser p⇒ P p + Thr p [113,175] e [4,100]

cystathionine gamma-synthase 2.5.1.48 Met p Cys p + P-HOMO-Ser p⇒ P p + CysTh p [113] [6,182]

cystathionine beta-lyase 4.4.1.8 Met p CysTh p⇒ Pyr p + NH3 p + HOMO-Cys p [113]

methionine synthase (pMS) 2.1.1.13 Met p HOMO-Cys p + MTHF p⇒ THF p + Met p [175] e [19] [183]

succinate-CoA ligase (ADP-forming) 6.2.1.5 Lys p ATP p + CoA p + Succ p⇔ ADP p + P p + Suc-

cCoA p

[90] e [6,12]

dihydrodipicolinate synthase 4.2.1.52 Lys p Pyr p + AspSA p⇒ DPA p [113] e [100,184]

dihydrodipicolinate reductase 1.3.1.26 Lys p NADP+ p + THDPA p⇔ NADPH p + DPA p e [100,185]

2,3,4,5-tetrahydropyridine-2,6-dicarboxylate 2.3.1.117 Lys p SuccCoA p + THDPA p⇒ CoA p + SuccAH p [186]

N-succinyltransferase

succinyldiaminopimelate transaminase 2.6.1.17 Lys p 2OG p + SuccDAH p⇔ Glu p + SuccAH p [90]

succinyl-diaminopimelate desuccinylase 3.5.1.18 Lys p SuccDAH p⇒ Succ p + DAH p [90] e [100] [90]

Diaminopimelate epimerase 5.1.1.7 Lys p DAH p⇔ mDAH p [90] e [6,100]

Diaminopimelate decarboxylase 4.1.1.20 Lys p mDAH p⇒ CO2 p + Lys p [113] e [100,187]

threonine ammonia-lyase 4.3.1.19 Iso Thr p⇒ NH3 p + 2OB p [90]

acetolactate synthase (iso. syn.) 2.2.1.6 Iso p Pyr p + 2OB p⇒ CO2 p + 2AHB p [188] e [4,19,100]

ketol-acid reductoisomerase(iso. syn.) 1.1.1.86 Iso p NADPH p + 2AHB p⇒ NADP+ p + DMV p [189] e [4,6,19,100]

dihydroxy-acid dehydratase(iso. syn.) 4.2.1.9 Iso p DMV p⇒ OMV p [90] e [6,100]

branched-chain-amino-acid transaminase (iso syn.) 2.6.1.42 Iso p 2OG p + Ile p⇔ Glu p + OMV p [190] e [100]

acetolactate synthase (valin syn.) 2.2.1.6 Val p 2 Pyr p⇒ CO2 p + AcLac p [188] e [4,19,100]

ketol-acid reductoisomerase (valin syn.) 1.1.1.86 Val p NADPH p + AcLac p⇒ NADP+ p + DIV p [189] e [4,6,19,100]

dihydroxy-acid dehydratase (valin syn.) 4.2.1.9 Val p DIV p⇒ OIV p [90] e [6,100]

branched-chain-amino-acid transaminase (val. syn.) 2.6.1.42 Val p 2OG p + Val p⇔ Glu p + OIV p [190] e [100]

2-isopropylmalate synthase 2.3.3.13 Leu p AcCoA p + OIV p⇒ CoA p + 2IPM p [90] e [6,19,100]

3-isopropylmalate dehydratase 4.2.1.33 Leu p 3IPM p⇔ 2IPM p [90] e [100]

Leucine biosynthesis: spontaneous rct / Leu p IPO p⇒ CO2 p + OIC p

3-isopropylmalate dehydrogenase 1.1.1.85 Leu p NAD+ p + 3IPM p⇒ NADH p + IPO p [90] e [6,100]

branched-chain-amino-acid transaminase (leu. syn.) 2.6.1.42 Leu p 2OG p + Leu p⇔ Glu p + OIC p [190] e [100]

phosphoglycerate dehydrogenase 1.1.1.95 Ser p NAD+ p + 3PG p⇒ NADH p + PHPyr p [90] e [6,191]

phosphoserine transaminase 2.6.1.52 Ser p PHPyr p + Glu p⇒ 2OG p + Pser p [25] [6]

phosphoserine phosphatase 3.1.3.3 Ser p Pser p⇒ P p + Ser p [90]

glycine hydroxymethyltransferase (pSHMT) 2.1.2.1 Gly p METTHF p + Gly p⇔ Ser p + THF p [90] e [6,100]

serine O-acetyltransferase 2.3.1.30 Cys p AcCoA p + Ser p⇒ CoA p + AcSer p [192] [193]

cysteine synthase 2.5.1.47 Cys p AcSer p + H2S p⇒ Cys p + AcA p [90] e [24,100]

aspartate transaminase (pAAT) 2.6.1.1 Asp p 2OG p + Asp p⇔ Glu p + OAA p [25,83] e [?,6,19]

phosphoribosylaminoimidazolecarboxamide 2.1.2.3 Pur p AICAR p + FTHF p⇔ THF p + PRFICA p e [100]

formyltransferase

IMP cyclohydrolase 3.5.4.10 Pur p IMP p⇔ PRFICA p [90]

H. vulgare T. aestivum, O. sativa, Z. mays dicotyledone species

reaction name EC path co equation t seed non-seed

tissue

t seed non-seed

tissue

seed non-seed

tissue

adenylosuccinate synthase 6.3.4.4 Pur p Asp p + GTP p + IMP p ⇒ P p + GDP p +

Asuc p

[90] e [100,194]

adenylosuccinate lyase (AMP) 4.3.2.2 Pur p Asuc p⇔ Fum p + AMP p [90] [6,194]

nucleoside-diphosphate kinase (cNDPkin: GDP) 2.7.4.6 Pur p ATP p + GDP p⇔ ADP p + GTP p e [25,79] e [4,19,100]

malate dehydrogenase (oxaloacetate-decarboxylating)

(NADP+)

1.1.1.40 Pur p NADP+ p + Mal p ⇒ Pyr p + NADPH p +

CO2 p

[25] e [6,195,196]

acetate-CoA ligase 6.2.1.1 TAG p ATP p + CoA p + AcA p⇒ PP p + AcCoA p +

AMP p

[90] [197]

glutamate synthase (NADH) 1.4.1.14 GG p NADH p + 2OG p + Gln p⇒ NAD+ p + 2 Glu p e [10]

ATP citrate synthase 2.3.3.8 TAG p ATP p + CoA p + Cit p ⇒ ADP p + P p + Ac-

CoA p + OAA p

[90] [6] [198]

sucrose transporter / Up cm sucrose ex + H ext⇒ sucrose c e [199] e [200] [201,202]

AA transporter (asparagine) / Up cm Asn ex + H ext⇒ Asn c [201–203]

AA transporter (glutamine) / Up cm Gln ex + H ext⇒ Gln c [201–203]

O2-diffusion / Up cm O2 ex⇒ O2 c [204]

H2S diffusion (cm) / Up cm H2S ex⇒ H2S c

ethanol export / Ex cm Eth c⇒ Eth ex

lactate export / Ex cm Lac c⇒ Lac ex

CO2export / Ex cm CO2 c⇒

biomass export / Ex cm biomass⇒

pyruvate transporter (m) / Int m Pyr c⇔ Pyr m [205]

glutamate/aspartate transporter / Int m Glu c + Asp m⇔ Glu m + Asp c [206]

OAA/malate transporter / Int m OAA c + Mal m⇔ OAA m + Mal c [206]

OAA/2OG transporter / Int m OAA c + 2OG m⇔ OAA m + 2OG c [207]

OAA/succinate transporter / Int m OAA c + Succ m⇔ OAA m + Succ c [207]

OAA/citrate transporter / Int m OAA c + Cit m⇔ OAA m + Cit c [207]

OAA/aspartate transporter / Int m OAA c + Asp m⇔ OAA m + Asp c [207]

succinate/P transporter / Int m P c + Succ m⇔ P m + Succ c [208]

succinate/malate transporter / Int m Succ c + Mal m⇔ Succ m + Mal c [208]

malate/P transporter / Int m P c + Mal m⇔ P m + Mal c [208]

2OG/citrate transporter / Int m Cit c + 2OG m⇔ Cit m + 2OG c [209]

2OG/succinate transporter / Int m 2OG c + Succ m⇔ 2OG m + Succ c [209]

malate/citrate transporter / Int m Cit c + Mal m⇔ Cit m + Mal c [209]

succinate/citrate transporter / Int m Cit c + Succ m⇔ Cit m + Succ c [209]

phosphate transporter / Int m P c⇔ P m [210,211] [212]

ATP/ADP transporter / Int m ATP c + ADP m⇔ ATP m + ADP c [213]

GABA/glutamate transporter / Int m Glu c + Gaba m⇔ Glu m + Gaba c [203, 214,

215]

CO2-diffusion / Int m CO2 c⇔ CO2 m

O2-diffusion / Int m O2 c⇔ O2 m

H. vulgare T. aestivum, O. sativa, Z. mays dicotyledone species

reaction name EC path co equation t seed non-seed

tissue

t seed non-seed

tissue

seed non-seed

tissue

NH3-diffusion / Int m NH3 c⇔ NH3 m

malate/2OG transporter / Int m 2OG m + Mal c⇔ 2OG c + Mal m [209,216]

succinate/fumarate transporter / Int m Succ c + Fum m⇔ Succ m + Fum c [216]

AA transporter m (serine) / Int m Ser p⇔ Ser c [214]

AA transporter m (glycine) / Int m Gly c⇔ Gly m [214]

AA transporter(methionine) / Int p Met p⇔ Met c [214]

mal/succTransporter(plastid) / Int p Succ p + Mal c⇔ Succ c + Mal p [217]

malate/citrateTransporter / Int p Mal c + Cit p⇔ Cit c + Mal p [217]

malate/OAAtransporter / Int p Mal c + OAA p⇔ OAA c + Mal p [217] [218]

pyruvate transporter (p) / Int p Pyr c⇔ Pyr p [21,22]

AA transporter p (serine) / Int p Ser c⇔ Ser m [214]

AA transporter p (gly) / Int p Gly p⇔ Gly c [214]

mal Transporter / Int p Mal p⇔Mal c

X5P/P transporter / Int p X5P c + P p⇔ X5P p + P c [219]

ADP-glucose transporter (AMP) / Int p ADPglc c + AMP p⇔ ADPglc p + AMP c e [3] e [220]

G1Ptransporter / Int p P c + G1P p⇔ P p + G1P c e [3] e [221]

phosphate transporter / Int p P c⇔ P p [210,211] [222]

ATP/ADP transporter / Int p ATP c + ADP p⇔ ATP p + ADP c e [?, 223]

glucose transporter / Int p Glc c⇔ Glc p [224]

triosephosphat/P translocator (TPT1 GAP) / Int p P c + GAP p⇔ P p + GAP c e [31,224]

triosephosphat/P translocator (TPT2 DHAP) / Int p P c + DHAP p⇔ P p + DHAP c e [31,224]

triosephosphat/P translocator (TPT3 3-PGA) / Int p P c + 3PG p⇔ P p + 3PG c e [31,224]

phosphoenolpyruvat/phosphat transporter / Int p P c + PEP p⇔ P p + PEP c e [31,224]

malate/2OG transporter / Int p 2OG c + Mal p⇔ 2OG p + Mal c [217] [225]

malate/fumarate transporter / Int p Mal c + Fum p⇔ Mal p + Fum c

malate/glutamate transporter / Int p Mal c + Glu p⇔ Mal p + Glu c [217]

malate/aspartate transporter / Int p Mal c + Asp p⇔ Mal p + Asp c [217]

AA transporter (glutamine) / Int p Gln c⇔ Gln p [214]

AA transporter (citrulline) / Int p Citru c⇔ Citru p [214]

acetate diffusion / Int p AcA c⇔ AcA p

NH3S-diffusion / Int p NH3 c⇔ NH3 p

CO2-diffusion / Int p CO2 c⇔ CO2 p

H2S diffusion (p) / Int p H2S c⇒ H2S p

folate trasporter (THF) / Int p THF c⇔ THF p [226]

folate trasporter (MTHF) / Int p MTHF c⇔ MTHF p [226]

folate trasporter (METTHF) / Int p METTHF c⇔ METTHF p [226]

folate trasporter (FTHF) / Int p FTHF c⇔ FTHF p [226]

Set of reactions included in the reconstructed network. The references supporting each reaction are given for Hordeum vulgare

(barley), Triticum aestivum (wheat), Oryza sativa (rice), and Zea mays (maize). In case, no information on monocotyledone

species was available, information on dicotyledone species was included. With respect to seed-specific information, further

information on the tissue-level are given whenever available with e and f indicating that some of the references listed con-

tain endosperm- or filial tissue-specific information, respectively. Abbreviations: co: compartment; path: pathway; t: tissue.

Pathways: Glyc: Glycolysis/Gluconeogenesis; Suc: Sucrose-to-starch pathway; Ferm: Fermentation; Ace: Acetate biosyn-

thesis; Glu: Glutamate/Glutamine metabolism; Asp: Aspartate/Asparagine metabolism; Ala: Alanine biosynthesis; Ana: Ana-

/Cataplerosis; Arg: Arginine biosynthesis; GABA: GABA biosynthesis/degradation; Car: Carbohydrates biosynthesis; Fol:

Folate metabolism; oxP: Oxidative phosphorylatoion; For: Formate biosynthesis; BM: biomass biosynthesis/export; Met: Me-

thionine metabolism; Pur: Purine metabolism; PPP: Pentose phosphate pathway; Str: Starch degradation; TCA: Citrate cycle;

Rub: Rubisco bypass; Sh: Shikimate biosynthesis; Tyr: Tyrosine biosynthesis; Phe: Phenylalanine biosynthesis; GG: GS-

GoGAT; His: Histidine biosynthesis; Icit: Isocitrate metabolism; Pro: Proline biosynthesis; Thr: Threonine biosynthesis; Lys:

Lysine biosynthesis; Iso: Isoleucine biosynthesis; Val: Valine biosynthesis; Leu: Leucine biosynthesis; Ser: Serine biosynthe-

sis; Gly: Glycine biosynthesis; Cys: Cysteine biosynthesis; Pur: Purine biosynthesis; TAG: triacylglycerol biosynthesis; Up:

uptake; Ex: export; Int: Internal transport.

References

[1] Sreenivasulu, N., Radchuk, V., Strickert, M., Miersch, O., Weschke, W., and Wobus, U.

(2006) Gene expression patterns reveal tissue-specific signaling networks controlling pro-

grammed cell death and ABA- regulated maturation in developing barley seeds. Plant J., 47,

310–327.

[2] Johnson, P., Patron, N., Bottrill, A., Dinges, J., Fahy, B., Parker, M., Waite, D., and Denyer,

K. (2003) A low-starch barley mutant, risø 16, lacking the cytosolic small subunit of ADP-

glucose pyrophosphorylase, reveals the importance of the cytosolic isoform and the identity

of the plastidial small subunit. Plant Physiol., 131, 684–696.

[3] Patron, N., Greber, B., Fahy, B., Laurie, D., Parker, M., and Denyer, K. (2004) The lys5

mutations of barley reveal the nature and importance of plastidial ADP-Glc transporters for

starch synthesis in cereal endosperm. Plant Physiol., 135, 2088–2097.

[4] Mechin, V., Thevenot, C., Le Guilloux, M., Prioul, J., and Damerval, C. (2007) Developmental

analysis of maize endosperm proteome suggests a pivotal role for pyruvate orthophosphate

dikinase. Plant Physiol., 143, 1203–1219.

[5] Entwistle, G. and Rees, T. (1988) Enzymic capacities of amyloplasts from wheat (Triticum

aestivum) endosperm. Biochem. J., 255, 391–396.

[6] Koller, A., Washburn, M., Lange, B., Andon, N., Deciu, C., Haynes, P., Hays, L., Schieltz,

D., Ulaszek, R., Wei, J., Wolters, D., and Yates, J. (2002) Proteomic survey of metabolic

pathways in rice. Proc. Natl. Acad. Sci. U.S.A., 99, 11969–11974.

[7] Manjunath, S., Lee, C., VanWinkle, P., and Bailey-Serres, J. (1998) Molecular and biochem-

ical characterization of cytosolic phosphoglucomutase in maize. Expression during develop-

ment and in response to oxygen deprivation. Plant Physiol., 117, 997–1006.

[8] Sangwan, R. S. and Singh, R. (1989) Characterization of cytosolic phosphoglucoisomerase

from immature wheat (Triticum aestivum L.) endosperm. J. Biosci., 14, 47–54.

[9] Doehlert, D., Kuo, T., and Felker, F. (1988) Enzymes of Sucrose and Hexose Metabolism in

Developing Kernels of Two Inbreds of Maize. Plant Physiol., 86, 1013–1019.

[10] Duffus, C. M. and Rosie, R. (1977) Carbohydrate Oxidation in Developing Barley En-

dosperm. New Phytol., 78, 391–395.

[11] Mahajan, R. and Singh, R. (1989) Properties of Pyrophosphate:Fructose-6-Phosphate

Phosphotransferase from Endosperm of Developing Wheat (Triticum aestivum L.) Grains.

Plant Physiol., 91, 421–426.

[12] Mechin, V., Balliau, T., Chateau-Joubert, S., Davanture, M., Langella, O., Negroni, L., Prioul,

J., Thevenot, C., Zivy, M., and Damerval, C. (2004) A two-dimensional proteome map of

maize endosperm. Phytochem., 65, 1609–1618.

[13] Mahajan, R. and Singh, R. (1992) Properties of ATP-dependent phosphofructokinase from

endosperm of developing wheat (Triticum aestivum L.) grains.. J. Plant Biochem. Biotech-

nol., 1, 45–48.

[14] Beckles, D., Smith, A., and apRees, T. (2001) A cytosolic ADP-glucose pyrophosphorylase

is a feature of graminaceous endosperms, but not of other starch-storing organs. Plant

Physiol., 125, 818–827.

[15] Nielsen, T. H. (1994) Pyrophosphate:fructose-6-phosphate 1-phosphotransferase from bar-

ley seedlings. Isolation, subunit composition and kinetic characterization. Physiol. Plant., 92,

311–321.

[16] Thorbjørnsen, T., Villand, P., Denyer, K., Olsen, O., and Smith, A. (1996) Distinct isoforms

of ADPglucose pyrophosphorylase occur inside and outside the amyloplasts in barley en-

dosperm. Plant J., 10, 243–250.

[17] Finnie, C., Melchior, S., Roepstorff, P., and Svensson, B. (2002) Proteome analysis of grain

filling and seed maturation in barley. Plant Physiol., 129, 1308–1319.

[18] Kruger, N. and Dennis, D. (1987) Molecular properties of pyrophosphate:fructose-6-

phosphate phosphotransferase from potato tuber. Arch. Biochem. Biophys., 256, 273–279.

[19] Vensel, W., Tanaka, C., Cai, N., Wong, J., Buchanan, B., and Hurkman, W. (2005) De-

velopmental changes in the metabolic protein profiles of wheat endosperm. Proteomics, 5,

1594–1611.

[20] Park, K. and Anderson, L. (1973) Appearance of Three Chloroplast Isoenzymes in Dark-

grown Pea Plants and Pea Seeds. Plant Physiol., 51, 259–262.

[21] White, J., Todd, J., Newman, T., Focks, N., Girke, T., deIlarduya, O., Jaworski, J., Ohlrogge,

J., and Benning, C. (2000) A new set of Arabidopsis expressed sequence tags from devel-

oping seeds. The metabolic pathway from carbohydrates to seed oil. Plant Physiol., 124,

1582–1594.

[22] Eastmond, P. and Rawsthorne, S. (2000) Coordinate changes in carbon partitioning and

plastidial metabolism during the development of oilseed rape embryos. Plant Physiol., 122,

767–774.

[23] Østergaard, O., Finnie, C., Laugesen, S., Roepstorff, P., and Svennson, B. (2004) Proteome

analysis of barley seeds: Identification of major proteins from two-dimensional gels (pI 4-7).

Proteomics, 4, 2437–2447.

[24] Mak, Y., Skylas, D., Willows, R., Connolly, A., Cordwell, S., Wrigley, C., Sharp, P., and

Copeland, L. (2006) A proteomic approach to the identification and characterisation of pro-

tein composition in wheat germ. Funct. Integr. Genomics, 6, 322–337.

[25] Finnie, C., Bak-Jensen, K., Laugesen, S., Roepstorff, P., and Svensson, B. (2006) Differen-

tial appearance of isoforms and cultivar variation in protein temporal profiles revealed in the

maturing barley grain proteome. Plant Sci., 170, 808–821.

[26] Sreenivasulu, N., Altschmied, L., Radchuk, V., Gubatz, S., Wobus, U., and Weschke, W.

(2004) Transcript profiles and deduced changes of metabolic pathways in maternal and

filial tissues of developing barley grains. Plant J., 37, 539–553.

[27] Malhotra, O. P., Srinivasan, D., and Srivastava, D. K. (1978) Kinetics of inactivation

and molecular asymmetry of NAD-specific glyceraldehyde-3-phosphate dehydrogenase of

Pisum sativum. Biochim. Biophys. Acta., 526, 1–12.

[28] Grisolia, S. and Carreras, J. (1975) Phosphoglycerate mutase from wheat germ (2,3-PGA-

independent). Methods Enzymol., 42, 429–435.

[29] Smith, G. and Hass, L. (1985) Wheat germ phosphoglycerate mutase: purification, poly-

morphism, and inhibition. Biochem. Biophys. Res. Commun., 131, 743–749.

[30] Graa, X., Urea, J., Ludevid, D., Carreras, J., and Climent, F. (1989) Purification, characteri-

zation and immunological properties of 2,3-bisphosphoglycerate-independent phosphoglyc-

erate mutase from maize (Zea mays) seeds. Eur. J. Biochem., 186, 149–153.

[31] Fischer, K., Kammerer, B., Gutensohn, M., Arbinger, B., Weber, A., Hausler, R., and Flugge,

U. (1997) A new class of plastidic phosphate translocators: a putative link between primary

and secondary metabolism by the phosphoenolpyruvate/phosphate antiporter. Plant Cell, 9,

453–462.

[32] Brauer, M. and Stitt, M. (1990) Vanadate inhibits fructose-2,6-bisphosphatase and leads to

an inhibition of sucrose synthesis in barley leaves. Physiol. Plant., 78, 568–573.

[33] Neuhaus, H., Batz, O., Thom, E., and Scheibe, R. (1993) Purification of highly intact plas-

tids from various heterotrophic plant tissues: analysis of enzymic equipment and precursor

dependency for starch biosynthesis. Biochem. J., 296 (Pt 2), 395–401.

[34] Day, R., McNoe, L., and Macknight, R. (2007) Evaluation of global RNA amplification and its

use for high-throughput transcript analysis of laser-microdissected endosperm. Int. J. Plant

Genomics, pp. 61028–61044.

[35] Meyer, A., Kelly, G., and Latzko, E. (1982) Pyruvate Orthophosphate Dikinase from the

Immature Grains of Cereal Grasses. Plant Physiol., 69, 7–10.

[36] Kang, H., Park, S., Matsuoka, M., and An, G. (2005) White-core endosperm floury

endosperm-4 in rice is generated by knockout mutations in the C-type pyruvate orthophos-

phate dikinase gene (OsPPDKB). Plant J., 42, 901–911.

[37] Gallusci, P., Varotto, S., Matsuoko, M., Maddaloni, M., and Thompson, R. (1996) Regulation

of cytosolic pyruvate, orthophosphate dikinase expression in developing maize endosperm.

Plant Mol. Biol., 31, 45–55.

[38] Chastain, C., Heck, J., Colquhoun, T., Voge, D., and Gu, X. (2006) Posttranslational regu-

lation of pyruvate, orthophosphate dikinase in developing rice (Oryza sativa) seeds. Planta,

224, 924–934.

[39] Aoyagi, K., Bassham, J., and Greene, F. (1984) Pyruvate Orthophosphate Dikinase Gene

Expression in Developing Wheat Seeds. Plant Physiol., 75, 393–396.

[40] Aoyagi, K. and Bassham, J. (1984) Pyruvate Orthophosphate Dikinase of C(3) Seeds and

Leaves as Compared to the Enzyme from Maize. Plant Physiol., 75, 387–392.

[41] Baroja-Fernandez, E., Munoz, F., Saikusa, T., Rodrıguez-Lopez, M., Akazawa, T., and

Pozueta-Romero, J. (2003) Sucrose synthase catalyzes the de novo production of ADPglu-

cose linked to starch biosynthesis in heterotrophic tissues of plants. Plant Cell Physiol., 44,

500–509.

[42] Tsai, C. Y. (1974) Sucrose-UDP glucosyltransferase of Zea mays endosperm. Phytochem.,

13, 885–891.

[43] Elling, L. and Kula, M. R. (1995) Characterization of sucrose synthase from rice grains for

the enzymatic-synthesis of UDP and TDP glucose. Enzyme Microb. Technol., 17, 929–934.

[44] Nomura, T. and Akazawa, T. (1973) Enzymic mechanism of starch stynthesis in ripening

rice grains. VII. Purification and enzymic properties of sucrose synthetase. Arch. Biochem.

Biophys., 156, 644–652.

[45] Anand, S. and Singh, R. (1986) Sucrose synthase from immature wheat grains. J. Plant.

Sci. Res., 2, 1–10.

[46] Echt, C. S. and Chourey, P. S. (1985) A comparison of two sucrose synthetase isozymes

from normal and shrunken-1 maize. Plant Physiol., 79, 530–536.

[47] Doehlert, D. C. (1987) Substrate inhibition of maize endosperm sucrose synthase by fruc-

tose and its interaction with glucose inhibition. Plant Sci., 52, 153–157.

[48] Weschke, W., Panitz, R., Gubatz, S., Wang, Q., Radchuk, R., Weber, H., and Wobus, U.

(2003) The role of invertases and hexose transporters in controlling sugar ratios in maternal

and filial tissues of barley caryopses during early development. Plant J., 33, 395–411.

[49] Karuppiah, N., Vadlamudi, B., Kaufman, P., and Kaufman, P. (1989) Purification and char-

acterization of soluble (cytosolic) and bound (cell wall) isoforms of invertases in barley

(Hordeum vulgare) elongating stem tissue. Plant Physiol., 91, 993–998.

[50] Hawker, J. and Hatch, M. (1966) A specific sucrose phosphatase from plant tissues.

Biochem. J., 99, 102–107.

[51] Lunn, J. (2003) Sucrose-phosphatase gene families in plants. Gene, 303, 187–196.

[52] Hawker, J. S. and Smith, G. M. (1984) Occurrence of sucrose phosphatase in vascular and

non-vascular plants. Phytochem., 23, 245–249.

[53] Tiwari, S., Spielman, M., Day, R., and Scott, R. (2006) Proliferative phase endosperm pro-

moters from Arabidopsis thaliana. Plant Biotechnol. J., 4, 393–407.

[54] Im, K. (2004) Expression of sucrose-phosphate synthase (SPS) in non-photosynthetic tis-

sues of maize. Mol. Cells, 17, 404–409.

[55] Salerno, G. and Pontis, H. (1978) Studies on sucrose phosphate synthetase. The inhibitory

action of sucrose. FEBS Lett., 86, 263–267.

[56] Salerno, G. and Pontis, H. (1976) Studies on sucrose phosphate synthetase: reversal of

UDP inhibition by divalent ions. FEBS Lett., 64, 415–418.

[57] Salerno, G. and Pontis, H. (1977) Studies of the sucrose phosphate synthetase kinetic

mechanism. Arch. Biochem. Biophys., 180, 298–302.

[58] Mendicino, J. (1960) Sucrose phosphate synthesis in wheat germ and green leaves. J. Biol.

Chem., 235, 3347–3352.

[59] Cox, E. and Dickinson, D. (1973) Hexokinase from Maize Endosperm and Scutellum. Plant

Physiol., 51, 960–966.

[60] Saltman, P. (1953) Hexokinase in higher plants. J. Biol. Chem., 200, 145–154.

[61] Doehlert, D. (1989) Separation and Characterization of Four Hexose Kinases from Devel-

oping Maize Kernels. Plant Physiol., 89, 1042–1048.

[62] Jiang, H., Dian, W., Liu, F., and Wu, P. (2003) Isolation and characterization of two fructoki-

nase cDNA clones from rice. Phytochem., 62, 47–52.

[63] Eimert, K., Villand, P., Kilian, A., and Kleczkowski, L. (1996) Cloning and characterization of

several cDNAs for UDP-glucose pyrophosphorylase from barley (Hordeum vulgare) tissues.

Gene, 170, 227–232.

[64] Turnquist, R. L. and Hansen, R. G. (1973) Uridine diphosphphoryl glucose pyrophosphory-

lase. In Boyer, P. D., (ed.), The Enzymes, Vol. 8A, pp. 189–198 Academic Press New York

3rd edition.

[65] Doan, D., Rudi, H., and Olsen, O. (1999) The Allosterically Unregulated Isoform of ADP-

Glucose Pyrophosphorylase from Barley Endosperm Is the Most Likely Source of ADP-

Glucose Incorporated into Endosperm Starch. Plant Physiol., 121, 965–975.

[66] Kleczkowski, L., Villand, P., Luthi, E., Olsen, O., and Preiss, J. (1993) Insensitivity of barley

endosperm ADP-glucose pyrophosphorylase to 3-phosphoglycerate and orthophosphate

regulation. Plant Physiol., 101, 179–186.

[67] Tetlow, I., Davies, E., Vardy, K., Bowsher, C., Burrell, M., and Emes, M. (2003) Subcellular

localization of ADPglucose pyrophosphorylase in developing wheat endosperm and analy-

sis of the properties of a plastidial isoform. J. Exp. Bot., 54, 715–725.

[68] Kawagoe, Y., Kubo, A., Satoh, H., Takaiwa, F., and Nakamura, Y. (2005) Roles of isoamylase

and ADP-glucose pyrophosphorylase in starch granule synthesis in rice endosperm. Plant

J., 42, 164–174.

[69] Sikka, V. K., Choi, S.-B., Kavakli, I., Sakulsingharoj, C., Gupta, S., Ito, H., and Okita,

T. (2001) Subcellular compartmentation and allosteric regulation of the rice endosperm

ADPglucose pyrophosphorylase. Plant Sci., 161, 461–468.

[70] Amir, J. and Cherry, J. (1972) Purification and Properties of Adenosine Diphosphoglucose

Pyrophosphorylase from Sweet Corn. Plant Physiol., 49, 893–897.

[71] Fuchs, R. and Smith, J. (1979) The purification and characterization of ADP-glucose py-

rophosphorylase A from developing maize seeds. Biochim. Biophys. Acta, 566, 40–48.

[72] Smidansky, E., Martin, J., Hannah, L., Fischer, A., and Giroux, M. (2003) Seed yield and

plant biomass increases in rice are conferred by deregulation of endosperm ADP-glucose

pyrophosphorylase. Planta, 216, 656–664.

[73] Gomez-Casati, D. and Iglesias, A. (2002) ADP-glucose pyrophosphorylase from wheat en-

dosperm. Purification and characterization of an enzyme with novel regulatory properties.

Planta, 214, 428–434.

[74] Dickinson, D. and Preiss, J. (1969) Presence of ADP-Glucose Pyrophosphorylase in

Shrunken-2 and Brittle-2 Mutants of Maize Endosperm. Plant Physiol., 44, 1058–1062.

[75] Hannah, L. and Nelson, O. (1975) Characterization of Adenosine Diphosphate Glucose

Pyrophosphorylases from Developing Maize Seeds. Plant Physiol., 55, 297–302.

[76] Burger, B., Cross, J., Shaw, J., Caren, J., Greene, T., Okita, T., and Hannah, L. (2003)

Relative turnover numbers of maize endosperm and potato tuber ADP-glucose pyrophos-

phorylases in the absence and presence of 3-phosphoglyceric acid. Planta, 217, 449–456.

[77] Dickinson, D. and Preiss, J. (1969) ADP glucose pyrophosphorylase from maize endosperm.

Arch. Biochem. Biophys., 130, 119–128.

[78] Kleczkowski, L., Villand, P., Lonneborg, A., Olsen, O., and Luthi, E. (1991) Plant ADP-

glucose pyrophosphorylase–recent advances and biotechnological perspectives (a review).

Z. Naturforsch., 46, 605–612.

[79] Perata, P., Guglielminetti, L., and Alpi, A. (1997) Mobilization of Endosperm Reserves in

Cereal Seeds under Anoxia. Ann. Bot., 79, 49–56.

[80] Zehender, H., Trescher, D., and Ullrich, J. (1987) Improved purification of pyruvate decar-

boxylase from wheat germ. Its partial characterisation and comparison with the yeast en-

zyme. Eur. J. Biochem., 167, 149–154.

[81] Lee, T. and Langston-Unkefer, P. (1985) Pyruvate Decarboxylase from Zea mays L. : I.

Purification and Partial Characterization from Mature Kernels and Anaerobically Treated

Roots. Plant Physiol., 79, 242–247.

[82] Shimomura, S. and Beevers, H. (1983) Alcohol Dehydrogenase Inactivator from Rice

Seedlings: Properties and Intracellular Location. Plant Physiol., 71, 742–746.

[83] Duffus, C. and Rosie, R. (1978) Metabolism of Ammonium Ion and Glutamate in Relation

to Nitrogen Supply and Utilization during Grain Development in Barley. Plant Physiol., 61,

570–574.

[84] Yagi, T., Masaki, K., and Yamamoto, S. (1993) Distribution and cellular localization of aspar-

tate aminotransferase isoenzymes in rice. Biosci. Biotechnol. Biochem., 57, 2081–2084.

[85] Kochkina, V. (2004) Isolation, purification, and crystallization of aspartate aminotransferase

from wheat grain. Biochemistry Mosc., 69, 897–900.

[86] Mann, A., Fentem, P., and Stewart, G. (1980) Tissue localization of barley (Hordeum vul-

gare) glutamine synthetase isoenzymes. FEBS Lett., 110, 265–267.

[87] Møller, M., Taylor, C., Rasmussen, S., and Holm, P. (2003) Molecular cloning and charac-

terisation of two genes encoding asparagine synthetase in barley (Hordeum vulgare L.).

Biochim. Biophys. Acta, 1628, 123–132.

[88] Nakano, K., Omura, Y., Tagaya, M., and Fukui, T. (1989) UDP-glucose pyrophosphorylase

from potato tuber: purification and characterization. J. Biochem., 106, 528–532.

[89] Sodek, L. (1980) Distribution and Properties of a Potassium-dependent Asparaginase Iso-

lated from Developing Seeds of Pisum sativum and Other Plants. Plant Physiol., 65, 22–26.

[90] Masoudi-Nejad, A., Goto, S., Jauregui, R., Ito, M., Kawashima, S., Moriya, Y., Endo, T., and

Kanehisa, M. (2007) EGENES: transcriptome-based plant database of genes with metabolic

pathway information and expressed sequence tag indices in KEGG. Plant Physiol., 144,

857–866.

[91] Igamberdiev, A. U. and Kleczkowski, L. A. (2000) Capacity for NADPH/NADP turnover in

the cytosol of barley seed endosperm: The role of NADPH-dependent hydroxypyruvate

reductase. Plant Physiol. Biochem., 38, 747–753.

[92] Duffus, C. M. (1970) Enzymatic changes and amyloplast development in the maturing barley

grains. Phytochem., 9, 1415–1421.

[93] You, K. and Kaplan, N. (1975) Purification and properties of malate dehydrogenase from

Pseudomonas testosteroni . J. Bacteriol., 123, 704–716.

[94] Macnicol, P. and Jacobsen, J. (1992) Endosperm Acidification and Related Metabolic

Changes in the Developing Barley Grain. Plant Physiol., 98, 1098–1104.

[95] Zhang, H., Sreenivasulu, N., Weschke, W., Stein, N., Rudd, S., Radchuk, V., Potokina, E.,

Scholz, U., Schweizer, P., Zierold, U., Langridge, P., Varshney, R., Wobus, U., and Graner,

A. (2004) Large-scale analysis of the barley transcriptome based on expressed sequence

tags. Plant J., 40, 276–290.

[96] Gonzalez, M. C., Osuna, L., Echevarria, C., Vidal, J., and Cejudo, F. J. (1998) Expression

and localization of phosphoenolpyruvate carboxylase in developing and germinating wheat

grains. Plant. Physiol., 116, 1249–1258.

[97] Walker, R., Chen, Z., Johnson, K., Famiani, F., Tecsi, L., and Leegood, R. (2001) Using

immunohistochemistry to study plant metabolism: the examples of its use in the localization

of amino acids in plant tissues, and of phosphoenolpyruvate carboxykinase and its possible

role in pH regulation. J. Exp. Bot., 52, 565–576.

[98] Bustos, D. and Iglesias, A. (2003) Phosphorylated non-phosphorylating glyceraldehyde-3-

phosphate dehydrogenase from heterotrophic cells of wheat interacts with 14-3-3 proteins.

Plant Physiol., 133, 2081–2088.

[99] Bustos, D. and Iglesias, A. (2002) Non-phosphorylating glyceraldehyde-3-phosphate dehy-

drogenase is post-translationally phosphorylated in heterotrophic cells of wheat (Triticum

aestivum). FEBS Lett., 530, 169–173.

[100] Balmer, Y., Vensel, W., DuPont, F., Buchanan, B., and Hurkman, W. (2006) Proteome

of amyloplasts isolated from developing wheat endosperm presents evidence of broad

metabolic capability. J. Exp. Bot., 57, 1591–1602.

[101] Inatomi, K. and Slaughter, J. (1975) Glutamate decarboxylase from barley embryos and

roots. General properties and the occurrence of three enzymic forms. Biochem. J., 147,

479–484.

[102] Becker, M., Vincent, C., and Reid, J. (1995) Biosynthesis of (1,3)(1,4)-beta-glucan and (1,3)-

beta-glucan in barley (Hordeum vulgare L.) Properties of the membrane-bound glucan syn-

thases. Planta, 195, 331–338.

[103] Dubey, H., Bhatia, G., Pasha, S., and Grover, A. (2003) Proteome maps of flood-tolerant FR

13A and flood-sensitive IR 54 rice types depicting proteins associated with O2-deprivation

stress and recovery regimes. Curr. Sci., 84, 83–89.

[104] John, K., Schutzbach, J., and Ankel, H. (1977) Separation and allosteric properties of two

forms of UDP-glucuronate carboxy-lyase. J. Biol. Chem., 252, 8013–8017.

[105] Suzuki, K., Suzuki, Y., and Kitamura, S. (2003) Cloning and expression of a UDP-glucuronic

acid decarboxylase gene in rice. J. Exp. Bot., 54, 1997–1999.

[106] Fan, D. and Feingold, D. (1970) Nucleoside diphosphate-sugar 4-epimerases. II. Uridine

diphosphate arabinose 4-epimerase of wheat germ. Plant Physiol., 46, 592–595.

[107] Porchia, A., Sørensen, S., and Scheller, H. (2002) Arabinoxylan biosynthesis in wheat. Char-

acterization of arabinosyltransferase activity in Golgi membranes. Plant Physiol., 130, 432–

441.

[108] Kirk, C. D., Imeson, H. C., Zheng, L., and Cossins, E. A. (1994) The affinity of pea cotyledon

10-formyltetrahydrofolate synthetase for polyglutamate substrates. Phytochem., 35, 291–

296.

[109] Kirk, C. D., Chen, L., Imeson, H. C., and Cossins, E. A. (1995) A 5,10-

methylenetetrahydofolate dehydrogenase: 5,10-methenyltetrahydrofolate cyclohydrolase

protein from Pisum sativum. Phytochem., 39, 1309–1317.

[110] Cossins, E., Kirk, C., Imeson, H., and Zheng, L. (1993) Enzymes for synthe-

sis of 10-formyltetrahydrofolate in plants. Characterization of a monofunctional 10-

formyltetrahydrofolate synthetase and copurification of 5,10-methylenetetrahydrofolate de-

hydrogenase and 5,10-methenyltetrahydrofolate cyclohydrolase activities. Adv. Exp. Med.

Biol., 338, 707–710.

[111] Roje, S., Wang, H., McNeil, S., Raymond, R., Appling, D., Shachar-Hill, Y., Bohnert, H., and

Hanson, A. (1999) Isolation, characterization, and functional expression of cDNAs encoding

NADH-dependent methylenetetrahydrofolate reductase from higher plants. J. Biol. Chem.,

274, 36089–36096.

[112] Eastmond, P. and Jones, R. (2005) Hormonal regulation of gluconeogenesis in cereal

aleurone is strongly cultivar-dependent and gibberellin action involves SLENDER1 but not

GAMYB. Plant J., 44, 483–493.

[113] Wallsgrove, R. M., L., L. P., and Miflin, B. J. (1983) Intracellular Localization of Aspartate

Kinase and the Enzymes of Threonine and Methionine Biosynthesis in Green Leaves. Plant

Physiol., 71, 780–784.

[114] Walker, R. and Duerre, J. (1975) S-adenosylhomocysteine metabolism in various species.

Can. J. Biochem., 53, 312–319.

[115] Kawai, M. and Uchimiya, H. (1995) Biochemical properties of rice adenylate kinase and

subcellular location in plant cells. Plant Mol. Biol., 27, 943–951.

[116] Esposito, S., Carfagna, S., Massaro, G., Vona, V., and Di Martino Rigano, V. (2001) Glucose-

6-phosphate dehydrogenase in barley roots: kinetic properties and localisation of the iso-

forms. Planta, 212, 627–634.

[117] Esposito, S., Guerriero, G., Vona, V., Di Martino Rigano, V., Carfagna, S., and Rigano, C.

(2005) Glutamate synthase activities and protein changes in relation to nitrogen nutrition in

barley: the dependence on different plastidic glucose-6P dehydrogenase isoforms. J. Exp.

Bot., 56, 55–64.

[118] Bapat, S., Rawal, S., and Mascarenhas, A. (1992) Isozyme profiles during ontogeny of

somatic embryos in wheat (Triticum aestivum L.). Plant Sci., 82, 235–242.

[119] Redinbaugh, M. G. and Campbell, W. H. (1998) Nitrate regulation of the oxidative pentose

phosphate pathway in maize (Zea mays L.) root plastids: induction of 6-phosphogluconate

dehydrogenase activity, protein and transcript levels. Plant Sci., 134, 129–140.

[120] Huang, J., Zhang, H., Wang, J., and Yang, J. (2003) Molecular cloning and characterization

of rice 6-phosphogluconate dehydrogenase gene that is up-regulated by salt stress. Mol.

Biol. Rep., 30, 223–227.

[121] Hutchings, D., Rawsthorne, S., and Emes, M. (2005) Fatty acid synthesis and the oxidative

pentose phosphate pathway in developing embryos of oilseed rape (Brassica napus L.). J.

Exp. Bot., 56, 577–585.

[122] Rao, S., Kochhar, S., and Kochhar, V. (1999) Analysis of photocontrol of aspartate kinase in

barley (Hordeum vulgare L.) seedlings. Biochem. Mol. Biol. Int., 47, 347–360.

[123] Logan, D., Millar, A., Sweetlove, L., Hill, S., and Leaver, C. (2001) Mitochondrial biogenesis

during germination in maize embryos. Plant Physiol., 125, 662–672.

[124] Curry, R. and Ting, I. (1976) Purification, properties, and kinetic observations on the isoen-

zymes of NADP isocitrate dehydrogenase of maize. Arch. Biochem. Biophys., 176, 501–

509.

[125] Pinheiro deCarvalho, M. A. A., Popova, T. N., Dos Santos, T. M. M., and Zherebtsov, N. A.

(2003) Effect of Metabolites of γ-Aminobutyric Shunt on Activities of NAD- and NADP-

Isocitrate Dehydrogenases and Aconitate Hydratase from Higher Plants. Biol. Bull., 30,

236–242.

[126] Korthout, H., Caspers, M., Kottenhagen, M., Helmer, Q., and Wang, M. (2002) A tormentor

in the quest for plant p53-like proteins. FEBS Lett., 526, 53–57.

[127] Mahboobi, H., Yucel, M., and Oktem, H. (2002) Nitrate Reductase and Glutamate Dehy-

drogenase Activities of Resistant And Sensitive Cultivars of Wheat and Barley Under Boron

Toxicity. J. Plant Nutrition, 25, 1829–1837.

[128] Hajduch, M., Casteel, J., Hurrelmeyer, K., Song, Z., Agrawal, G., and Thelen, J. (2006)

Proteomic analysis of seed filling in Brassica napus. Developmental characterization of

metabolic isozymes using high-resolution two-dimensional gel electrophoresis. Plant Phys-

iol., 141, 32–46.

[129] Baud, S. and Graham, I. (2006) A spatiotemporal analysis of enzymatic activities associ-

ated with carbon metabolism in wild-type and mutant embryos of Arabidopsis using in situ

histochemistry. Plant J., 46, 155–169.

[130] Ansari, M. I., Lee, R.-H., and Chen, S.-C. G. (2005) A novel senescence-associated gene

encoding γ-aminobutyric acid (GABA):pyruvate transaminase is upregulated during rice leaf

senescence. Physiol. Plant., 123, 1–8.

[131] Breitkreuz, K. and Shelp, B. (1995) Subcellular Compartmentation of the 4-Aminobutyrate

Shunt in Protoplasts from Developing Soybean Cotyledons. Plant Physiol., 108, 99–103.

[132] Quiles, M. J., Garca, A., and Cuello, J. (2003) Comparison of the thylakoidal NAD(P)H

dehydrogenase complex and the mitochondrial complex I separated from barley leaves by

blue-native PAGE. Plant Sci., 164, 541–547.

[133] Pan, D., Strelow, L., and Nelson, O. (1990) Many Maize Inbreds Lack an Endosperm Cy-

tosolic Phosphoglucomutase. Plant Physiol., 93, 1650–1653.

[134] Batz, O., Scheibe, R., and Neuhaus, H. (1992) Transport Processes and Corresponding

Changes in Metabolite Levels in Relation to Starch Synthesis in Barley (Hordeum vulgare

L.) Etioplasts. Plant Physiol., 100, 184–190.

[135] Sangwan, R. and Singh, R. (1990) Characterization of amyloplastic phosphohexose iso-

merase from immature wheat (Triticum aestivum L.) endosperm. Indian J. Biochem. Bio-

phys., 27, 23–27.

[136] McMorrow, E. and Bradbeer, J. (1990) Separation, Purification, and Comparative Proper-

ties of Chloroplast and Cytoplasmic Phosphoglycerate Kinase from Barley Leaves. Plant

Physiol., 93, 374–383.

[137] Plaxton, W. (1996) The organization and regulation of plant glycolysis. Annu. Rev. Plant

Physiol. Plant Mol. Biol., 47, 185–214.

[138] Denyer, K. and Smith, A. (1988) The capacity of plastids from developing pea cotyledons to

synthesize acetyl CoA. Planta, 173, 172–182.

[139] Entwistle, G. and apRees, T. (1990) Lack of fructose-1,6-bisphosphatase in a range of

higher plants that store starch. Biochem. J., 271, 467–472.

[140] Visser, K., Heimovaara-Dijkstra, S., Kijne, J., and Wang, M. (1998) Molecular cloning and

characterization of an inorganic pyrophosphatase from barley. Plant Mol. Biol., 37, 131–140.

[141] Plaxton, W. and Preiss, J. (1987) Purification and Properties of Nonproteolytic Degraded

ADPglucose Pyrophosphorylase from Maize Endosperm. Plant Physiol., 83, 105–112.

[142] Kreis, M. (1980) Primer Dependent and Independent Forms of Soluble Starch Synthetase

from Developing Barley Endosperms. Planta, 148, 412–416.

[143] Umemoto, T., Aoki, N., Lin, H., Nakamura, Y., Inouchi, N., Sato, Y., Yano, M., Hirabayashi,

H., and Maruyama, S. (2004) Natural variation in rice starch synthase IIa affects enzyme

and starch properties. Funct. Plant Biol., 31, 671–684.

[144] Macdonald, F. D. and Preiss, J. (1985) Partial Purification and Characterization of Granule-

Bound Starch Synthases from Normal and Waxy Maize. Plant Physiol., 78, 894–852.

[145] Taira, T., Uematsu, M., Nakano, Y., and Morikawa, T. (1991) Molecular identification and

comparison of the starch synthase bound to starch granules between endosperm and leaf

blades in rice plants. Biochem. Genet., 29, 301–311.

[146] Takaoka, M., Watanabe, S., Sassa, H., Yamamori, M., Nakamura, T. Sasakuma, T., and

Hirano, H. (1997) Structural characterization of high molecular weight starch granule-bound

proteins in wheat (Triticum aestivum L.). J. Agric. Food Chem, 45, 2929–2934.

[147] Cao, H., James, M., and Myers, A. (2000) Purification and characterization of soluble starch

synthases from maize endosperm. Arch. Biochem. Biophys., 373, 135–146.

[148] Nakamura, T., Vrinten, P., Hayakawa, K., and Ikeda, J. (1998) Characterization of a granule-

bound starch synthase isoform found in the pericarp of wheat. Plant Physiol., 118, 451–459.

[149] Pollock, C. and Preiss, J. (1980) The citrate-stimulated starch synthase of starchy maize

kernels: purification and properties. Arch. Biochem. Biophys., 204, 578–588.

[150] Ozbun, J., Hawker, J., and Preiss, J. (1971) Adenosine Diphosphoglucose-Starch Glucosyl-

transferases from Developing Kernels of Waxy Maize. Plant Physiol., 48, 765–769.

[151] Okamoto, K. and Akazawa, T. (1978) Purification of α-amylase and β-amylase from en-

dosperm tissues of germinating rice seeds. Agric. Biol. Chem., 42, 1379–1384.

[152] Bewley, J. D. and Black, M. (1994) SEEDS: Physiology of Development and Germinantion,

Plenum Press, New York 2. edition.

[153] Takahashi, N., Shimomura, T., and Chiba, S. (1971) α-glucosidase in rice. I. Isolation and

properties of α-glucosidase I and α-glucosidase II. Agric. Biol. Chem., 35, 2015–2024.

[154] Matsui, H., Yazawa, I., and Chiba, S. (1981) Purification and substrate specificity of sweet

corn α-glucosidase. Agric. Biol. Chem., 45, 887–894.

[155] Debnam, P. and Emes, M. (1999) Subcellular distribution of enzymes of the oxidative pen-

tose phosphate pathway in root and leaf tissues. J. Exp. Bot., 50, 1653–1661.

[156] Huber, S. C. (1978) Substrates and inorganic phosphate control the light activation of NADP-

glyceraldehyde-3-phosphate dehydrogenase ancd phosphoribulokinase in barley chloro-

plasts. FEBS Letters, 92, 12–16.

[157] Ruuska, S., Schwender, J., and Ohlrogge, J. (2004) The capacity of green oilseeds to utilize

photosynthesis to drive biosynthetic processes. Plant Physiol., 136, 2700–2709.

[158] Hammond, R. and Ryan, F. (1985) Partial purification and characterization of ribulose-1,5-

bisphophate carboxylase from the developing endosperm tissue of Zea mays L. J. Plant

Physiol., 119, 97–107.

[159] Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M. C., Estreicher, A., Gasteiger, E., Mar-

tin, M. J., Michoud, K., O’Donovan, C., Phan, I., Pilbout, S., and Schneider, M. (2003) The

SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids

Res., 31, 365–370.

[160] Ottosson, F., vonBothmer, R., and Dıaz, O. (2002) Genetic variation in three species of

Hordeum, and the selection of accessions for the Barley Core Collection. Hereditas, 137,

7–15.

[161] Junker, B., Lonien, J., Heady, L., Rogers, A., and Schwender, J. (2007) Parallel determina-

tion of enzyme activities and in vivo fluxes in Brassica napus embryos grown on organic or

inorganic nitrogen source. Phytochem., 68, 2232–2242.

[162] Singh, B., Lonergan, S., and Conn, E. (1986) Chorismate Mutase Isoenzymes from Se-

lected Plants and Their Immunological Comparison with the Isoenzymes from Sorghum

bicolor . Plant Physiol., 81, 717–722.

[163] Byng, G., Whitaker, R., Flick, C., and Jensen, R. A. (1981) Enzymology of L-tyrosine biosyn-

thesis in corn. Phytochem., 20, 1289–1292.

[164] Kasai, K., Obayashi, Y., Yamada, T., Kanno, T., Wakasa, K., and Tozawa, Y. (2007) Func-

tional Analysis of Arogenate Dehydratase of Rice by Means of Wheat-Embryo Cell-Free

Protein Expression System. Plant Cell Physiol. Suppl., 48, S219–S219.

[165] Krath, B. and Hove-Jensen, B. (Feb, 1999) Organellar and cytosolic localization of four

phosphoribosyl diphosphate synthase isozymes in spinach. Plant Physiol., 119, 497–506.

[166] Wiater, A., Krajewska-Grynkiewicz, K., and Klopotowski, T. (1971) Histidine biosynthesis

and its regulation in higher plants. Acta Biochim. Pol., 18, 299–307.

[167] Munzer, S., Hashimoto-Kumpaisal, R., Scheidegger, A., and Ohta, D. (1992) Purification

and properties of ATP-phosphoribosyl transferase from wheat germ. In Murata, N., (ed.),

Research in Photosynthesis, Vol. 4, pp. 91–94 Kluwer Academic Publishers Netherlands.

[168] Fujimori, K. and Ohta, D. (1998) Isolation and characterization of a histidine biosynthetic

gene in Arabidopsis encoding a polypeptide with two separate domains for phosphoribosyl-

ATP pyrophosphohydrolase and phosphoribosyl-AMP cyclohydrolase. Plant Physiol., 118,

275–283.

[169] Mano, J., Hatano, M., Koizumi, S., Tada, S., Hashimoto, M., and Scheidegger, A. (1993)

Purification and properties of a monofunctional imidazoleglycerol-phosphate dehydratase

from wheat. Plant Physiol., 103, 733–739.

[170] Nagai, A. and Scheidegger, A. (1991) Purification and characterization of histidinol dehy-

drogenase from cabbage. Arch. Biochem. Biophys., 284, 127–132.

[171] Choudhary, N., Sairam, R., and Tyagi, A. (2005) Expression of delta1-pyrroline-5-

carboxylate synthetase gene during drought in rice (Oryza sativa L.). Indian J. Biochem.

Biophys., 42, 366–370.

[172] Krueger, R., Jager, H.-J., Hintz, M., and Pahlich, E. (1986) Purification to Homogeneity of

Pyrroline-5-Carboxylate Reductase of Barley. Plant Physiol., 80, 142–144.

[173] Verbruggen, N., Villarroel, R., and Van Montagu, M. (1993) Osmoregulation of a pyrroline-

5-carboxylate reductase gene in Arabidopsis thaliana. Plant Physiol., 103, 771–781.

[174] Stewart, C. R. and Lai, E. Y. (1974) 41-Pyrroline-5-carboxylic acid dehydrogenase in mito-

chondrial preparations from plant seedlings. Plant Sci Lett., 3, 173–181.

[175] Wallsgrove, R., Lea, P., and Miflin, B. (1983) Intracellular Localization of Aspartate Kinase

and the Enzymes of Threonine and Methionine Biosynthesis in Green Leaves. Plant Phys-

iol., 71, 780–784.

[176] Wong, K. F. and Dennis, D. T. (1973) Aspartokinase from Wheat Germ: Isolation, Charac-

terization, and Regulation. Plant Physiol., 51, 322–326.

[177] Lugli, J., Gaziola, S. A., and Azevedo, R. A. (2000) Effects of calcium, S-

adenosylmethionine, S-(2-aminoethyl)-L-cysteine, methionine, valine and salt concentration

on rice aspartate kinase isoenzymes. Plant Sci., 150, 51–58.

[178] Sainis, J., Mayne, R., Wallsgrove, R., Lea, P., and Miflin, B. (1981) Localisation and charac-

terisation of homoserine dehydrogenase isolated from barley and pea leaves. Planta, 152,

491–496.

[179] Rognes, S., Dewaele, E., Aas, S., Jacobs, M., and Frankard, V. (2003) Transcriptional

and biochemical regulation of a novel Arabidopsis thaliana bifunctional aspartate kinase-

homoserine dehydrogenase gene isolated by functional complementation of a yeast hom6

mutant. Plant Mol. Biol., 51, 281–294.

[180] Aarnes, H. (1976) Homoserine kinase from barley seedlings. Plant Sci. Lett., 7, 187–194.

[181] Riesmeier, J., Klonus, A., and Pohlenz, H. (1993) Purification to homogeneity and charac-

terization of homoserine kinase from wheat germ. Phytochem., 32, 581–584.

[182] Kreft, B., Townsend, A., Pohlenz, H., and Laber, B. (1994) Purification and Properties of

Cystathionine [gamma]-Synthase from Wheat (Triticum aestivum L.). Plant Physiol., 104,

1215–1220.

[183] Ravanel, S., Block, M., Rippert, P., Jabrin, S., Curien, G., Rebeille, F., and Douce, R. (2004)

Methionine metabolism in plants: chloroplasts are autonomous for de novo methionine syn-

thesis and can import S-adenosylmethionine from the cytosol. J. Biol. Chem., 279, 22548–

22557.

[184] Mazelis, M., Whatley, F., and Whatley, J. (1977) The enzymology of lysine biosynthesis

in higher plants. The occurrence, characterization and some regulatory properties of dihy-

drodipicolinate synthase. FEBS Lett., 84, 236–240.

[185] Tyagi, V. V. S., Henke, R. R., and Farkas, W. R. (1983) Partial Purification and Characteri-

zation of Dihydrodipicolinic Acid Reductase from Maize. Plant Physiol., 73, 687–691.

[186] Bryan, J. (1990) Advances in the biochemistry of amino acid. biosynthesis. In Miflin, B. J.

and Lea, P. J., (eds.), The Biochemistry of Plants, Vol. 16, pp. 161–196 Academic Press

New York.

[187] Kelland, J., Palcic, M., Pickard, M., and Vederas, J. (1985) Stereochemistry of lysine forma-

tion by meso-diaminopimelate decarboxylase from wheat germ: use of 1H-13C NMR shift

correlation to detect stereospecific deuterium labeling. Biochemistry, 24, 3263–3267.

[188] Chong, C. K., Chang, S. I., and Choi, J. D. (1997) Purification and characterization of ace-

tolactate synthase. J. Biochem. Mol. Biol., 30, 274–279.

[189] Durner, J., Knorzer, O., and Boger, P. (1993) Ketol-Acid Reductoisomerase from Barley

(Hordeum vulgare) (Purification, Properties, and Specific Inhibition). Plant Physiol., 103,

903–910.

[190] Aarnes, H. (1981) Branched-chain amino acid aminotransferase in barley seedlings. Z.

Pflanzenphysiol., 102, 81–89.

[191] Rosenblum, I. and Sallach, H. (1975) D-3-phosphoglycerate dehydrogenase from wheat

germ-1. Meth. Enzymol., 41, 285–289.

[192] Noji, M., Takagi, Y., Kimura, N., Inoue, K., Saito, M., Horikoshi, M., Saito, F., Takahashi, H.,

and Saito, K. (2001) Serine acetyltransferase involved in cysteine biosynthesis from spinach:

molecular cloning, characterization and expression analysis of cDNA encoding a plastidic

isoform. Plant Cell Physiol., 42, 627–634.

[193] Chronis, D. and Krishnan, H. (2004) Sulfur assimilation in soybean (Glycine max [L.] Merr.):

molecular cloning and characterization of a cytosolic isoform of serine acetyltransferase.

Planta, 218, 417–426.

[194] Hatch, M. (1966) Adenylosuccinate synthetase and adenylosuccinate lyase from plant tis-

sues. Biochem. J., 98, 198–203.

[195] Tausta, S., Coyle, H., Rothermel, B., Stiefel, V., and Nelson, T. (2002) Maize C4 and non-C4

NADP-dependent malic enzymes are encoded by distinct genes derived from a plastid-

localized ancestor. Plant Mol. Biol., 50, 635–652.

[196] Harary, I., Korey, S., and Ochoa, S. (1953) Biosynthesis of dicarboxylic acids by carbon

dioxide fixation. VII. Equilibrium of malic enzyme reaction. J. Biol. Chem., 203, 595–604.

[197] Ke, J., Behal, R. H., Back, S. L., Nikolau, B. J., Wurtele, E. S., and Oliver, D. J. (2000)

The Role of Pyruvate Dehydrogenase and Acetyl-Coenzyme A Synthetase in Fatty Acid

Synthesis in Developing Arabidopsis Seeds. Plant Physiol., 123, 497–508.

[198] Fritsch, H. and Beevers, H. (1979) ATP Citrate Lyase from Germinating Castor Bean En-

dosperm: Localization and some Properties. Plant Physiol., 63, 687–691.

[199] Weschke, W., Panitz, R., Sauer, N., Wang, Q., Neubohn, B., Weber, H., and Wobus, U.

(2000) Sucrose transport into barley seeds: molecular characterization of two transporters

and implications for seed development and starch accumulation. Plant J., 21, 455–467.

[200] Bagnall, N., Wang, X.-D., Scofield, G. N., Furbank, R. T., Offler, C. E., and Patrick, J. W.

(2000) Sucrose transport-related genes are expressed in both maternal and filial tissues of

developing wheat grains. Aust J Plant Physiol., 28, 1–13.

[201] Rentsch, D., Boorer, K., and Frommer, W. (1998) Structure and function of plasma mem-

brane amino acid, oligopeptide and sucrose transporters from higher plants. J. Membr. Biol.,

162, 177–190.

[202] Patrick, J. and Offler, C. (2001) Compartmentation of transport and transfer events in devel-

oping seeds. J. Exp. Bot., 52, 551–564.

[203] Fischer, W.-N., Andre, B., Rentsch, D., Krolkiewicz, S., Tegeder, M., Breitkreuz, K., and

Frommer, W. B. (1998) Amino acid transport in plants. Trends Plant Sci., 3, 188–195.

[204] Buchanan, B. B., Gruissem, W., and Jones, R. J. (2002) Biochemistry and molecular biology

of plants, American Soc. of Plant Physiologists, Rockville, Md 4. edition.

[205] Day, D. and Hanson, J. (1977) Pyruvate and Malate Transport and Oxidation in Corn Mito-

chondria. Plant Physiol., 59, 630–635.

[206] Vivekananda, J. and Oliver, D. (1989) Isolation and Partial Characterization of the Gluta-

mate/Aspartate Transporter from Pea Leaf Mitochondria Using a Specific Monoclonal Anti-

body. Plant Physiol., 91, 272–277.

[207] Hanning, I., Baumgarten, K., Schott, K., and Heldt, H. (1999) Oxaloacetate transport into

plant mitochondria. Plant Physiol., 119, 1025–1032.

[208] Vivekananda, J., Beck, C., and Oliver, D. (1988) Monoclonal antibodies as tools in mem-

brane biochemistry. Identification and partial characterization of the dicarboxylate trans-

porter from pea leaf mitochondria. J. Biol. Chem., 263, 4782–4788.

[209] Picault, N., Palmieri, L., Pisano, I., Hodges, M., and Palmieri, F. (2002) Identification of a

novel transporter for dicarboxylates and tricarboxylates in plant mitochondria. Bacterial ex-

pression, reconstitution, functional characterization, and tissue distribution. J. Biol. Chem.,

277, 24204–24211.

[210] Rae, A., Cybinski, D., Jarmey, J., and Smith, F. (2003) Characterization of two phosphate

transporters from barley; evidence for diverse function and kinetic properties among mem-

bers of the Pht1 family. Plant Mol. Biol., 53, 27–36.

[211] Schunmann, P., Richardson, A., Vickers, C., and Delhaize, E. (2004) Promoter analysis of

the barley Pht1;1 phosphate transporter gene identifies regions controlling root expression

and responsiveness to phosphate deprivation. Plant Physiol., 136, 4205–4214.

[212] McIntosh, C. and Oliver, D. (1994) The Phosphate Transporter from Pea Mitochondria (Iso-

lation and Characterization in Proteolipid Vesicles). Plant Physiol., 105, 47–52.

[213] Winning, B., Day, C., Sarah, C., and Leaver, C. (1991) Nucleotide sequence of two cDNAs

encoding the adenine nucleotide translocator from Zea mays L. Plant Mol. Biol., 17, 305–

307.

[214] Wipf, D., Ludewig, U., Tegeder, M., Rentsch, D., Koch, W., and Frommer, W. (2002) Con-

servation of amino acid transporters in fungi, plants and animals. Trends Biochem. Sci., 27,

139–147.

[215] Schwacke, R., Schneider, A., van derGraaff, E., Fischer, K., Catoni, E., Desimone, M.,

Frommer, W. B., Flugge, U.-I., and Kunze, R. (2003) ARAMEMNON, a novel database for

arabidopsis integral membrane proteins. Plant Physiol, 131(1), 16–26.

[216] Genchi, G., De Santis, A., Ponzone, C., and Palmieri, F. (1991) Partial Purification and

Reconstitution of the alpha-Ketoglutarate Carrier from Corn (Zea mays L.) Mitochondria.

Plant Physiol., 96, 1003–1007.

[217] Lara-Nunez, A. and Rodrıguez-Sotres, R. (2004) Characterization of a dicarboxylate ex-

change system able to exchange pyrophosphate for L-malate in non-photosynthetic plastids

from developing maize embryos. Plant Sci, 166(5), 1335–1343.

[218] Heldt, H. (2002) Three decades in transport business: studies of metabolite transport in

chloroplasts - a personal perspective. Photosyn. Res., 73, 265–272.

[219] Eicks, M., Maurino, V., Knappe, S., Flugge, U., and Fischer, K. (2002) The plastidic pentose

phosphate translocator represents a link between the cytosolic and the plastidic pentose

phosphate pathways in plants. Plant Physiol., 128, 512–522.

[220] Emes, M. J., Tetlow, I. J., and Bowsher, C. G. (2001) Transport of metabolites into amy-

loplasts during starch synthesis. In Barsby, T. L., Donald, A. M., and Frazier, P. J., (eds.),

Starch advances in structure and function, pp. 138–143 Royal Society of Chemistry.

[221] Tetlow, I., Bowsher, C., and Emes, M. (1996) Reconstitution of the hexose phosphate

translocator from the envelope membranes of wheat endosperm amyloplasts. Biochem. J.,

319 (Pt 3), 717–723.

[222] Rausch, C., Zimmermann, P., Amrhein, N., and Bucher, M. (2004) Expression analysis sug-

gests novel roles for the plastidic phosphate transporter Pht2;1 in auto- and heterotrophic

tissues in potato and Arabidopsis. Plant J., 39, 13–28.

[223] Emes, M., Bowsher, C., Hedley, C., Burrell, M., Scrase-Field, E., and Tetlow, I. (2003) Starch

synthesis and carbon partitioning in developing endosperm. J. Exp. Bot., 54, 569–575.

[224] Toyota, K., Tamura, M., Ohdan, T., and Nakamura, Y. (2006) Expression profiling of starch

metabolism-related plastidic translocator genes in rice. Planta, 223, 248–257.

[225] Weber, A., Menzlaff, E., Arbinger, B., Gutensohn, M., Eckerskorn, C., and Flugge, U.

(1995) The 2-oxoglutarate/malate translocator of chloroplast envelope membranes: mole-

cular cloning of a transporter containing a 12-helix motif and expression of the functional

protein in yeast cells. Biochemistry, 34, 2621–2627.

[226] Bedhomme, M., Hoffmann, M., McCarthy, E., Gambonnet, B., Moran, R., Rebeille, F., and

Ravanel, S. (2005) Folate metabolism in plants: an Arabidopsis homolog of the mammalian

mitochondrial folate transporter mediates folate import into chloroplasts. J. Biol. Chem., 280,

34823–34831.