mit2 72s09 lec05

44
MIT OpenCourseWare http://ocw.mit.edu 2.72 Elements of Mechanical Design Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .

Upload: jasim-almuhandis

Post on 19-Jan-2017

10 views

Category:

Engineering


0 download

TRANSCRIPT

Page 1: Mit2 72s09 lec05

MIT OpenCourseWare http://ocw.mit.edu

2.72 Elements of Mechanical Design Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Page 2: Mit2 72s09 lec05

2.72Elements of

Mechanical Design

Lecture 05: Structures

Page 3: Mit2 72s09 lec05

Schedule and reading assignment

© Martin Culpepper, All rights reserved

Quizzes � Quiz – None

Topics � Finish fatigue � Finish HTMs in structures

Reading assignment � None � Quiz next time on HTMs

2

Page 4: Mit2 72s09 lec05

Matrix Review

Page 5: Mit2 72s09 lec05

What is a Matrix?

bA matrix is an easy way to 1

⎤⎥⎦

⎤⎥⎦

⎡ represent a system of linear ⎢bequations ⎣ 2Linear algebra is the set of

“Vector”rules that governs matrix

⎡⎢⎣

and vector operations

a1 a2

a3 a4

“Matrix”

© Martin Culpepper, All rights reserved 4

Page 6: Mit2 72s09 lec05

Matrix Addition/Subtraction You can only add or subtract matrices of the same dimension Operations are carried out entry by entry

b b b b ⎤+a a a a1 2 1 2 1 1 2 2⎥+ ⎦

(2 x 2) (2 x 2) (2 x 2)

− ⎤⎥− ⎦

+ = +

b b b b+a a a a3 4 3 4 3 3 4 4

−−

⎡⎢⎣

⎡⎢⎣

⎤⎥⎦

b b b b⎤a a a a1 2 1 2 1 1 2 2⎥b b b ba a a a⎦3 4 3 4 3 3 4 4

(2 x 2) (2 x 2) (2 x 2)

− =

⎡⎢⎣

⎡⎢⎣

© Martin Culpepper, All rights reserved

⎤⎥⎦

⎤⎥⎦

⎡⎢⎣

⎡⎢⎣

5

Page 7: Mit2 72s09 lec05

Matrix Multiplication

⎤⎥⎦

An matrix times an matrix produces an matrixm x n n x p m x p

b b b b b b++a a a a a a1 2 1 2 1 1 2 3 1 2 2 4

b b b b b b++a a a a a a3 4 3 4 3 1 4 3 3 2 4 4 (2 x 2)

(2 x 2) (2 x 2)

= ⎡⎢⎣

⎤⎥⎦

© Martin Culpepper, All rights reserved

⎡⎢⎣

⎤⎥⎦

⎡⎢⎣

6

Page 8: Mit2 72s09 lec05

Matrix Properties

© Martin Culpepper, All rights reserved

Notation: A, B, C = matrix , c = scalar Cumulative Law: A + B = B + A Distributive Law: c(A + B) = cA + cB

C(A + B) = CA + CB Associative Law: A + (B – C) = (A + B) – C

A(BC) = (AB)C

NOTE that AB does not equal BA !!!!!!!

7

Page 9: Mit2 72s09 lec05

Matrix Division

© Martin Culpepper, All rights reserved

To divide in linear algebra we multiply each side by an inverse matrix:

AB = C A-1AB = A-1C B = A-1C

Inverse matrix properties: A-1A = AA-1 = I (The identity matrix) (AB)-1 = B-1A-1

8

Page 10: Mit2 72s09 lec05

Structures

Page 11: Mit2 72s09 lec05

Machines structures Structure = backbone = affects everything

Satisfies a multiplicity of needs � Enforcing geometric relationships (position/orientation)� Material flow and access

� Reference frame

Requires first consideration and serves to link modules:� Joints (bolted/welded/etc…)� Bearings

� Shafts Image removed due to copyright restrictions. Please see

http://www.clarkmachinetools.com/2003_1.jpg

� Parts

� Tools

� Sensors

� Actuators

© Martin Culpepper, All rights reserved 10

Page 12: Mit2 72s09 lec05

Key issues with structural design Machine concepts

� Topology Image removed due to copyright restrictions. Please see

� Material properties http://www.fortune-cnc.com/uploads/images/1600ge_series.jpg

Principles � Thermomechanical� Elastomechanics� Kinematics� Vibration

Key tools that help � Stick figures� Parametric system/part error model

Visualization of the: Load path Vibration modes Thermal growth

© Martin Culpepper, All rights reserved 11

Page 13: Mit2 72s09 lec05

Modeling: stick figures

Image removed due to copyright restrictions. Please see http://americanmachinetools.com/images/diagram-lathe.jpg

1

2

3

© Martin Culpepper, All rights reserved 12

Page 14: Mit2 72s09 lec05

Modeling: stick figures 1. Stick figures

2. Beam bending

3. System bend.

1

2

3

These types of models are idealizations of the physical behavior. The designer must KNOW:

(a) if beam bending assumptions are valid

(b) how to interpret and use the results o this type of these models

y

z

© Martin Culpepper, All rights reserved 13

x

Page 15: Mit2 72s09 lec05

Modeling: stick figuresF

© Martin Culpepper, All rights reserved 14

Page 16: Mit2 72s09 lec05

Transformation Matrices

Page 17: Mit2 72s09 lec05

Translational Transformation MatrixTranslational Transformation Matrix

© Martin Culpepper, All rights reserved

P=(A+L1, B+L2)=(A’, B’)

X

Y

P=(A, B)

A

B

X’

Y’ L1

L2

A

B

1

1

1

L1

L2

0

0

0 0 1

=

A’

B’

1

16

Page 18: Mit2 72s09 lec05

Translational Transformation Matrix

General 2D transformation matrix

1

0

0

1

0

0

ΔX

1

ΔY

1

0

0

1

0

0

L1

L2

1

© Martin Culpepper, All rights reserved 17

Page 19: Mit2 72s09 lec05

Rotational Transformation MatrixRotational Transformation Matrix

Y Y’

B’

B

X

X’ Ө

Ө

P=(A, B)P=(A’, B’)

A

A’

Ө

© Martin Culpepper, All rights reserved 18

Page 20: Mit2 72s09 lec05

Rotational Transformation MatrixRotational Transformation Matrix

Y

P=(A’, B’)Y’

X’ Ө

Ө

Ө

B

X

A

A’ = A cosӨ + B sin Ө

© Martin Culpepper, All rights reserved 19

Page 21: Mit2 72s09 lec05

Rotational Transformation Matrix

Y

P=(A’, B’)Y’

X’ Ө

Ө

Ө

B

X

A

A’ = A cosӨ + B sin Ө

B’ = -A sinӨ + B cos Ө

© Martin Culpepper, All rights reserved 20

Page 22: Mit2 72s09 lec05

Rotational Transformation MatrixRotational Transformation Matrix

Y Y’ P=(A’, B’)

X’ Ө

Ө

A’

A A’

B’

B

X

cosӨ sinӨ 0 A

= BB’ -sinӨ cosӨ 0 A’ = A cosӨ + B sin Ө1 10 0 1 B’ = -A sinӨ + B cos Ө

© Martin Culpepper, All rights reserved 21

Page 23: Mit2 72s09 lec05

Rotational Transformation MatrixRotational Transformation Matrix Y

Y’ (+Ө) Counter Clockwise

X’ cosӨ sinӨ 0General 2D rotational matrix: Ө

-sinӨ cosӨ 0

0 0 1Ө X

Y Y’ (-Ө) Clockwise

cosӨ -sinӨ 0

cosӨsinӨsinӨcosӨ0 0

0 0

Ө

1-sinӨ cosӨ 0X Ө 0 0 1

X’ © Martin Culpepper, All rights reserved 22

Page 24: Mit2 72s09 lec05

Homogeneous Transformation Matrix

General 2D HTM translational and rotational matrix:

cosӨ sinӨ Δx

-sinӨ cosӨ Δy

0 0 1

© Martin Culpepper, All rights reserved 23

Page 25: Mit2 72s09 lec05

HTM Applications

Page 26: Mit2 72s09 lec05

Simple Beam Example:Simple Beam Example

© Martin Culpepper, All rights reserved

X’ B Y’

L

F

X A Y

25

Page 27: Mit2 72s09 lec05

Simple Beam Example:Simple Beam Example

X’

Y’B X

YA

L

F D

Ө

© Martin Culpepper, All rights reserved 26

Page 28: Mit2 72s09 lec05

Force Deflection EquationsUseful Force-deflection Equations

© Martin Culpepper, All rights reserved

F

F

M

d

d Ө

d Ө

d = FL EA

d = FL3

3EI Ө =

Ө =d = ML2

2EI

FL2

2EI

ML EI

27

Page 29: Mit2 72s09 lec05

Simple Beam Example:Simple Beam Example

A Y

X Ө

© Martin Culpepper, All rights reserved

X’ B Y’

L

cosӨ

0 0

-sinӨ

sinӨ cosӨ=

L

D

1

B

BHA = L

D

1

0

0

1

A

D =

Ө =

FL3

3EI

FL2

2EI

28

D

Page 30: Mit2 72s09 lec05

Simple Beam Example:Drill Press Example Find the HTM from a to b:

c

d

L

L

H

b

D a

F

e

Cross-Sectional Area of large sections = A Cross-Sectional Area of Drill Bit = Ad

Young’s Modulus of Material = E

b

a

F

1 0 0

bHa = 0 1 -(D-δ)

0 0 1

© Martin Culpepper, All rights reserved 29

Page 31: Mit2 72s09 lec05

Force Deflection EquationsUseful Force-deflection Equations

© Martin Culpepper, All rights reserved

F

F

M

d

d Ө

d Ө

d = FL EA

d = FL3

3EI Ө =

Ө =d = ML2

2EI

FL2

2EI

ML EI

30

Page 32: Mit2 72s09 lec05

Simple Beam Example:Drill Press Example Find the HTM from a to b:

c

d

L

L

H

b

D a

F

e

Cross-Sectional Area of large sections = A Cross-Sectional Area of Drill Bit = Ad

Young’s Modulus of Material = E

b

a

F

1 0 0

bHa = 0 1 -(D-δ)

0 0 1

FDδ = EAd

© Martin Culpepper, All rights reserved 31

Page 33: Mit2 72s09 lec05

Simple Beam Example:Drill Press Example Find the HTM from b to c:

c

d

L

L

H

b c b

D a F F

cosӨ -sinӨ L

e cHb = sinӨ cosӨ δ

0 0 1

Cross-Sectional Area of large sections = A Cross-Sectional Area of Drill Bit = Ad

Young’s Modulus of Material = E

© Martin Culpepper, All rights reserved 32

Page 34: Mit2 72s09 lec05

Force Deflection EquationsUseful Force-deflection Equations

© Martin Culpepper, All rights reserved

F

F

M

d

d Ө

d Ө

d = FL EA

d = FL3

3EI Ө =

Ө =d = ML2

2EI

FL2

2EI

ML EI

33

Page 35: Mit2 72s09 lec05

Simple Beam Example:Drill Press Example Find the HTM from b to c:

c

d

L

L

H

b c b

D a F F

cosӨ -sinӨ L

e cHb = sinӨ cosӨ δ

0 0 1

Cross-Sectional Area of large sections = A Cross-Sectional Area of Drill Bit = Ad

Young’s Modulus of Material = E δ =

FL3

3EI Ө = FL2

2EI

© Martin Culpepper, All rights reserved 34

Page 36: Mit2 72s09 lec05

Simple Beam Example:Drill Press Example

c

d

L

L

H a

F

e

Cross-Sectional Area of large sections = A Cross-Sectional Area of Drill Bit = Ad

Young’s Modulus of Material = E

Find the HTM from c to d:

F b

FLD

c

d

cosӨ -sinӨ -δ1

dHc = sinӨ cosӨ H+δ2

0 0 1

© Martin Culpepper, All rights reserved 35

Page 37: Mit2 72s09 lec05

Force Deflection EquationsUseful Force-deflection Equations

© Martin Culpepper, All rights reserved

F

F

M

d

d Ө

d Ө

d = FL EA

d = FL3

3EI Ө =

Ө =d = ML2

2EI

FL2

2EI

ML EI

36

Page 38: Mit2 72s09 lec05

Simple Beam Example:Drill Press Example

c

d

L

L

H

Find the HTM from c to d:

c F

b

FLD a

F

e d

cosӨ -sinӨ -δ1

dHc = sinӨ cosӨ H+δ2Cross-Sectional Area of large sections = A 0 0 1

Cross-Sectional Area of Drill Bit = Ad

Young’s Modulus of Material = E FLH FLH2 FH Ө = EI δ1 = 2EI δ2 = EA

37© Martin Culpepper, All rights reserved

Page 39: Mit2 72s09 lec05

Simple Beam Example:Drill Press Example Find the HTM from d to e:

c

d

L

L

H

b

D a

F

e

Cross-Sectional Area of large sections = A Cross-Sectional Area of Drill Bit = Ad

Young’s Modulus of Material = E

ed F

FL

1 0 -L eHd = 0 1 0

0 0 1

© Martin Culpepper, All rights reserved 38

Page 40: Mit2 72s09 lec05

Simple Beam Example:Drill Press Example Find the HTM from a to e:

c

d

L

L

H

b

D a

F

e

eHa= eHddHc

cHbbHa

Find the vector aV from e to a:e

0

0aV = eHae

1 Cross-Sectional Area of large sections = A Cross-Sectional Area of Drill Bit = Ad

Young’s Modulus of Material = E

© Martin Culpepper, All rights reserved 39

Page 41: Mit2 72s09 lec05

Simple Beam Example:Method for building system’s HTM

• Identify key nodes around the system’s structural loop

• Create HTMs for each member between each node

• Multiply the member’s HTMs in the correct order

© Martin Culpepper, All rights reserved 40

Page 42: Mit2 72s09 lec05

More on HTMs

Page 43: Mit2 72s09 lec05

3D HTMs 1 0 0 X

0 sin cos Z

⎤⎥For x-axis Y0 sincos ⎥x xrotation ⎥⎥⎦

cos(Ө)~1 & sin(Ө)~ ӨX0 sin ⎤cos ⎥For y-axis⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎦

rotation sin 0 cos Z

θθx x

θy y

θy y

0 0 0 1

z zθθ

θθ

z z

θ

θ

θθ

rotation Z0 0 1

⎡⎢⎢⎢⎢0 0 0 1⎣ For small Ө:

−⎡⎢ Y0 1 0⎢⎢⎢⎣

Xsin 0⎡ cos ⎢ Ysin 0−For z-axis cos⎢⎢⎢ 0 0 0 1⎣

© Martin Culpepper, All rights reserved 42

Page 44: Mit2 72s09 lec05

HTM Rotation •Remember order of multiplication matters:

180 deg

90 deg right flip

180 deg flip

90 deg right

•To combine a translation and rotation, again multiply the HTM matrices together

•Note that the order of the rotation and translation matrices does matter, so makes sure the answer makes sense!!!

© Martin Culpepper, All rights reserved 43