misc - projectile motion

18
PROJECTILE MOTION Objects of the experiment 1. To predict and verify the range of a ball launched at an angle. Accessory Groove Ramrod Thumb Screws Base Launcher Trigger Scale Indicator Projectile Balls Collision Accessory Safety Goggles Equipment 1 2. 3. Projectile Range versus Angle 4. Conservation of Energy Conservation of Momentum in Two Dimensions Projectile Motion BS P-III Institute Of Physics

Upload: api-3723453

Post on 10-Apr-2015

1.007 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Misc - Projectile Motion

PROJECTILE MOTIONObjects of the experiment

1. To predict and verify the range of a ball launched at an angle.

��������

��������

� ��������

��������

��������

� ��������

����������������

� �����������

���������

��������

���������

��������������

������

���������

���� �������� ��

���� !!

"#���$���%�� ��%�$

��%����#����&#'

����

����

��

��

��

���(�)��"*��((�( +�����(�'

��#,-../�� �� ���"�

Accessory Groove

Ramrod

Thumb Screws

BaseLauncher

Trigger

Scale Indicator

Projectile Balls

Collision Accessory

Safety Goggles

Equipment

1

2.

3.

Projectile Range versus Angle

4.

Conservation of Energy

Conservation of Momentum in Two Dimensions

Projectile Motion BS P-III Institute Of Physics

Page 2: Misc - Projectile Motion

General Instructions

with the ramrod until the trigger catches the pis-ton at the desired range setting.

- Remove the ramrod and place it back in its stor-age place on the base.

- When the Projectile Launcher is loaded, the yel-low indicator is visible in one of the range slotsin the side of the barrel and the ball is visible inanother one of the slots in the side of the barrel.To check to see if the Launcher is loaded, al-ways check the side of the barrel. Never lookdown the barrel!

➃ Shoot

- Before shooting the ball, make certain that noperson is in the way.

- To shoot the ball, pull straight up on the lanyard(string) that is attached to the trigger. It is onlynecessary to pull it about a centimeter.

- The spring on the trigger will automatically re-turn the trigger to its initial position when yourelease it.

➄ Maintenance and Storage- Do not oil the Launcher!!

- To store the Launcher in the least amount ofspace, align the barrel with the base by adjust-ing the angle to 90 degrees. If the photogatebracket and photogates are attached to theLauncher, the bracket can be slid back alongthe barrel with the photogates still attached.

➀ Ready

- Always wear safety goggles when you are in aroom where the Projectile Launcher is beingused.

- The base of the Projectile Launcher must beclamped to a sturdy table using the clamp ofyour choice. When clamping to the table, it isdesirable to have the label side of the Launchereven with one edge of the table so a plumb bobcan be used to locate the position of the muzzlewith respect to the floor.

- The Projectile Launcher can be mounted to thebracket using the curved slot when it is desiredto change the launch angle. It can also bemounted to the lower two slots in the base ifyou are only going to shoot horizontally, suchas into a pendulum or a Dynamics Cart.

➁ Aim

- The angle of inclination above the horizontal isadjusted by loosening both thumb screws androtating the Launcher to the desired angle asindicated by the plumb bob and protractor onthe side of the Launcher. When the angle hasbeen selected, both thumb screws are tightened.

- You can bore-sight at a target (such as in theMonkey-Hunter demonstration) by lookingthrough the Launcher from the back end whenthe Launcher is not loaded. There are twosights inside the barrel. Align the centers ofboth sights with the target by adjusting theangle and position of the Launcher.

➂ Load- Always cock the piston with the ball in the pis-

ton. Damage to the piston may occur if theramrod is used without the ball.

- Place the ball in the piston. Remove the ramrodfrom its Velcro® storage place on the base.While viewing the range-setting slots in the sideof the Launcher, push the ball down the barrel

Projectile Motion BS P-III Institute Of Physics

2

Page 3: Misc - Projectile Motion

Experiment 1: Projectile Motion

EQUIPMENT NEEDED:

-Projectile Launcher and plastic ball-Plumb bob-Meter stick-Carbon paper-White paper

Theory

To predict where a ball will land on the floor when it is shot off a table at some angle above thehorizontal, it is necessary to first determine the initial speed (muzzle velocity) of the ball. This canbe determined by shooting the ball horizontally off the table and measuring the vertical and hori-zontal distances through which the ball travels. Then the initial velocity can be used to calculatewhere the ball will land when the ball is shot at an angle.

HORIZONTAL INITIAL VELOCITY:

For a ball shot horizontally off a table with an initial speed, vo, the horizontal distance travelled bythe ball is given by x = vot, where t is the time the ball is in the air. Air friction is assumed to benegligible.

The vertical distance the ball drops in time t is given by y = 12 gt2.

The initial velocity of the ball can be determined by measuring x and y. The time of flight of theball can be found using:

t =2yg

and then the initial velocity can be found using v0 = xt .

INITIAL VELOCITY AT AN ANGLE:

To predict the range, x, of a ball shot off with an initial velocity at an angle, θ, above the horizontal,first predict the time of flight using the equation for the vertical motion:

y = y0 + v0 sinθ t – 12 gt2

where yo is the initial height of the ball and y is the position of the ball when it hits the floor. Then

use x = v0 cosθ t to find the range.Setup

➀ Clamp the Projectile Launcher to a sturdy table near one end of the table.

➁ Adjust the angle of the Projectile Launcher to zero degrees so the ball will be shot off horizontally.

To predict and verify the range of a ball launched at an angle.

Objects of the experiment

In this experiment the initial velocity of the ball is determined by shooting it horizontally and measuring the range and the height of the Launcher.

Projectile Motion BS P-III Institute Of Physics

3

Page 4: Misc - Projectile Motion

Part A: Determining the Initial Velocity of the Ball

Procedure

➀ Put the plastic ball into the Projectile Launcher and cock it to the long range position.Fire one shot to locate where the ball hits the floor. At this position, tape a piece ofwhite paper to the floor. Place a piece of carbon paper (carbon-side down) on top ofthis paper and tape it down. When the ball hits the floor, it will leave a mark on thewhite paper.

➁ Fire about ten shots.

➂ Measure the vertical distance from the bottom of the ball as it leaves the barrel (thisposition is marked on the side of the barrel) to the floor. Record this distance inTable 1.1.

➃ Use a plumb bob to find the point on the floor that is directly beneath the releasepoint on the barrel. Measure the horizontal distance along the floor from the releasepoint to the leading edge of the paper. Record in Table 1.1.

➄ Measure from the leading edge of the paper to each of the ten dots and record thesedistances in Table 1.1.

➅ Find the average of the ten distances and record in Table 1.1.

➆ Using the vertical distance and the average horizontal distance, calculate the time of

flight and the initial velocity of the ball. Record in Table 1.1.

Table 1.1 Determining the Initial Velocity

Trial Number Distance

1

2

3

4

5

6

7

8

9

10

Average

Total Distance

Vertical distance = _____________ Horizontal distance to paper edge = ____________

Calculated time of flight = _________ Initial velocity = _______________

Projectile Motion BS P-III Institute Of Physics

4

Page 5: Misc - Projectile Motion

Angle above horizontal = ______________ Horizontal distance to paper edge = ____________

Calculated time of flight = _____________ Predicted Range = ____________

Trial Number Distance

1

2

3

4

5

6

7

8

9

10

Average

Total Distance

Table 1.2 Confirming the Predicted Range

➀ Adjust the angle of the Projectile Launcher to an angle between 30 and 60 degreesand record this angle in Table 1.2.

➁ Using the initial velocity and vertical distance found in the first part of this experi-ment, assume the ball is shot off at the new angle you have just selected and calcu-late the new time of flight and the new horizontal distance. Record in Table 1.2.

➂ Draw a line across the middle of a white piece of paper and tape the paper on thefloor so the line is at the predicted horizontal distance from the Projectile Launcher.Cover the paper with carbon paper.

➃ Shoot the ball ten times.

➄ Measure the ten distances and take the average. Record in Table 1.2.

Part B: Predicting the Range of the Ball Shot at an Angle

Analysis

➀ Calculate the percent difference between the predicted value and the resultingaverage distance when shot at an angle.

➁ Estimate the precision of the predicted range. How many of the final 10 shots

Projectile Motion BS P-III Institute Of Physics

5

Page 6: Misc - Projectile Motion

Experiment 2: Projectile Range Versus Angle

θ

x

υ0

y0

Figure 3.2 Shooting off the table

EQUIPMENT NEEDED

-Projectile Launcher and plastic ball -plumb bob-measuring tape or meter stick -carbon paper-box to make elevation same as muzzle -white paper-graph paper

Theory

The range is the horizontal distance, x, between the muzzle of the Launcher and theplace where the ball hits, given by x = (v

0cosθ)t, where v

0 is the initial speed of the ball

as it leaves the muzzle, θ is the angle of inclination above horizontal, and t is the time offlight. See figure 3.1.

For the case in which the ball hits on a place that is at the same level as the level of themuzzle of the launcher, the time of flight of the ball will be twice the time it takes the ballthe reach the peak of its trajectory. At the peak, the vertical velocity is zero so

vy = 0 = v0 sinθ – gtpeak

Therefore, solving for the time gives that the total time of flight is t = 2t peak = 2v0 sinθ

g .

For the case in which the ballis shot off at an angle off atable onto the floor (SeeFigure 3.2) the time of flight isfound using the equation forthe vertical motion:

y = y0 + v0 sinθ t – 12 gt2

where yo is the initial height of

the ball and y is the position ofthe ball when it hits the floor.

θ

x

υ0

Figure 3.1 Shooting on a level surface

To find how the range of the ball depends on the angle at which it is launched.

and for shooting off a table.To determine the angle that gives the greatest range for two cases: for shooting on level ground

Objects of the experiment

Projectile Motion BS P-III Institute Of Physics

6

Page 7: Misc - Projectile Motion

Setup➀ Clamp the Projectile Launcher to a sturdy table near one end of the table with the

Launcher aimed so the ball will land on the table.

➁ Adjust the angle of the Projectile Launcher to ten degrees.

➂ Put the plastic ball into the Projectile Launcher and cock it to the medium or long rangeposition.

➤➤➤➤➤ NOTE: In general, this experiment will notwork as well on the short range settingbecause the muzzle velocity is more variablewith change in angle.

➃ Fire one shot to locate where the ballhits. Place a box at that location so theball will hit at the same level as themuzzle of the launcher. See Figure 3.3.

ProcedureSHOOTING ON A LEVEL SURFACE

➀ Fire one shot to locate where the ball hits the box. At this position, tape a piece of white paper tothe box. Place a piece of carbon paper (carbon-side down) on top of this paper and tape it down.When the ball hits the box, it will leave a mark on the white paper.

➁ Fire about five shots.

➂ Use a measuring tape to measure the horizontal distance from the muzzle to the leading edge of thepaper. If a measuring tape is not available, use a plumb bob to find the point on the table that isdirectly beneath the release point on the barrel. Measure the horizontal distance along the table fromthe release point to the leading edge of the paper. Record in Table 3.1.

➃ Measure from the leading edge of the paper to each of the five dots and record thesedistances in Table 3.1.

➄ Increase the angle by 10 degrees and repeat all the steps.

➅ Repeat for angles up to and including 80 degrees.

Figure 3.3 Set up to shoot on level surface

CAUTION!

DO NOT LOOK

DOWN BARREL!

CAUTION!

DO NOT LOOK

DOWN BARREL!CAUTION!

DO NOT LOOK

DOWN THE BARREL.

LONG

RANGE

MEDIUM

RANGE

SHORT

RANGE

Position

of Ball

Launch

SHORT RANGE

PROJECTILE LAUNCHER

ME-6800

Yellow Band in

Window

Indicates Range.

9080

7060

50 40 30 20 100

WEAR

SAFETY

GLASSES

WHEN IN USE.

Use 25 mm

bal ls O

NLY!

Angle 10 20 30 40 50 60 70 80

1

2

3

4

5

Average

Paper Dist.

Total Dist.

Hor

z. D

ista

nce

Table 3.1 Shooting on a Level Surface

Projectile Motion BS P-III Institute Of Physics

7

Page 8: Misc - Projectile Motion

SHOOTING OFF THE TABLE

Aim the projectile launcher so the ball will hit the floor. Repeat the procedure andrecord the data in Table 3.2.

Table 3.2 Shooting off the Table onto the Floor

Analysis

➀ Find the average of the five distances in each case and record in Tables 3.1 and 3.2.

➁ Add the average distance to the distance to the leading edge of the paper to find thetotal distance (range) in each case. Record in Tables 3.1 and 3.2.

➂ For each data table, plot the range vs. angle and draw a smooth curve through thepoints.

Questions

➀ From the graph, what angle gives the maximum range for each case?

➁ Is the angle for the maximum range greater or less for shooting off the table?

➂ Is the maximum range further when the ball is shot off the table or on the level

Table 3.2 Shooting Off the Table

Angle 10 20 30 40 50 60 70 80

1

2

3

4

5

Average

Paper Dist.

Total Dist.

Hor

z. D

ista

nce

Projectile Motion BS P-III Institute Of Physics

8

Page 9: Misc - Projectile Motion

Experiment 3: Conservation of Energy

CA

UT

ION

!D

O N

OT

LO

OK

D

OW

N B

AR

RE

L!

CA

UT

ION

!D

O N

OT

LO

OK

D

OW

N B

AR

RE

L!

CAUT

ION!

DO N

OT

LOO

K

DOW

N TH

E BA

RREL

.

LON

GR

AN

GE

ME

DIU

MR

AN

GE

SH

OR

TR

AN

GE

Po

siti

on

o

f B

all

Lau

nch

SH

OR

T R

AN

GE

PR

OJE

CT

ILE

LA

UN

CH

ER

ME

-680

0

Yel

low

Ban

d in

Win

do

w

Ind

icat

es R

ang

e.

90 8070

6050

4030

2010

0

WE

AR

S

AF

ET

Y

GL

AS

SE

S

WH

EN

IN U

SE

.

Us

e 2

5 m

m

ba

lls

ON

LY

!

υ0initial position

final position

h

y

x

υ0

Figure 5.1 Conservation of Energy

Figure 5.2 Finding the Initial Velocity

energy.

Theory

The total mechanical energy of a ball is the sum of its poten-tial energy (PE) and its kinetic energy (KE). In the absenceof friction, total energy is conserved. When a ball is shotstraight up, the initial PE is defined to be zero and theKE = (1/2)mv

02, where m is the mass of the ball and vo is the

muzzle speed of the ball. See Figure 5.1. When the ballreaches its maximum height, h, the final KE is zero and thePE = mgh, where g is the acceleration due to gravity. Con-servation of energy gives that the initial KE is equal to thefinal PE.

To calculate the kinetic energy, the initial velocity must bedetermined. To calculate the initial velocity, vo, for a ballshot horizontally off a table, the horizontal distance travelledby the ball is given by x = v

0t, where t is the time the ball is

in the air. Air friction is assumed to be negligible. SeeFigure 5.2.

The vertical distance the ball drops in time t isgiven by y = (1/2)gt2.

The initial velocity of the ball can be deter-mined by measuring x and y. The time offlight of the ball can be found using

t =2yg

and then the initial velocity can be foundusing v

0 = x/t.

Set up

➀ Clamp the Projectile Launcher to a sturdy table near one end of the table with the Launcher aimedaway from the table. See Figure 5.1.

➁ Point the Launcher straight up and fire a test shot on medium range to make sure the ball doesn’t hitthe ceiling. If it does, use the short range throughout this experiment or put the Launcher closer tothe floor.

To show that the kinetic energy of a ball shot straight up is transformed into potential

EQUIPMENT NEEDED

-Projectile Launcher and plastic ball -plumb bob-measuring tape or meter stick -white paper-(optional) 2 Photogates and Photogate Bracket -carbon pa-per

Objects of the experiment

➂ Adjust the angle of the Projectile Launcher to zero degrees so the ball will be shot off horizontally.

9

Projectile Motion BS P-III Institute Of Physics

Page 10: Misc - Projectile Motion

Trial Number Distance

1

2

3

4

5

6

7

8

9

10

Average

Total Distance

PART I: Determining the Initial Velocity of the Ball (without photogates)

➀ Put the plastic ball into the Projectile Launcher and cock it to the medium range position.Fire one shot to locate where the ball hits the floor. At this position, tape a piece of whitepaper to the floor. Place a piece of carbon paper (carbon-side down) on top of this paperand tape it down. When the ball hits the floor, it will leave a mark on the white paper.

➁ Fire about ten shots.

➂ Measure the vertical distance from the bottom of the ball as it leaves the barrel (thisposition is marked on the side of the barrel) to the floor. Record this distance in Table 5.1.

➃ Use a plumb bob to find the point on the floor that is directly beneath the release point onthe barrel. Measure the horizontal distance along the floor from the release point to theleading edge of the paper. Record in Table 5.1.

➄ Measure from the leading edge of the paper to each of the ten dots and record thesedistances in Table 5.1.

➅ Find the average of the ten distances and record in Table 5.1.

➆ Using the vertical distance and the average horizontal distance, calculate the time of flightand the initial velocity of the ball. Record in Table 5.1.

Procedure

Table 5.1 Determining the Initial Velocity without Photogates

Vertical distance = ______________ Calculated time of flight= ____________

Horizontal distance to paper edge = ____________ Initial velocity = ______________

Projectile Motion BS P-III Institute Of Physics

10

Page 11: Misc - Projectile Motion

ALTERNATE METHOD FOR DETERMINING THE INITIAL VELOCITY OF THE BALL (USINGPHOTOGATES)

➀ Attach the photogate bracket to the Launcher and attach two photogates to the bracket.Plug the photogates into a computer or other timer.

➁ Adjust the angle of the Projectile Launcher to 90 degrees (straight up).

➂ Put the plastic ball into the Projectile Launcher and cock it to the long range position.

➃ Run the timing program and set it to measure the time between the ball blocking the twophotogates.

Table 5.2 Initial Speed Using PhotogatesMEASURING THE HEIGHT

➀ Adjust the angle of the Launcher to 90 degrees (straight up).

➁ Shoot the ball on the medium range setting several times and measure the maximum heightattained by the ball. Record in Table 5.3.

➂ Determine the mass of the ball and record in Table 5.3.

TRIAL NUMBER TIME

1

2

3

AVERAGE TIME

INITIAL SPEED

➄ Shoot the ball three times and take the average of these times. Record in Table 5.2.

➅ Using that the distance between the photogates is 10 cm, calculate the initial speed andrecord it in Table 5.2.

Calculate the initial kinetic energy and record in Table 5.3.

Calculate the final potential energy and record in Table 5.3.

Calculate the percent difference between the initial and final energies and record in Table 5.3.

Table 5.3 Results

Maximuim Height of Ball

Mass of Ball

Initial Kinetic Energy

Final Potential Energy

Percent Difference

ANALYSIS

Projectile Motion BS P-III Institute Of Physics

11

Page 12: Misc - Projectile Motion

Experiment 4: Conservation of Momentum In Two Dimensions

θ1

υ1

m1

υ0m1

m2 (υ = 0)(a)

Figure 6.1: (a) Before Collision (b) After Collision

EQUIPMENT NEEDED-Projectile Launcher and 2 plastic balls -plumb bob-meter stick -protractor-butcher paper -tape to make collision inelastic-stand to hold ball -carbon paper

Theory

A ball is shot toward anotherball which is initially at rest,resulting in a collision afterwhich the two balls go off indifferent directions. Both ballsare falling under the influenceof the force of gravity so mo-mentum is not conserved in thevertical direction. However,there is no net force on the ballsin the horizontal plane somomentum is conserved inhorizontal plane.

Before the collision, since all the momentum is in the direction of the velocity of Ball #1it is convenient to define the x-axis along this direction. Then the momentum before thecollision is

Pbefore = m1v0 x

and the momentum after the collision is

Pafter = m1v1x + m2v2x x + m1v1y – m2v2y y

where v1x = v1 cosθ1, v1y = v1 sinθ1, v2x = v2 cosθ2 and v2y = v2 sinθ2

Since there is no net momentum in the y-direction before the collision, conservation ofmomentum requires that there is no momentum in the y-direction after the collision.Therefore,

m1 v1y = m2 v2y

Equating the momentum in the x-direction before the collision to the momentum in thex-direction after the collision gives

m1 v0 = m1 v1x + m2 v2x

In an elastic collision, energy is conserved as well as momentum.

12

m1 v02 = 1

2m1 v1

2 + 12

m2 v22

θ2

υ2

m2

(b)

To show that the momentum is conserved in two dimensions for elastic and inelastic collisions.Objects of the experiment

➀ How does friction affect the result for the kinetic energy?

➁ How does friction affect the result for the potential energy?

Also, when energy is conserved, the paths of two balls (of equal mass) after the collision willbe at right angles to each other.

12

Projectile Motion BS P-III Institute Of Physics

Page 13: Misc - Projectile Motion

Installing the 2-Dimensional Collision AccessoryIntroduction

The two dimensional Collision Accessory consists ofa plastic bar with a thumb screw and square nut. It isused with the Projectile Launcher to hold a secondball in front of the muzzle so the launched ball willcollide with the second ball, creating a 2-dimensionalcollision.

Assembly

To assemble the collision accessory, insert the screwthrough the hole and secure with the nut as shown be-low.

To mount the collision ccessory to the Launcher thesquare nut slides into the T-shaped channel on thebottom of the barrel. (See Figure 6.2)

SquareNut

ThumbScrew

Expectations for the Projectile Launcher

essary to shoot to a table that is at the same heightas the muzzle.

➂ The scatter pattern is minimized when the Projec-tile Launcher base is securely clamped to a sturdytable. Any wobble in the table will show up in thedata.

The angle of inclination can be determined towithin one- half of a degree.

The following are helpful hints and approximate val-ues you may find useful:

➀ The muzzle speed will vary slightly with angle.The difference between muzzle speed when shothorizontally versus vertically can be anywherefrom zero to8%, depending on the range setting and the par-ticular launcher.

➁ Although the muzzle end of the ProjectileLauncher doesn’t change height with angle, it isabout 30 cm (12 inches) above table level, so if itis desired to use the simple range formula, it is nec-

Projectile Motion BS P-III Institute Of Physics

13

Page 14: Misc - Projectile Motion

Set up

➀ Clamp the Projectile Launcher to a sturdytable near one end of the table with theLauncher aimed inward toward the table.

➁ Adjust the angle of the Projectile Launcher tozero degrees so the ball will be shot offhorizontally onto the table. Fire a test shoton the short range setting to make sure theball lands on the table.

➂ Cover the table with butcher paper. Thepaper must extend to the base of theLauncher.

➃ Mount collision attachment on the Launcher.See Figure 6.2. Slide the attachment backalong the Launcher until the tee is about 3cm in front of the muzzle.

➄ Rotate the attachment to position the ballfrom side to side. The tee must be located sothat neither ball rebounds into the Launcherand so both balls land on the table. Tightenthe screw to secure the collision attachment

to the Launcher.➅ Place a piece of carbon paper at each of the

three sites where the balls will land.

Procedure

➀ Using one ball, shoot the ball straight five times.

➁ Elastic collision: Using two balls, load one ball and put the other ball on the tee. Shoot theball five times.

➂ Inelastic collision: Using two balls, load one ball and stick a very small loop of tape ontothe tee ball. Orient the tape side of the tee ball so it will be struck by the launched ball,causing an inelastic collision. Shoot the ball once and if the balls miss the carbon paper,relocate the carbon paper and shoot once more. Since the tape does not produce the sameinelastic collision each time, it is only useful to record this collision once.

➃ Use a plumb bob to locate on the paper the spot below the point of contact of the two balls.Mark this spot.

Figure 6.2: Photogate Bracket and Tee

Analysis

➀ Draw lines from the point-of-contact spot to the centers of the groups of dots. Therewill be five lines.

➁ Measure the lengths of all five lines and record on the paper. Since the time of flightis the same for all paths, these lengths are proportional to the corresponding horizon-tal velocities. Since the masses are also the same, these lengths are also proportionalto the corresponding momentum of each ball.

➂ Measure the angles from the center line to each of the outer four lines and record onthe paper.PERFORM THE FOLLOWING THREE STEPS FOR THE ELASTIC COLLISION ANDTHEN REPEAT THESE THREE STEPS FOR THE INELASTIC COLLISION:

➃ For the x-direction, check that the momentum before equals the momentum after thecollision. To do this, use the lengths for the momentums and calculate the x-compo-nents using the angles. Record the results in Tables 6.1 and 6.2.

Projectile Motion BS P-III Institute Of Physics

14

Page 15: Misc - Projectile Motion

➄ For the y-direction, check that the momenta for the two balls are equal and opposite,thus canceling each other. To do this, calculate the y-components using the angles.Record the results in the Tables.

➅ Calculate the total kinetic energy before and the total kinetic energy after the colli-sion. Calculate the percent difference. Record the results in the Tables.

Initial x-momentum

Final x-momentum

% difference

y-momentum ball 1

y-momentum ball 2

% difference

Initial KE Final KE % difference

Initial x-momentum

Final x-momentum

% difference

y-momentum ball 1

y-momentum ball 2

% difference

Initial KE Final KE % difference

Table 6.2 Results for the Inelastic Collision

Table 6.1 Results for the Elastic Collision

Questions

➀ Was momentum conserved in the x-direction for each type of collision?

➁ Was momentum conserved in the y-direction for each type of collision?

➂ Was energy conserved for the elastic collision?

Projectile Motion BS P-III Institute Of Physics

15

Page 16: Misc - Projectile Motion

Experiment 1: Projectile Motion

Procedure

➤➤➤➤➤ NOTE: For best results, make sure that the projectile launcher is clamped securely to a firm table.Any movement of the gun will result in inconsistent data.

A) The muzzle velocity of the gun tested for this manual was 6.5 m/s (Short range launcher at maxi-mum setting, nylon ball)

B) To find the range at the chosen angle, it is necessary to solve the quadratic equation given in thetheory section. You may wish for the students to do this, or you may provide them with the solu-tion:

t=v0sinθ + (v0sinθ)2 + 2g(y0–y)

g

Analysis

➀ The difference depended on the angle at which the gun was fired. The following table gives typicalresults:

Angle Predicted Range Actual Range Percent Error

30 5.22 5.19 0.57%45 5.30 5.16 2.64%60 4.35 4.23 2.87%39 5.39 5.31 1.48%

➤➤➤➤➤ NOTE: The maximum angle is not 45° in this case, nor is the range at 60° equal to that at 30°.This is because the initial height of the ball is not the same as that of the impact point. Themaximum range for this setup (with the launcher 1.15 m above ground level) was calculated tobe 39°, and this was experimentally verified as well.

➁ Answers will vary depending on the method of estimating the precision. The primary source oferror is in ignoring the effect of air resistance.

Teacher's Guide

1

Projectile Motion BS P-III Institute Of Physics

Page 17: Misc - Projectile Motion

Experiment 2: Projectile Range Versus Angle

ProcedureShooting off a level surface:

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 10 20 30 40 50 60 70 80 90

Ran

ge (

m)

Angle (degrees)

Shooting off a table:

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90

Ran

ge (

m)

Angle (degrees)

➤➤➤➤➤ NOTE: The curves shown are for the calculated ranges in each case. The data points are theactual measured ranges.

Questions:

➀ On a level surface, the maximum range is at 45°. For a non-level surface, the angle of maximumrange depends on the initial height of the projectile. For our experimental setup, with an initialheight of 1.15 m, the maximum range is at 40°. (Theoretical value 39°)

➁ The angle of maximum range decreases with table height.

➂ The maximum distance increases with table height.

2

Projectile Motion BS P-III Institute Of Physics

Page 18: Misc - Projectile Motion

Experiment 3: Conservation of Energy

Analysis

➀ Using the photogate method, we found that the initial speed of the ball was 4.93 m/s.(Nylon ball, short range launcher at medium setting) The ball mass was 9.6 g, so ourtotal kinetic energy was 0.117 J.

➁ The ball reached an average height of 1.14 m. Potential energy was then 0.107 J.

➂ Energy lost was 8.5% of original energy.

Experiment : Conservation of Momentum in Two Dimensions

Setup

➀ If possible use medium range rather than short. The medium-range setting givesmore predictable results than the short-range setting.

Analysis

➀ Results for the x component of momentum should be within 5% of initial values.The total y component should be small compared to the x component.

Questions

➀ Momentum is conserved on both axes.

➁ Kinetic energy is nearly conserved in the elastic collision. There is some loss due thefact that the collision is not completely elastic.

➂ Energy is conserved for the inelastic collision; but kinetic energy is not.

➃ The angle should be nearly 90°. (Our tests had angles of about 84°)

➄ In the inelastic case, the angle will be less than in the elastic case. The exact anglewill depend on the degree of inelasticity, which will depend on the type and amountof tape used.

3

4

Projectile Motion BS P-III Institute Of Physics

3