minimum spanning trees - carleton universitysbtajali/2002/slides/11-4 graphs...minimum spanning tree...

27
Minimum Spanning Trees 1 © 2004 Goodrich, Tamassia Minimum Spanning Trees JFK BOS MIA ORD LAX DFW SFO BWI PVD 867 2704 187 1258 849 144 740 1391 184 946 1090 1121 2342 1846 621 802 1464 1235 337

Upload: others

Post on 09-Sep-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Minimum Spanning Trees - Carleton Universitysbtajali/2002/slides/11-4 Graphs...Minimum spanning tree (MST) n Spanning tree of a weighted graph with minimum total edge weight Applications

Minimum Spanning Trees 1© 2004 Goodrich, Tamassia

Minimum Spanning Trees

JFK

BOS

MIA

ORD

LAXDFW

SFO BWI

PVD

8672704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

Page 2: Minimum Spanning Trees - Carleton Universitysbtajali/2002/slides/11-4 Graphs...Minimum spanning tree (MST) n Spanning tree of a weighted graph with minimum total edge weight Applications

Minimum Spanning Trees 2© 2004 Goodrich, Tamassia

Minimum Spanning Trees (§ 12.7)Spanning subgraph

n Subgraph of a graph Gcontaining all the vertices of G

Spanning treen Spanning subgraph that is

itself a (free) tree

Minimum spanning tree (MST)n Spanning tree of a weighted

graph with minimum total edge weight

Applicationsn Communications networksn Transportation networks

ORD

PIT

ATL

STL

DEN

DFW

DCA

101

9

8

6

3

25

7

4

Page 3: Minimum Spanning Trees - Carleton Universitysbtajali/2002/slides/11-4 Graphs...Minimum spanning tree (MST) n Spanning tree of a weighted graph with minimum total edge weight Applications

Minimum Spanning Trees 3© 2004 Goodrich, Tamassia

Cycle PropertyCycle Property:

n Let T be a minimum spanning tree of a weighted graph G

n Let e be an edge of Gthat is not in T and C let be the cycle formed by ewith T

n For every edge f of C,weight(f) ≤ weight(e)

Proof:n By contradictionn If weight(f) > weight(e) we

can get a spanning tree of smaller weight by replacing e with f

84

2 36

7

7

9

8e

C

f

84

2 36

7

7

9

8

C

e

f

Replacing f with e yieldsa better spanning tree

Page 4: Minimum Spanning Trees - Carleton Universitysbtajali/2002/slides/11-4 Graphs...Minimum spanning tree (MST) n Spanning tree of a weighted graph with minimum total edge weight Applications

Minimum Spanning Trees 4© 2004 Goodrich, Tamassia

U V

Partition PropertyPartition Property:

n Consider a partition of the vertices of G into subsets U and V

n Let e be an edge of minimum weight across the partition

n There is a minimum spanning tree of G containing edge e

Proof:n Let T be an MST of Gn If T does not contain e, consider the

cycle C formed by e with T and let fbe an edge of C across the partition

n By the cycle property,weight(f) ≤ weight(e)

n Thus, weight(f) = weight(e)n We obtain another MST by replacing

f with e

74

2 85

7

3

9

8 e

f

74

2 85

7

3

9

8 e

f

Replacing f with e yieldsanother MST

U V

Page 5: Minimum Spanning Trees - Carleton Universitysbtajali/2002/slides/11-4 Graphs...Minimum spanning tree (MST) n Spanning tree of a weighted graph with minimum total edge weight Applications

Minimum Spanning Trees 5© 2004 Goodrich, Tamassia

Kruskal’s Algorithm (§ 12.7.1)A priority queue stores the edges outside the cloudn Key: weightn Element: edge

At the end of the algorithmn We are left with one

cloud that encompasses the MST

n A tree T which is our MST

Algorithm KruskalMST(G)for each vertex V in G do

define a Cloud(v) of ß {v}let Q be a priority queue.Insert all edges into Q using their weights as the keyTß ∅while T has fewer than n-1 edges do

edge e = T.removeMin()Let u, v be the endpoints of eif Cloud(v) ≠ Cloud(u) then

Add edge e to TMerge Cloud(v) and Cloud(u)

return T

Page 6: Minimum Spanning Trees - Carleton Universitysbtajali/2002/slides/11-4 Graphs...Minimum spanning tree (MST) n Spanning tree of a weighted graph with minimum total edge weight Applications

Minimum Spanning Trees 6© 2004 Goodrich, Tamassia

Data Structure for KruskalAlgortihm (§ 10.6.2)

The algorithm maintains a forest of treesAn edge is accepted it if connects distinct treesWe need a data structure that maintains a partition, i.e., a collection of disjoint sets, with the operations:-find(u): return the set storing u-union(u,v): replace the sets storing u and v with their union

Page 7: Minimum Spanning Trees - Carleton Universitysbtajali/2002/slides/11-4 Graphs...Minimum spanning tree (MST) n Spanning tree of a weighted graph with minimum total edge weight Applications

Minimum Spanning Trees 7© 2004 Goodrich, Tamassia

Representation of a Partition

Each set is stored in a sequenceEach element has a reference back to the setn operation find(u) takes O(1) time, and returns the set of

which u is a member.n in operation union(u,v), we move the elements of the

smaller set to the sequence of the larger set and update their references

n the time for operation union(u,v) is min(nu,nv), where nuand nv are the sizes of the sets storing u and v

Whenever an element is processed, it goes into a set of size at least double, hence each element is processed at most log n times (implication: n unions will take nlog(n) time.)

Page 8: Minimum Spanning Trees - Carleton Universitysbtajali/2002/slides/11-4 Graphs...Minimum spanning tree (MST) n Spanning tree of a weighted graph with minimum total edge weight Applications

Minimum Spanning Trees 8© 2004 Goodrich, Tamassia

Partition-Based Implementation

A partition-based version of Kruskal’s Algorithm performs cloud merges as unions and tests as finds.

Algorithm Kruskal(G):Input: A weighted graph G.Output: An MST T for G.

Let P be a partition of the vertices of G, where each vertex forms a separate set. //O(1)

Let Q be a priority queue storing the edges of G, sorted by their weights //O(mlog(m)) but O(m) by bottom-up heap construction

Let T be an initially-empty treewhile Q is not empty do //O(m)

(u,v) ← Q.removeMinElement() //O(log(m)) = O(log(n)) since m <= n2 for simple graphs

if P.find(u) != P.find(v) then //O(1) true at most O(n) times

Add (u,v) to T //O(1)

P.union(u,v) //nlog(n) total because O(n) unions of partition data-structure

return T

Running time: O((n+m)log n)

=O(mlog(n)) for simple graphs

Page 9: Minimum Spanning Trees - Carleton Universitysbtajali/2002/slides/11-4 Graphs...Minimum spanning tree (MST) n Spanning tree of a weighted graph with minimum total edge weight Applications

Minimum Spanning Trees 9© 2004 Goodrich, Tamassia

KruskalExample

JFK

BOS

MIA

ORD

LAXDFW

SFO BWI

PVD

8672704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

Page 10: Minimum Spanning Trees - Carleton Universitysbtajali/2002/slides/11-4 Graphs...Minimum spanning tree (MST) n Spanning tree of a weighted graph with minimum total edge weight Applications

Minimum Spanning Trees 10© 2004 Goodrich, Tamassia

JFK

BOS

MIA

ORD

LAXDFW

SFO BWI

PVD

8672704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

Example

Page 11: Minimum Spanning Trees - Carleton Universitysbtajali/2002/slides/11-4 Graphs...Minimum spanning tree (MST) n Spanning tree of a weighted graph with minimum total edge weight Applications

Minimum Spanning Trees 11© 2004 Goodrich, Tamassia

Example

JFK

BOS

MIA

ORD

LAXDFW

SFO BWI

PVD

8672704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

Page 12: Minimum Spanning Trees - Carleton Universitysbtajali/2002/slides/11-4 Graphs...Minimum spanning tree (MST) n Spanning tree of a weighted graph with minimum total edge weight Applications

Minimum Spanning Trees 12© 2004 Goodrich, Tamassia

Example

JFK

BOS

MIA

ORD

LAXDFW

SFO BWI

PVD

8672704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

Page 13: Minimum Spanning Trees - Carleton Universitysbtajali/2002/slides/11-4 Graphs...Minimum spanning tree (MST) n Spanning tree of a weighted graph with minimum total edge weight Applications

Minimum Spanning Trees 13© 2004 Goodrich, Tamassia

Example

JFK

BOS

MIA

ORD

LAXDFW

SFO BWI

PVD

8672704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

Page 14: Minimum Spanning Trees - Carleton Universitysbtajali/2002/slides/11-4 Graphs...Minimum spanning tree (MST) n Spanning tree of a weighted graph with minimum total edge weight Applications

Minimum Spanning Trees 14© 2004 Goodrich, Tamassia

Example

JFK

BOS

MIA

ORD

LAXDFW

SFO BWI

PVD

8672704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

Page 15: Minimum Spanning Trees - Carleton Universitysbtajali/2002/slides/11-4 Graphs...Minimum spanning tree (MST) n Spanning tree of a weighted graph with minimum total edge weight Applications

Minimum Spanning Trees 15© 2004 Goodrich, Tamassia

Example

JFK

BOS

MIA

ORD

LAXDFW

SFO BWI

PVD

8672704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

Page 16: Minimum Spanning Trees - Carleton Universitysbtajali/2002/slides/11-4 Graphs...Minimum spanning tree (MST) n Spanning tree of a weighted graph with minimum total edge weight Applications

Minimum Spanning Trees 16© 2004 Goodrich, Tamassia

Example

JFK

BOS

MIA

ORD

LAXDFW

SFO BWI

PVD

8672704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

Page 17: Minimum Spanning Trees - Carleton Universitysbtajali/2002/slides/11-4 Graphs...Minimum spanning tree (MST) n Spanning tree of a weighted graph with minimum total edge weight Applications

Minimum Spanning Trees 17© 2004 Goodrich, Tamassia

Example

JFK

BOS

MIA

ORD

LAXDFW

SFO BWI

PVD

8672704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

Page 18: Minimum Spanning Trees - Carleton Universitysbtajali/2002/slides/11-4 Graphs...Minimum spanning tree (MST) n Spanning tree of a weighted graph with minimum total edge weight Applications

Minimum Spanning Trees 18© 2004 Goodrich, Tamassia

Example

JFK

BOS

MIA

ORD

LAXDFW

SFO BWI

PVD

8672704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

Page 19: Minimum Spanning Trees - Carleton Universitysbtajali/2002/slides/11-4 Graphs...Minimum spanning tree (MST) n Spanning tree of a weighted graph with minimum total edge weight Applications

Minimum Spanning Trees 19© 2004 Goodrich, Tamassia

Example

JFK

BOS

MIA

ORD

LAXDFW

SFO BWI

PVD

8672704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

Page 20: Minimum Spanning Trees - Carleton Universitysbtajali/2002/slides/11-4 Graphs...Minimum spanning tree (MST) n Spanning tree of a weighted graph with minimum total edge weight Applications

Minimum Spanning Trees 20© 2004 Goodrich, Tamassia

Example

JFK

BOS

MIA

ORD

LAXDFW

SFO BWI

PVD

8672704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

Page 21: Minimum Spanning Trees - Carleton Universitysbtajali/2002/slides/11-4 Graphs...Minimum spanning tree (MST) n Spanning tree of a weighted graph with minimum total edge weight Applications

Minimum Spanning Trees 21© 2004 Goodrich, Tamassia

Example

JFK

BOS

MIA

ORD

LAXDFW

SFO BWI

PVD

8672704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

Page 22: Minimum Spanning Trees - Carleton Universitysbtajali/2002/slides/11-4 Graphs...Minimum spanning tree (MST) n Spanning tree of a weighted graph with minimum total edge weight Applications

Minimum Spanning Trees 22© 2004 Goodrich, Tamassia

Example

JFK

BOS

MIA

ORD

LAXDFW

SFO BWI

PVD

8672704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

Page 23: Minimum Spanning Trees - Carleton Universitysbtajali/2002/slides/11-4 Graphs...Minimum spanning tree (MST) n Spanning tree of a weighted graph with minimum total edge weight Applications

Minimum Spanning Trees 23© 2004 Goodrich, Tamassia

Prim-Jarnik’s Algorithm (§ 12.7.2)Similar to Dijkstra’s algorithm (for a connected graph)We pick an arbitrary vertex s and we grow the MST as a cloud of vertices, starting from sWe store with each vertex v a label d(v) = the smallest weight of an edge connecting v to a vertex in the cloud At each step:n We add to the cloud the vertex u outside the cloud with the smallest distance labeln We update the labels of the vertices adjacent to u

Page 24: Minimum Spanning Trees - Carleton Universitysbtajali/2002/slides/11-4 Graphs...Minimum spanning tree (MST) n Spanning tree of a weighted graph with minimum total edge weight Applications

Minimum Spanning Trees 24© 2004 Goodrich, Tamassia

Prim-Jarnik’s Algorithm (cont.)A priority queue stores the vertices outside the cloudn Key: distancen Element: vertex

Locator-based methodsn insert(k,e) returns a

locator n replaceKey(l,k) changes

the key of an itemWe store three labels with each vertex:n Distancen Parent edge in MSTn Locator in priority queue

Algorithm PrimJarnikMST(G)Q ← new heap-based priority queues ← a vertex of Gfor all v ∈ G.vertices()

if v = ssetDistance(v, 0)

elsesetDistance(v, ∞)

setParent(v, ∅)l ← Q.insert(getDistance(v), v)setLocator(v,l)

while ¬Q.isEmpty()u ← Q.removeMin()for all e ∈ G.incidentEdges(u)

z ← G.opposite(u,e)r ← weight(e)if r < getDistance(z)

setDistance(z,r)setParent(z,e)Q.replaceKey(getLocator(z),r)

Page 25: Minimum Spanning Trees - Carleton Universitysbtajali/2002/slides/11-4 Graphs...Minimum spanning tree (MST) n Spanning tree of a weighted graph with minimum total edge weight Applications

Minimum Spanning Trees 25© 2004 Goodrich, Tamassia

Example

BD

C

A

F

E

74

28

5

7

3

9

8

07

2

8 ∞

BD

C

A

F

E

74

28

5

7

3

9

8

07

2

5 ∞

7

BD

C

A

F

E

74

28

5

7

3

9

8

07

2

5 ∞

7

BD

C

A

F

E

74

28

5

7

3

9

8

07

2

5 4

7

Page 26: Minimum Spanning Trees - Carleton Universitysbtajali/2002/slides/11-4 Graphs...Minimum spanning tree (MST) n Spanning tree of a weighted graph with minimum total edge weight Applications

Minimum Spanning Trees 26© 2004 Goodrich, Tamassia

Example (contd.)

BD

C

A

F

E

74

28

5

7

3

9

8

03

2

5 4

7

BD

C

A

F

E

74

28

5

7

3

9

8

0 3

2

5 4

7

Page 27: Minimum Spanning Trees - Carleton Universitysbtajali/2002/slides/11-4 Graphs...Minimum spanning tree (MST) n Spanning tree of a weighted graph with minimum total edge weight Applications

Minimum Spanning Trees 27© 2004 Goodrich, Tamassia

AnalysisGraph operationsn Method incidentEdges is called once for each vertex

Label operationsn We set/get the distance, parent and locator labels of vertex z O(deg(z))

timesn Setting/getting a label takes O(1) time

Priority queue operationsn Each vertex is inserted once into and removed once from the priority

queue, where each insertion or removal takes O(log n) timen The key of a vertex w in the priority queue is modified at most deg(w)

times, where each key change takes O(log n) time Prim-Jarnik’s algorithm runs in O((n + m) log n) time provided the graph is represented by the adjacency list structure

n Recall that Σv deg(v) = 2m

The running time is O(m log n) since the graph is connected