minerals ii: physical properties and crystal forms from:...

Download Minerals II: Physical Properties and Crystal Forms From: http://webmineral.com/data/Rhodochrosite.shtml

Post on 16-Dec-2015

212 views

Category:

Documents

0 download

Embed Size (px)

TRANSCRIPT

  • Slide 1
  • Minerals II: Physical Properties and Crystal Forms From: http://webmineral.com/data/Rhodochrosite.shtml
  • Slide 2
  • The Physical Properties of Minerals Color Streak Luster Hardness External Crystal Form Cleavage
  • Slide 3
  • The Physical Properties of Minerals (cont.) Fracture Specific Gravity Special Properties Other Properties Chemical Tests
  • Slide 4
  • Physical properties of minerals Based on the principles discussed during the last lecture and above, we now know that minerals are composed of atoms, arranged in a specific order, with a well defined chemical composition. We might expect then that the microscopic variations in bond environment discussed above, will also be manifested in macroscopic physical and chemical properties. This is indeed the case.
  • Slide 5
  • Important Physical Properties I Luster - This property describes the appearance of reflected light from the mineral's surface. Nonmetallic minerals are described using the following terms: vitreous, pearly, silky, resinous, and earthy.
  • Slide 6
  • Important Physical Properties II Color - Although an obvious feature, it is often unreliable to use to determine the type of mineral. Color arises due to electronic transitions, often of trace constituents, in the visible range of the EM spectrum. For example, quartz is found in a variety of colors. Color of a mineral may be quite diagnostic for the trace element and coordination number of its bonding environment.
  • Slide 7
  • Hope Diamond: 44.5 carats http://www.nmnh.si.edu/minsci/hope.htm
  • Slide 8
  • Important Physical Properties III Streak - The color of a mineral in its powdered form; obtained by rubbing the mineral against an unglazed porcelain plate. Streak is usually less variable than color. Useful for distinguishing between minerals with metallic luster.
  • Slide 9
  • Density and Specific Gravity Density - Defined as the mass divided by the volume and normally designated by the Greek letter, rho, mass/volume; SI units: kg/m 3 or kg m -3, but geologists often use g/cm 3 as the unit of choice. Specific Gravity - Ratio of the mass of a substance to the mass of an equal volume of water. Note that water = 1 g cm -3. S.G. is unitless. Examples - quartz (SiO 2 ) has a S.G. of 2.65 while galena (PbS) has a S.G. of 7.5 and gold (Au) has a S.G. of 19.3.
  • Slide 10
  • Color and Density Two broad categories are ferromagnesian and nonferromagnesian silicates, which simply means iron and magnesian bearing or not. The presence or absence of Fe and Mg strongly affects the external appearance (color) and density of the minerals. Ferromagnesian silicates - dark color, density range from 3.2 - 3.6 g/cc Olivine - high T, low silica rocks; comprises over 50% of upper mantle Pyroxenes - high T, low silica rocks Amphiboles - esp. hornblende; moderate T, higher silica rocks Mica - esp. biotite; moderate T, higher silica rocks Garnet - common metamorphic mineral Nonferromagnesian silicates - light color, density close to 2.7 g/cc Mica - exp. muscovite; moderate T, higher silica rocks Feldspars - plagioclase and orthoclase; most common mineral in crust; form over a wide range of temperatures and melt compositions Quartz - low T, high silica rocks; extremely stable at surface, hence it tends to be a major component in sedimentary rocks. Clay - esp. kaolinite; different types found in different soils
  • Slide 11
  • Crustal Minerals
  • Slide 12
  • From http://www.geo.wvu.edu/~lang/Geol284/Min8IgFels More Zoning
  • Slide 13
  • Zoning in Plagioclase Feldspar Ca-rich core Na-rich rim
  • Slide 14
  • Important Physical Properties IV Crystal form or habit - The external morphology of crystals generally reflect the internal arrangement of their constituent atoms. This can be obscured, however, if the mineral crystallized in an environment that did not allow it to grow without significant interaction with other crystals (even of the same mineral).
  • Slide 15
  • Chrysotile Asbestos Belongs to the Serpentine mineral family - hydrated ferromagnesian silicate.
  • Slide 16
  • Crystal Forms: Quartz
  • Slide 17
  • Feldspar
  • Slide 18
  • Intergrown cubic crystals of fluorite
  • Slide 19
  • Quartz Interfacial Angles Perfectly Proportioned Crystals Misshapen Crystals Stenos Law (1669): Crystal face internal angles remain constant!
  • Slide 20
  • Macroscopic Forms and Microscopic Blocks Cubes Rhombs Macroscopic Crystal Forms
  • Slide 21
  • Unit Cells and Crystal Structure Cubic unit cell: smallest repeatable unit
  • Slide 22
  • Important Physical Properties V Hardness - This is the resistance of the mineral to abrasion or scratching. This property doesn't vary greatly from sample to sample of the same mineral, and thus is highly diagnostic. It also is a direct reflection of the bonding type and internal atomic arrangement. A value is obtained by comparing the mineral to a standard scale devised by Moh, which is comprised of 10 minerals ranging in hardness from talc (softest) to diamond (hardest).
  • Slide 23
  • Mohs Hardness Scale
  • Slide 24
  • Polymorphism and polymorphs Substances having the same chemical composition but different crystal structures. e.g. diamond and graphite Both minerals are composed of pure carbon, but diamond is the high pressure polymorph of graphite. This gives rise to extremely different physical properties.
  • Slide 25
  • Polymorphism Graphite & CalciteNatural Octahedral Diamond 3 mm From: http://www.phy.mtu.edu/~jaszczak/diamond.html
  • Slide 26
  • Diamond vs. Graphite Crystal Structures From: http://www.molecules.org/elements.html#diamond Hardness: 10Hardness: 1-2
  • Slide 27
  • Fingernail Hardness (2.5) Scratches Gypsum (2)
  • Slide 28
  • Important Physical Properties VI Cleavage - Orientation and number of planes of weakness within a mineral. Directly reflects the orientation of weak bonds within the crystal structure. This feature is also highly diagnostic. Fracture - This describes how a mineral breaks if it is not along well defined planes. In minerals with low symmetry and highly interconnected atomic networks, irregular fracture is common.
  • Slide 29
  • Planer Cleavage in Mica
  • Slide 30
  • Weak Bonding Yields Planer Cleavage
  • Slide 31
  • Amphibole Cleavage ~120/60
  • Slide 32
  • Rhombohedral Cleavage in Calcite
  • Slide 33
  • Conchoidal Fracture in Glass
  • Slide 34
  • Special and Other Properties Striations - Commonly found on plagioclase feldspar. Straight, parallel lines on one or more of the cleavage planes caused by mineral twinning. Magnetism - Property of a substance such that it will spontaneous orient itself within a magnetic field. Magnetite (Fe 3 O 4 ) has this property and it can be used to distinguish it from other non- magnetite iron oxides, such as hematite (Fe 2 O 3 ). Double Refraction - Seen in calcite crystals. Light is split or refracted into two components giving rise to two distinct images.
  • Slide 35
  • Plagioclase striations
  • Slide 36
  • Calcite Double Refraction
  • Slide 37
  • X-ray diffraction: Laue photographic method
  • Slide 38
  • Bragg Relationship From: http://www.geology.wisc.edu/~g203/xray.htm
  • Slide 39
  • Laue X-ray photograph of Vesuvianite From: http://www.geology.fau.edu/course_info/fall02/gly4200/X-RAY.htm
  • Slide 40
  • Vesuvianite: Contact Metamorphic Mineral Formula: Ca 10 (Mg,Fe) 2 Al 4 Si 9 O 34 (OH) 4 System:Tetragonal Hardness: 612 http://www.mindat.org/min-4223.html

Recommended

View more >