midwest ims rug 09_2013 - guardium for ims.pdf

64
1 © 2013 IBM Corporation Dennis Eichelberger IT Specialist IMS Advanced Technical Skills [email protected] IMS and InfoSphere Guardium

Post on 19-Oct-2014

2.707 views

Category:

Technology


3 download

DESCRIPTION

 

TRANSCRIPT

Page 1: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

1 © 2013 IBM Corporation

Dennis EichelbergerIT Specialist IMS Advanced Technical [email protected]

IMS and InfoSphere Guardium

Page 2: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

2Copyrite IBM 2013

Topics

• What are the business needs driving data protection

• Intro to data protection terminology

• An encryption solution from IBM for IMS databases

• An auditing and access monitoring solution for IMS data

Page 3: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

Copyrite IBM 2013

The Primary Source of Breached Data are Database Servers

Source: http://www.verizonbusiness.com/resources/reports/rp_data-breach-investigations-report-2012_en_xg.pdf

Source of Records Breached (2012)

0 20 40 60 80 100

% of Records Breached

All other sources <1%

Desktop/Workstation 34%

Mail server 2%

Reg employee/end-user 1%

Database server 96%

Web/app server 80%

POS server 1%

Page 4: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

Copyrite IBM 2013

LensCrafters -- Mainframe Breach Luxottica Group S.p.A. owns LensCrafters chain and world's largest

supplier of high-end eyewear

Personally Identifiable Information (PII) for 59,419 employees stolen, with victims in all 50 states

"Generally, mainframes are not accessible to the Internet, so the hacker most likely had to compromise other systems internally before getting to the mainframe," said Chris Petersen, a former IT auditor with Price Waterhouse and Ernst & Young.

“As mainframes become a major component in service-oriented architectures, they are increasingly exposed to malware. Web services on the mainframe have had a significant impact on security.” -SearchCompliance.com

Sources: http://www.internetnews.com/security/article.php/3787431/Mainframe+Breach+at+LensCrafters+Parent+Hits+59K.htm http://privacy.wi.gov/databreaches/2008/nov08.jsp

Polo Ralph LaurenPradaVersace brands

Ray-BanDolce & GabbanaDonna Karan

Page 5: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

Copyrite IBM 2013

TJX Companies -- Security Breach

Parent company of T.J. Maxx, HomeGoods, Marshalls, etc. A security breach originally reported to have occurred in May of 2006

was not discovered until December of the same year A forensic investigation by IBM and General Dynamics

showed the breach may have occurred in July of 2005 How much did the breach cost TJX Companies?

• Initial estimate: $4.5B ($100 per stolen record)• Later estimate: Up to $300 per stolen record

Sources: http://www.computerworld.com/s/article/9014782/TJX_data_breach_At_45.6M_card_numbers_it_s_the_biggest_ever https://www.braintreepayments.com/blog/pci-compliance-and-the-cost-of-a-credit-card-breach

http://www.informationweek.com/news/199203277SearchCompliance.com

Page 6: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

Copyrite IBM 2013

Certegy -- an Insider Tale Certegy is a subsidiary of Fidelity National Information Services

that provides check authorization & check cashing services, partly for the gaming industry

Senior DBA sold 8.5 million customer records containing the following for $580K to data broker

Data theft came to light after retailer reported correlation between transactions and receipt of marketing offers by its customers

• Certegy engaged the U.S. Secret Service, which found data had come from separate company owned by the Certegy DBA

• “Why did it take Certegy more than five years to find out that confidential consumer information was being sucked out of its database?” (St. Petersburg Times)

NamesAddresses Birth dates

Bank account info Credit card info

Sources: http://www.sptimes.com/2007/11/15/news_pf/Northpinellas/Largo_man_stole_data_.shtmlhttp://www.prnewswire.com

Page 7: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

Copyrite IBM 2013

Settled class-action suit for $4 million, plus:• $975,000 in fines from Attorney General• Mandatory security audit every year• 2 years of credit monitoring services ($180 per customer)

Rogue DBA sentenced to nearly 5 years in prison

Certegy -- an Insider Tale

Sources: http://www.sptimes.com/2007/11/15/news_pf/Northpinellas/Largo_man_stole_data_.shtmlhttp://www.prnewswire.com

Page 8: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

Copyrite IBM 2013

Other Real-World Examples of Insider Threats

Unauthorized changes to financial data• DBA accidentally deleted critical financial table during production hours (was

doing a favor for application developer, bypassing change process)• Outsourcer erased logs showing he made changes during the day (because it

was more convenient than during the night)

Theft of sensitive data• Departing employees stealing design information & other intellectual property• DBAs and outsourcers selling customer information to competitors and crime

syndicates Internal fraud

• Mortgage processor -- insider changed credit scores to make loans look better• Mobile telecom -- insider created & sold pre-paid phone cards• Electric utility -- insider gave free service to friends and family as part of low-

income assistance program• Health provider -- insider sold medical identities for insurance fraud

Page 9: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

Copyrite IBM 2013

The Smarter (& More Secure) Mainframe

71% of the Global 500 run on mainframes• 100% of the world’s top 50 banks• 22 of the top 25 retailers

Unique IT value proposition• Efficiency, utilization & server consolidation• Proven reliability, availability & quality-of-service

• z/OS with IMS, SAP, WebSphere, InfoSphere Warehouse, Cognos 8 BI, …

• z/VM & Linux with Oracle, MySQL, Cognos, …• Virtualization

Robust Security Model

• Built-in encryption with hardware acceleration• z LPAR hosting is the only server with Common Criteria EAL5 certification• z/OS, RACF & Tivoli zSecure Audit protect access to system resources

(CICS, DB2, IMS…)

Page 10: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

10Copyrite IBM 2013

Data Protection Drivers

Industry Compliance

Regulatory Compliance

Information Governance

Page 11: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

11Copyrite IBM 2013

Industry Compliance Driving Data Protection

PCI “Payment Card Industry” compliance…• World-wide accepted standards that protect against credit

card fraud- Requires adaptation of business controls to protect against

compromising sensitive data• Examples of standards- Protect stored cardholder data- Restrict access to cardholder data by business on a

“need-to-know” basis- Restrict physical access to cardholder data

Page 12: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

12Copyrite IBM 2013

PCI “Payment Card Industry” compliance (cont’d)• PCI standards require sensitive personal information of

credit card holders to be encrypted, including:- Account number- Expiration date- Name and address- Social Security number

• Compressed data is not acceptable as data encryption

Industry Compliance Driving Data Protection

Page 13: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

13Copyrite IBM 2013

Regulatory Compliance Driving Data Protection Governmental Regulations

• Basel III (2010-2011)− Measurement of total banking risk based on capital adequacy, stress tests and

market liquidity risks• Sarbanes-Oxley Act (2002)

• Strengthen financial reporting and internal controls by fixing responsibility within a companies’ management

• HIPAA (1996)− Provide national standards for electronic health care records and secure those

medical records, prove how they have been used and who has used them• Patriot Act (2001)

- Prevent usage of the financial system to support illegal activities, particularly terrorism

• Various anti-money laundering (AML)- Prevent the laundering of money derived from illegal activities

• Gramm-Leach-Bliley Act (1999)- Protection of personally identifiable financial information (PII)

Page 14: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

14Copyrite IBM 2013

Data Protection - Not Just an Activity for One Group

Initial concerns and questions

- What is the right database encryption solution?- Would the application need to be modified?- Would application performance be impacted?- Which group will own key management?- What is the security team’s role?- What is the audit team’s role?- What is IMS systems programmer role?- What is the DBA’s role?

Page 15: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

15Copyrite IBM 2013

Focal Areas for a Strong Security Strategy Encrypting the data

• Reduce the liability even if data is accessed, using encryption reduces the usability of that data

Monitoring access to the data• Have visibility to data access -- identify who accessed data,

when it was accessed or updated

Page 16: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

16Copyrite IBM 2013

What is Encryption? Data that is not encrypted is referred to as “clear text” Clear text is encrypted by processing with a “key” and an

encryption algorithm• Several standard algorithms exist including DES, TDES and

AES Keys are bit streams that vary in length

• For example AES supports 128, 192 and 256 bit key lengths

Page 17: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

17Copyrite IBM 2013

What is Encryption?

Encryption is a process where clear-text is converted using a known ALGORITHM

• AES• DES• TDES

A key is used in the encryption process to produce CYPHERTEXT and can be either a:

• Clear key• Secure key

Page 18: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

18Copyrite IBM 2013

Encryption is a technique used to help protect data from unauthorized access

Data that is not encrypted is referred to as “clear text” Clear text is encrypted by processing with a “key” and an encryption algorithm

– Several standard algorithms exist, include DES, TDES and AES (next slide) Keys are bit streams that vary in length

– For example AES supports 128, 192 and 256 bit key lengths

Encryption Process

Encryption algorithm(e.g. AES)

Clear TextCiphertext

(Encrypted Data)

Decryption Process

Encryption algorithmCiphertext

Clear TextKey

Key

Page 19: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

19Copyrite IBM 2013

Encryption Algorithms – Which Ones Are Best?

DES (Data Encryption Standard)− 56-bit, viewed as weak and generally unacceptable today by the

NIST TDES (Triple Data Encryption Standard)

− 128-bit, universally accepted algorithm AES (Advanced Encryption Standard)

− 128- or 256- bit, newest commercially used algorithm What is acceptable?

– DES is viewed as unacceptable– TDES is viewed as acceptable and compliant with NIST (National

Institute of Standards and Technology)– AES 128 or 256 is also viewed as acceptable and strategic

Page 20: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

20Copyrite IBM 2013

Encryption Algorithms – Which Ones Are Best?

For more information:– TDES NIST Special Publication 800-67 V1 entitled

"Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher" and can be found at

http://csrc.nist.gov/publications/nistpubs/800-67-Rev1/SP-800-67-Rev1.pdf

– TDES NIST FIPS Publication 197 entitled "Announcing the Advanced Encryption Standard (AES)" and can be found at

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

Page 21: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

21Copyrite IBM 2013

Integrated Cryptographic Service Facility (ICSF) Provides: z/OS integrated software support for data encryption Operating System S/W API Interface to Cryptographic

Hardware − CEX2/3C hardware feature

Enhanced Key Management for key creation and distribution− Public and private keys− Secure and clear keys− Master keys

Created keys are stored/accessed in the Cryptographic Key Data Set (CKDS) with unique key label− CKDS itself is secured via Security Access Facility

See Reference Section of this presentation for more details

Page 22: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

22Copyrite IBM 2013

What are Encryption Keys?

Master Keys– Used to generate, encrypt, and store user keys into the

CKDS (Cryptographic Key Data Set)– Loaded into the CEX2/3C hardware, and stored

NO WHERE else

User Keys (Data Encrypting Keys)– Generated via ICSF services – Stored inside the CKDS– Public or Private– Clear or Secure– Used by the IBM InfoSphere Guardium Encryption Tool

along with encryption algorithm to convert user data to Ciphertext

Page 23: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

23Copyrite IBM 2013

Cryptography on z/OS

Clear Key– Key is exposed in the storage of

processor– Can be viewed in dump of

storage– If correctly interpreted can

expose data– Sometimes acceptable for

short-lived keys with other constraints

– Used in software-based cryptography

– Used by CPACF

Secure Key– Key is only ever exposed in

bounds of a secure processor– Can never be seen in storage– Dump will not reveal key– Key is held encrypted under

Master key– Crypto Express 2/3 (Configured

as CEX2/3C) provides this function for System z Fee based option

– APIs available via Integrated Cryptographic Support Facility (ICSF)

– Can be used from Java on z/OS platform

Page 24: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

24Copyrite IBM 2013

How can you as an IMS Support person achieve this ?

Encryption in a Nutshell

Page 25: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

25Copyrite IBM 2013

InfoSphere Guardium Data Encryption for DB2 and IMS Databases

InfoSphere Guardium Data Encryption protects Sensitive and Private information minimizing the liability risks associated with Information Governance.

High Performance and Low overhead by using the available cryptographic hardware

Uses the major encryption algorithms

Conforms to the existing z/OS security model

Complies with Security and Privacy regulations

Implementation at the IMS segment level

No changes to application programs

Page 26: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

26Copyrite IBM 2013

To create an exit that encrypts and decrypts IMS data, the Tool can be implemented in one of two ways:

1) Through JCL. The product provides sample jobs where the JCL can be modified to meet your needs for encrypted IMS databases. These jobs can be found in the distribution libraries:

DECIMSSK – IMS Secure Key DECIMSCK – Clear Key DES DECIMSCB – Clear and Secure Key AES DECIMSDV – Driver exit for compressed and encrypted IMS segmentDECIMSJB – IMS Clear Key

2) Using the ISPF interface. ISPF panels are presented to you to create customized jobs for encrypting non-compressed and compressed IMS database segments.

InfoSphere Guardium Data Encryption for DB2 and IMS Databases

Page 27: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

27Copyrite IBM 2013

Implementation steps

− Create an encryption key

− Create an encryption exit

− Unload database to be encrypted

− Generate and install DBD with encryption exit

− Reload database using the new DBD

InfoSphere Guardium Data Encryption for DB2 and IMS Databases

Page 28: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

28Copyrite IBM 2013

Selections:1 = use to create an encryption exit that will be used standalone; that is without co-existence with a compression routine2 = use to create both an encryption exit and a driver module to call an existing compression routine then the encryption exit

InfoSphere Guardium Data Encryption – ISPF Main Menu

Page 29: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

29Copyrite IBM 2013

CSF lib = Installation Encryption datasetZAP lib = Dataset containing AMASPZAP programSMP lib = Guardium load datasetEXIT lib = Load dataset for Encryption exitExit Name = Load module name for Encryption exit

IMS Clear key selected

Usual Jobcard

Encryption routine is called DSECRYPT

The label (name) of the Encryption key that has been previously created by a security administrator

InfoSphere Guardium Data Encryption – ISPF Definition for Creating Encryption Exit

Page 30: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

30Copyrite IBM 2013

ISPF created linkjob for encryption exit creation (step 1)

Encryption routine is called DSECRYPT

InfoSphere Guardium Data Encryption – ISPF Definition for Creating Encryption Exit

Page 31: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

31Copyrite IBM 2013

Encryption routine is called DSECRYPT

Encryption key label used by DSECRYPT exit

InfoSphere Guardium Data Encryption – ISPF Creating Zap Job for Encryption Exit Key

Page 32: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

32Copyrite IBM 2013

Encryption routine is called DSECRYPT

The COMPRTN is added to the DBD source to invoke encryption Note, that only DATA is being encrypted here

InfoSphere Guardium Data Encryption – DBD Definition with Encryption Exit

Page 33: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

33Copyrite IBM 2013

InfoSphere Guardium Data Encryption – Browse of IMS HDAM Database with Clear Data

Clear data

Page 34: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

34Copyrite IBM 2013

Implementation steps

− Unload the database

− Generate and install DBD with the encryption exit

− Reload the database using the new DBD

InfoSphere Guardium Data Encryption for DB2 and IMS Databases

Page 35: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

35Copyrite IBM 2013

Encrypted data

InfoSphere Guardium Data Encryption – Browse of IMS HDAM Database with Encrypted Data

Page 36: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

36Copyrite IBM 2013

Protects sensitive and private data

Reduces liability risks

Uses the available cryptographic hardware

Conforms to the existing z/OS security model

Complies with Security and Privacy regulations

Implementation at the IMS segment level

Implemented using standard IMS procedures and exits

InfoSphere Guardium Data Encryption

Page 37: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

Copyrite IBM 201337

InfoSphere Guardium S-TAP for IMS DID YOU KNOW…

• 80% of the largest retail banks in the US, Germany, Japan, and Australia use IMS for their core banking

• 3M MIPS running IMS• 15M GB of production data managed by IMS• 50B transaction per day run through IMS• 200M Users a day served by IMS• >100M IMS transactions a day by one customer on a single system

Introducing new S-TAP for collecting IMS DB events• Similar packaging to the DB2 S-TAP

• Order the S-TAP code as z software in ESW• Order the Guardium for z Appliance via PPA

Regulatory compliance on the mainframe is growing• Expanded focus to all mainframe stores that hold sensitive data

Page 38: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

Copyrite IBM 2013

Customer Challenges: Auditing events on z/OS Regulatory pressures to demonstrate adequate controls -- especially

around privileged users (DBAs,SYSADMINs, etc.)

Most z/OS environments have minimal auditing -- requires significant manual effort by DBAs and System Staff

RACF sometimes perceived as sufficient security control, but RACF does not:

− Prevent unauthorized update if the user has authority to the data− Prevent access to sensitive data that is not within scope of their job− Capture a granular audit trail of what the

user did while accessing the DBMS

Does not support Separation of Duties (SoD) and represents security risk and exposure

− The processes are managed by the staff that is being monitored

Page 39: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

Copyrite IBM 2013

Provides a single unified view and secure audit trail of all database activities – across both mainframe and distributed environments.

• Enterprise-wide compliance reporting, analytics & forensics May be managed by non-DBAs, thereby supporting SoD. Reduces compliance cost and effort via automated and centralized

controls (vs. manual, ad hoc processes)• With compliance workflow automation (sign-offs, escalations, …).

Based on mainframe technology developed by IBM.

Minimal impact on performance.

InfoSphere Guardium S-TAP for IMS

Page 40: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

Copyrite IBM 2013

Non-Invasive, Real-Time Database Security & Monitoring

• Continuously monitors all database activities (including local access by superusers)

• Heterogeneous, cross-DBMS solution

• Does not rely on native DBMS logs

• Minimal performance impact

• No DBMS or application changes

• Supports Separation of Duties• Activity logs can’t be erased by

attackers or DBAs

• Automated compliance reporting, sign-offs & escalations (SOX, PCI, NIST, etc.)

• Granular, real-time policies & auditing• Who, what, when, where, how

DB2 & DB2/z

IMS and VSAM

Page 41: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

Copyrite IBM 2013

Scalable Multi-Tier Architecture

Integration with LDAP, IAM, SIEM,

CMDB, change management, …

S-TAP for DB2S-TAP for IMS

S-TAP for VSAM

Page 42: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

Copyrite IBM 2013

42

InfoSphere Guardium S-TAPs for z/OS V9.0

Support for VSAM− S-TAP for VSAM− Capture VSAM file activity to enhance your z/OS monitoring− VSAM security and compliance reporting

Support for IMS− S-TAP for IMS − Monitor policy administration within the Guardium Appliance− Real-Time monitoring of IMS events− Customizable IMS security and compliance reports

Enhanced support for DB2/z − S-TAP for DB2 − Monitor policy administration within the Guardium Appliance − Event data is streamed in real-time− Customizable DB2 security and compliance reports

Support for DB2/z Vulnerability Assessment

Page 43: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

Copyrite IBM 2013

43

InfoSphere Guardium S-TAPs for IMS V9.0 -- Architecture

Page 44: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

Copyrite IBM 201344

InfoSphere Guardium S-TAPs for IMS – Components… Administration Interface - graphical User Interface enabling the

maintenance of user profiles and Appliance definitions; this interface runs on Windows

Agent Task - coordinates the collection of data to be audited; maintains communications with the Server and the various collectors and activity monitors of S-TAP; may be configured for multiple IMS systems using shared Recons or multiple IMS systems with unique Recons

Server Task - provides communications between the S-TAP components on an LPAR and the Administration interface

Common Storage Management Utility - manages and maintains the E/CSA memory containing the active collection profiles and IMS system definitions

Repository dataset - a VSAM dataset to store policy configurations and IMS definitions

Page 45: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

Copyrite IBM 201345

InfoSphere Guardium S-TAPs for IMS – Components

Guardium Appliance - creates, deletes and modifies event collection policies; responsible for the following:

− A group of rules that define what IMS events will be monitored and reported about

− Activate and de activate event collection policies• The policies are pushed to the IMS S-TAP where new

and modified policies are (re)installed • Any unchanged policies remain in place

− Report on IMS events being monitored− Customize displayed reports for specific user criteria

• Information displayed ay be rearranged, order or sorted by differing criteria such as date and time

Page 46: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

Copyrite IBM 2013

InfoSphere Guardium S-TAP for IMS Collection Activity

Databases • READ accesses to databases

• All Reads of IMS DBs and segments using IMS DLI GET calls (GN, GU, GNP, etc).

• Changes, INSERT, UPDATE and DELETE calls (REPL, ISRT, DLET)

• Same for IMS Batch jobs and IMS Online regions

• Segments• Ability to audit and report READ,

INSERT, UPDATE, and DELETE calls on specific database segments

• READ and DELETE calls retain the concatenated key of the audited segment

• UPDATE and INSERT calls retain the concatenated key of the audited segment as well as the segment data, as found in the DLI call I/O area

You can select which calls to audit per target• For example: all databases, all

segments, one DB and one segment of the DB,

• Each segment can have different calls audited

• When a call is to be collected, the relevant information is gathered

• E.g. call type, userid, PSB name, DBName, Segment Name, etc.

• We do not gather the segment search argument

Page 47: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

Copyrite IBM 201347

What IMS “related” data is collected?

Access to IMS related information outside the control of IMS services Database datasets * Image copy datasets * IMS log datasets *RECON datasets *RENAMES: records and reports the original DSN and the new DSN User access to the IMS system via SIGNON as recorded in the IMS log PSB and DBD ‘change of state’ activity as recorded in the IMS log

• Displayed as an EVENT with pertinent (PSB name, DBD name, DBD name, USERID, etc.

• System STOP and START activity as recorded in the IMS log

IBM utility access:• from IMS Batch (DLI/DBB/BMP) jobs and IMS Online regions

* may be disabled in Guardium V9 if desired

Page 48: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

Copyrite IBM 201348

IMS S-Tap System Monitor view

Page 49: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

Copyrite IBM 2013

IMS Access ReportHere is shown an IMS BMP job that ran for 2 minutes. A jobname of TSTCMDDC accessed database AUECCMDD. You can also see the UserID and the PSB being used by the job. Under IMS Context column the calls in sequence made to the database are seen.

Page 50: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

Copyrite IBM 2013

IMS Access Detail Reports

Here is shown an IMS BMP job that ran for 2 minutes. A jobname of TSTCMDDC accessed database AUECCMDD. You can also see the UserID and the PSB being used by the job. Under IMS Context column the calls in sequence made to the database are seen.

Page 51: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

Copyrite IBM 2013

IMS Data in Reports Using Contextual AttributesHere is shown an IMS BMP job that ran for 2 minutes. A jobname of TSTCMDDC accessed database AUECCMDD. You can also see the UserID and the PSB being used by the job. Under IMS Context column the calls in sequence made to the database are seen.

Page 52: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

Copyrite IBM 2013

IMS Detail reportUser PDTEMK signing into IMS as a user (line 1) using terminal S22T0161 (column Terminal) .Then doing some Starts/Stops of databases and PSBs (lines 2 -7) Notice that there is no USERID associated with the DB/PSB stop starts… IMS does not keep track of who did these. I can’t report what is not there. Lines 8 – 19 show me issuing transactions IVPNO and IVPFD (column titled Transaction) to add, display and delete some data in databases IVPDB1 and IVPDB3. Column PSB Name indicates which PSBS were used.Notice lines 16 and 17 which are the OPENS of DEDB IVPDB3, shows both AREAS being opened in the column PART/AREA. Lines 20 – 32 show access from outside of IMS, in this case via a DB2 stored procedure using the ODBA connection.

Page 53: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

Copyrite IBM 2013

IMS SMF Data reportDatabase (AUEPHD4 and AUEPHD1) datasets being opened for update by user CSIVANA (lines 1 – 4).An Image copy data set related to database AUEPHD3 being renamed from : AUE.ICA1.IC.PHDT31.B00001 to AUE.ICA1X.IC.PHDT31.B00001 (lines 9 and 10) .An IMS SLDS data set being opened for read (line 15 and 16).Various RACF access violations (line 25 to the end)

Page 54: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

Copyrite IBM 2013

Reducing risk by monitoring sensitive data on the mainframe.

Flexible options for user management.

IMS auditing is available.

Integrates with the rest of your database infrastructure.

Integrated work flow, centralized reporting and administration.

IMS Applications are not affected.

InfoSphere Guardium S-TAP for IMS Summary

Page 55: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

Copyrite IBM 2013

Protect the business data from unauthorized use.

Guardium Encryption of IMS data at a segment level using built in cryptographic hardware capabilities. Encryption is implemented using standard IMS exits without need for application program modifications.

Monitor the sensitive business data for unauthorized access and update.

Guardium S-TAP for IMS provides a versatile capability of tracking and reporting IMS event accesses to sensitive business data.

InfoSphere Guardium for IMS

Page 56: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

Copyrite IBM 2013

Monitor Reference Section

Page 57: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

Copyrite IBM 2013

Reference Documentation

InfoSphere Guardium Data Encryption for DB2 and IMS V1.2 User's Guide SC19-3219 http://publib.boulder.ibm.com/epubs/pdf/decuga20.pdf

• IBM InfoSphere Guardium S-TAP for IMS on z/OS V 8.2 User's Guide SC19-3344 http://publib.boulder.ibm.com/epubs/pdf/auiugh20.pdf

• IBM InfoSphere Guardium S-TAP for VSAM on z/OS V 8.2 User's Guide SC19-3346 http://publib.boulder.ibm.com/epubs/pdf/auvugh20.pdf

Page 58: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

Copyrite IBM 2013

Reference – SMF Records

Record 00 IPL RecordRecord 14 Dataset Input ActivityRecord 15 Dataset Output/Update ActivityRecord 17 Scratch Dataset StatusRecord 18 Rename Non-VSAM datasetRecord 30 Common Address Space Work AccountingRecord 42 SMS StatisticsRecord 60 VSAM Dataset UpdateRecord 61 SMF Collector EventRecord 62 VSAM Component OpenedRecord 64 VSAM Component StatusRecord 65 ICF Delete ActivityRecord 66 ICF Alter ActivityRecord 80 RACF ProcessRecord 89 Usage Data

Page 59: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

Copyrite IBM 2013

Reference – IMS Log Records

Log 06 IMS Accounting Information

Log 16 RACF/SIGN completed

Log 20 Database Open

Log 21 Database Close

Log 4C DBD/PSB Activity

Log 59xx DEDB Open

Log 5922 DEDB Close

Log 5923 DEDB Status

Page 60: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

Copyrite IBM 2013

Encryption Reference Section

Page 61: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

61Copyrite IBM 2013

Cryptography on z/OS

Clear Key– Key is exposed in the storage of

processor– Can be viewed in dump of

storage– If correctly interpreted can

expose data– Sometimes acceptable for

short-lived keys with other constraints

– Used in software-based cryptography

– Used by CPACF

Secure Key– Key is only ever exposed in

bounds of a secure processor– Can never be seen in storage– Dump will not reveal key– Key is held encrypted under

Master key– Crypto Express 2/3/4

(Configured as CEX2/3/4C) provides this function for System z Fee based option

– APIs available via Integrated Cryptographic Support Facility (ICSF)

– Can be used from Java on z/OS platform

Page 62: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

62Copyrite IBM 2013

CKDS – Cryptographic Key Dataset Key element of the IBM encryption solution on z/OS VSAM Key Sequenced Dataset Contents are ICSF generated data encrypted keys Accessed by ICSF API and Services

− Key Label (known by application requestor) used to find key record in the CKDS

Copy of CKDS cached in operating system storage at first ICSF invocation for performance

− Refreshable

CKDS administration performed using ICSF services and ISPF interfaces.

Use of specific individual keys can be controlled via RACF profiles and permissions

CEX2/3C hardware feature required for use− Unless with a combination of HCR7751 or greater and clear key only,

then CEX2/3C is optional

Page 63: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

63Copyrite IBM 2013

IMS Data Encryption for IMS and DB2 Databases The following restrictions apply:

An IMS segment can be associated with only one Segment Edit/Compression exit. If your IMS segment is already associated with a non-IBM Segment Edit/Compression exit and you want to implement Data Encryption for IMS and DB2 Databases, you must code an alternative solution for your existing exit.

HIDAM index databases cannot be encrypted (the IMS DBD COMPRTN) parameter does not allow index databases to be specified on the Segment Edit/Compression exit).

Administrators of data governance should consider the following points: When you install and initialize ICSF, consider setting the CHECKAUTH installation option to

NO. Setting CHECKAUTH to YES adds considerable CPU path length. Setting KEYAUTH to YES also adds CPU path length.

Depending on your security requirements, you can define different encryption key labels for as many segments as you need to. (Encryption key labels are set up by your security analyst.) A separate exit must be built for each encryption key label that you define. Note that you need to

balance your security requirements against the increased maintenance of multiple exits.

The first time that you use Segment Edit/Compression exits at your installation, your system programmer needs to provide APF authorization for the Segment Edit/Compression EXITLIB. If you are already using Segment Edit/Compression exits, you need to ensure that the Segment

Edit/Compression exits reside in an APF-authorized EXITLIB.

Page 64: Midwest IMS RUG 09_2013 - Guardium for IMS.pdf

64Copyrite IBM 2013

Details About Clear Key Versus Secure Key Performance

Clear key elapsed time performance is MUCH superior than secure key.

Secure key (performed inside the CEXnC) is generally viewed as more secure from a cryptographic perspective.

Clear key uses special instructions that run on the z9 – z12 general purpose processors, so performance is measured in milliseconds.

Secure key encryption is dispatched to run on the cryptographic coprocessors on the CEXnC crypto feature. This tends to be measured in microseconds as this is essentially an I/O operation.

Secure key elapsed time measurements (depending on workload and type) can be from 10x to 40x more than clear key.

Secure key is probably NOT appropriate for most (to date all) OLTP workloads, but each customer needs to make this encryption decision based on their security requirements and performance expectations