michael owens

61
Michael Owens Tr ai l of b re ad cr um bs Discovering the molecular mechanisms of nanotoxicity in fish Christopher Anthony Dieni Department of Chemistry and Biochemistry Mount Allison University UNB Biology Seminar Series Friday, March 28 th , 2014

Upload: wattan

Post on 24-Feb-2016

62 views

Category:

Documents


0 download

DESCRIPTION

Tr ai l of b re ad cr um bs Discovering the molecular mechanisms of nanotoxicity in fish. Christopher Anthony Dieni Department of Chemistry and Biochemistry Mount Allison University. UNB Biology Seminar Series Friday, March 28 th , 2014. Michael Owens. Nanotechnology - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Michael Owens

Michael Owens

Trail of breadcrumbs

Discovering the molecular mechanisms of nanotoxicity in fish

Christopher Anthony DieniDepartment of Chemistry and Biochemistry

Mount Allison University

UNB Biology Seminar SeriesFriday, March 28th, 2014

Page 2: Michael Owens

Wikimedia Commons

Nanotechnology• Origins traced back to the mid-

20th century• Physicist Richard Feynman

delivers his talk “There’s Plenty of Room at the Bottom” – American Physical Society meeting at Caltech, December 29, 1959

• In more than a half-century since then, we have become dependent on nanotechnology for:• Biosensors• Antimicrobial agents• Drug delivery• Molecular scale electronics• Nanorobotics• … and much more!

Page 3: Michael Owens

Today’s talk

Design of nanomaterials and constituent materials

Synthesis/engineering of nanomaterials

Functionalization/conjugation of nanomaterials for specific purposes (e.g. drug delivery)

Page 4: Michael Owens

Today’s talk

Design of nanomaterials and constituent materials

Synthesis/engineering of nanomaterials

Functionalization/conjugation of nanomaterials for specific purposes (e.g. drug delivery)

Release of nanomaterials in the environment and interaction with indigenous organisms

Page 5: Michael Owens

Nanoparticle toxicity

Nel, A. et al. (2006) Toxic potential of materials at the nanolevel. Science 311: 622-627

Page 6: Michael Owens

Nanoparticle toxicity

Nel, A. et al. (2006) Toxic potential of materials at the nanolevel. Science 311: 622-627

Page 7: Michael Owens

Nanoparticle-protein interactions

University of Massachusetts

Page 8: Michael Owens

Nanoparticle-protein interactions

University of Massachusetts

Page 9: Michael Owens

Nanoparticle-protein interactions

University of Massachusetts

Page 10: Michael Owens

Nanoparticle toxicity

Nel, A. et al. (2006) Toxic potential of materials at the nanolevel. Science 311: 622-627

Page 11: Michael Owens

Model nanoparticle: nanoscale zinc oxide (nZnO)

WebElements.com Wikimedia commons

Page 12: Michael Owens

25 nm nZnO

Dieni et al. Comp Biochem Physiol Toxicol Pharmacol

in press

Scale bar = 1 µm

Page 13: Michael Owens

25 nm nZnO

Dieni et al. Comp Biochem Physiol Toxicol Pharmacol

in press

Scale bar = 1 µm

Wikimedia commons

Page 14: Michael Owens

Uses of nZnO

UK Daily Mail

Page 15: Michael Owens

In vivo exposure In vitro “exposure”

Live physiological

/systemic (e.g.

cardiorespiratory physiology)

Postmortem biochemical

assays(e.g. antioxidant

enzymes, damage markers)

Complex media

(e.g. pooled rat blood plasma)

Simplified conditions

(e.g. BSA solution)

Nanotoxin?

Page 16: Michael Owens

In vivo exposure In vitro “exposure”

Live physiological

/systemic (e.g.

cardiorespiratory physiology)

Postmortem biochemical

assays(e.g. antioxidant

enzymes, damage markers)

Complex media

(e.g. pooled rat blood plasma)

Simplified conditions

(e.g. BSA solution)

Nanotoxin?

Page 17: Michael Owens

In vivo exposure In vitro “exposure”

Live physiological

/systemic (e.g.

cardiorespiratory physiology)

Postmortem biochemical

assays(e.g. antioxidant

enzymes, damage markers)

Complex media

(e.g. pooled rat blood plasma)

Simplified conditions

(e.g. BSA solution)

Nanotoxin?

Page 18: Michael Owens

The white sucker, Catostomus commersonii

• Benthic (bottom-feeding)

• Likely to come into contact with well-dispersed or sedimentary nanoparticles

• Easily accessible (Silver Lake)

1 mg/L nZnO30 hours

Page 19: Michael Owens

Dr. Tyson J. MacCormackKathryn M. A. Butler, B.Sc.

Biochem (Hons) 2013

Live physiological/systemic level

• Electrocardiography• Respirometry (resting MO2)

Page 20: Michael Owens

Live physiological/systemic level

• Electrocardiography• Respirometry (resting MO2)

• Heart rate decreases by 25% (temporarily)

• No change in resting MO2

Page 21: Michael Owens

Live physiological/systemic level

Two schools of thought:

• Physiological changes overt enough to affect a whole, live organism are “most meaningful”

• Is a toxic or pathologic response “grave enough?”

• Is a therapeutic “good enough?”

Page 22: Michael Owens

Live physiological/systemic level

Two schools of thought:

• Physiological changes overt enough to affect a whole, live organism are “most meaningful”

• Is a toxic or pathologic response “grave enough?”

• Is a therapeutic “good enough?”

• Changes at the biochemical level may

not reveal themselves at the systemic level… yet

• Incubation period of an infectious disease before

virulence and immune response

• Initial mutations leading to cancer

• Etc…

Page 23: Michael Owens

In vivo exposure In vitro “exposure”

Live physiological

/systemic (e.g.

cardiorespiratory physiology)

Postmortem biochemical

assays(e.g. antioxidant

enzymes, damage markers)

Complex media

(e.g. pooled rat blood plasma)

Simplified conditions

(e.g. BSA solution)

Nanotoxin?

Page 24: Michael Owens

In vivo exposure In vitro “exposure”

Live physiological

/systemic (e.g.

cardiorespiratory physiology)

Postmortem biochemical

assays(e.g. antioxidant

enzymes, damage markers)

Complex media

(e.g. pooled rat blood plasma)

Simplified conditions

(e.g. BSA solution)

Nanotoxin?

Page 25: Michael Owens

Nanoparticle toxicity

Nel, A. et al. (2006) Toxic potential of materials at the nanolevel. Science 311: 622-627

Reactive oxygen species (ROS)

Page 26: Michael Owens

Superoxide radical anion

Hydroxyl radical

Neal I. Callaghan, Honours Biochemistry

student

OR…

OR… others…

Reduced glutathione (GSH)

Oxidized glutathione

(GSSG)

Page 27: Michael Owens

Superoxide radical anion

Hydroxyl radical

Neal I. Callaghan, Honours Biochemistry

student

OR…

OR… others…

Reduced glutathione (GSH)

Oxidized glutathione

(GSSG)

NADPH NADP+

Glutathione reductase (GR)

Page 28: Michael Owens

Superoxide radical anion

Hydroxyl radical

Neal I. Callaghan, Honours Biochemistry

student

OR…

OR… others…

Reduced glutathione (GSH)

Oxidized glutathione

(GSSG)

NADPH NADP+

Glutathione reductase (GR)

G6P6PGL Glucose-6-phosphate dehydrogenase (G6PDH)

Page 29: Michael Owens

Neal I. Callaghan, Honours Biochemistry

student

Wikimedia commons

Armstrong JS et al (2004) Bioessays 26: 894-900Wikimedia commons

Page 30: Michael Owens

Superoxide radical anion

Hydroxyl radical

Neal I. Callaghan, Honours Biochemistry

student

OR…

OR… others…

Reduced glutathione (GSH)

Oxidized glutathione

(GSSG)

NADPH NADP+

Glutathione reductase (GR)

G6P6PGL Glucose-6-phosphate dehydrogenase (G6PDH)

Page 31: Michael Owens

Superoxide radical anion

Hydroxyl radical

Neal I. Callaghan, Honours Biochemistry

student

OR…

OR… others…

Reduced glutathione (GSH)

Oxidized glutathione

(GSSG)

NADPH NADP+

Glutathione reductase (GR)

G6P6PGL Glucose-6-phosphate dehydrogenase (G6PDH)

Dieni et al. Comp Biochem Physiol Toxicol Pharmacol in press

a

Control nZnO

G6PDH activity decreased with nZnO

exposure (~29%)

Page 32: Michael Owens

Superoxide radical anion

Hydroxyl radical

Neal I. Callaghan, Honours Biochemistry

student

OR…

OR… others…

Reduced glutathione (GSH)

Oxidized glutathione

(GSSG)

NADPH NADP+

Glutathione reductase (GR)

G6P6PGL Glucose-6-phosphate dehydrogenase (G6PDH)

Page 33: Michael Owens

Superoxide radical anion

Hydroxyl radical

Neal I. Callaghan, Honours Biochemistry

student

OR…

OR… others…

Reduced glutathione (GSH)

Oxidized glutathione

(GSSG)

NADPH NADP+

Glutathione reductase (GR)

G6P6PGL Glucose-6-phosphate dehydrogenase (G6PDH)

GR remained unchanged

Dieni et al. Comp Biochem Physiol Toxicol Pharmacol in press

Control nZnO

Page 34: Michael Owens

Superoxide radical anion

Hydroxyl radical

Neal I. Callaghan, Honours Biochemistry

student

OR…

OR… others…

Reduced glutathione (GSH)

Oxidized glutathione

(GSSG)

NADPH NADP+

Glutathione reductase (GR)

G6P6PGL Glucose-6-phosphate dehydrogenase (G6PDH)

Page 35: Michael Owens

Superoxide radical anion

Hydroxyl radical

Neal I. Callaghan, Honours Biochemistry

student

OR…

OR… others…

Reduced glutathione (GSH)

Oxidized glutathione

(GSSG)

NADPH NADP+

Glutathione reductase (GR)

G6P6PGL Glucose-6-phosphate dehydrogenase (G6PDH)

Dieni et al. Comp Biochem Physiol Toxicol Pharmacol in press

Control nZnO

a

Total glutathione levels increased with

nZnO exposure (~56%)

Page 36: Michael Owens

Neal I. Callaghan, Honours Biochemistry

student

Wikimedia commons

Armstrong JS et al (2004) Bioessays 26: 894-900Wikimedia commons

Page 37: Michael Owens

Neal I. Callaghan, Honours Biochemistry

student

Wikimedia commons

Armstrong JS et al (2004) Bioessays 26: 894-900Wikimedia commons

Dieni et al. Comp Biochem Physiol Toxicol Pharmacol in press

Control nZnO

b

c Aconitase activity decreased with nZnO

exposure (~65%)

Reactivated by supplementation with

Fe(NH4)2SO4 (source of Fe2+)

Page 38: Michael Owens

Neal I. Callaghan, Honours Biochemistry

student

Wikimedia commons

Armstrong JS et al (2004) Bioessays 26: 894-900Wikimedia commons

Page 39: Michael Owens

Neal I. Callaghan, Honours Biochemistry

student

Wikimedia commons

Armstrong JS et al (2004) Bioessays 26: 894-900Wikimedia commonsDieni et al. Comp Biochem Physiol Toxicol Pharmacol in press

Control nZnO

Malondialdehyde (MDA) levels remained unchanged

RND systems

Page 40: Michael Owens

G6PDH ~29% decreaseGR -

Glutathione ~56% increaseAconitase ~65% decrease

(reactivated by Fe2+)MDA -

Explanation please…?

Hepatic responses to 1 mg/L nZnO exposure

Page 41: Michael Owens

Superoxide radical anion

Hydroxyl radical

Neal I. Callaghan, Honours Biochemistry

student

OR…

OR… others…

Reduced glutathione (GSH)

Oxidized glutathione

(GSSG)

NADPH NADP+

Glutathione reductase (GR)

G6P6PGL Glucose-6-phosphate dehydrogenase (G6PDH)

Page 42: Michael Owens

Superoxide radical anion

Hydroxyl radical

Neal I. Callaghan, Honours Biochemistry

student

OR…

OR… others…

Reduced glutathione (GSH)

Oxidized glutathione

(GSSG)

NADPH NADP+

Glutathione reductase (GR)

G6P6PGL Glucose-6-phosphate dehydrogenase (G6PDH)

Page 43: Michael Owens

Superoxide radical anion

Hydroxyl radical

Neal I. Callaghan, Honours Biochemistry

student

OR…

OR… others…

Reduced glutathione (GSH)

Oxidized glutathione

(GSSG)

NADPH NADP+

Glutathione reductase (GR)

G6P6PGL Glucose-6-phosphate dehydrogenase (G6PDH)X

X

Page 44: Michael Owens

Superoxide radical anion

Hydroxyl radical

Neal I. Callaghan, Honours Biochemistry

student

OR…

OR… others…

Reduced glutathione (GSH)

Oxidized glutathione

(GSSG)

NADPH NADP+

Glutathione reductase (GR)

G6P6PGL Glucose-6-phosphate dehydrogenase (G6PDH)X

XNo activity change,

but deficient NADPH

Increased de novo biosynthesis bringing total levels up

Page 45: Michael Owens

Neal I. Callaghan, Honours Biochemistry

student

Wikimedia commons

Armstrong JS et al (2004) Bioessays 26: 894-900Wikimedia commons

Page 46: Michael Owens

Neal I. Callaghan, Honours Biochemistry

student

Wikimedia commons

Armstrong JS et al (2004) Bioessays 26: 894-900Wikimedia commons

Aconitase activity decreased with nZnO

exposure (~65%)

MDA levels remained unchanged (?)

Page 47: Michael Owens

In vivo exposure In vitro “exposure”

Live physiological

/systemic (e.g.

cardiorespiratory physiology)

Postmortem biochemical

assays(e.g. antioxidant

enzymes, damage markers)

Complex media

(e.g. pooled rat blood plasma)

Simplified conditions

(e.g. BSA solution)

Nanotoxin?

Page 48: Michael Owens

In vivo exposure In vitro “exposure”

Live physiological

/systemic (e.g.

cardiorespiratory physiology)

Postmortem biochemical

assays(e.g. antioxidant

enzymes, damage markers)

Complex media

(e.g. pooled rat blood plasma)

Simplified conditions

(e.g. BSA solution)

Nanotoxin?

Page 49: Michael Owens

Nanoparticle toxicity

Nel, A. et al. (2006) Toxic potential of materials at the nanolevel. Science 311: 622-627

Page 50: Michael Owens

Nanoparticle toxicity

Nel, A. et al. (2006) Toxic potential of materials at the nanolevel. Science 311: 622-627

Patrick T. Gormley, Honours Chemistry

student

Pooled Sprague Dawley rat plasma

Innovative Research

Saline

1% H2O2

1 mg/L nZnO

48 h at 37C

Page 51: Michael Owens

Nanoparticle toxicity

Nel, A. et al. (2006) Toxic potential of materials at the nanolevel. Science 311: 622-627

Patrick T. Gormley, Honours Chemistry

student

Pooled Sprague Dawley rat plasma

Innovative Research

Saline

1% H2O2

1 mg/L nZnO

48 h at 37C

Dieni et al. Comp Biochem Physiol Toxicol Pharmacol in press

Saline H2O2 nZnO

Ferric reducing ability of plasma (FRAP)

A measure of multiple spontaneously electron-donating antioxidants

Unchanged

Page 52: Michael Owens

Nanoparticle toxicity

Nel, A. et al. (2006) Toxic potential of materials at the nanolevel. Science 311: 622-627

Patrick T. Gormley, Honours Chemistry

student

Pooled Sprague Dawley rat plasma

Innovative Research

Saline

1% H2O2

1 mg/L nZnO

48 h at 37C

Dieni et al. Comp Biochem Physiol Toxicol Pharmacol in press

Saline H2O2 nZnO

MDA levels remained unchanged

a

b

RND systems

Page 53: Michael Owens

Nanoparticle toxicity

Nel, A. et al. (2006) Toxic potential of materials at the nanolevel. Science 311: 622-627

Patrick T. Gormley, Honours Chemistry

student

Pooled Sprague Dawley rat plasma

Innovative Research

Saline

1% H2O2

1 mg/L nZnO

48 h at 37C

Dieni et al. Comp Biochem Physiol Toxicol Pharmacol in press

Saline H2O2 nZnO

Protein carbonyl levels remained unchanged

Hawkins, CL and Davies, MJ (1998) Biochem J 332: 617-625

c

Page 54: Michael Owens

1 mg/L nZnO

Decreased hepatic G6PDH activityDecreased hepatic aconitase

activityIncreased hepatic glutathione levels

No plasma changes

In vitro exposureIn vivo exposure

Page 55: Michael Owens

In vivo exposure In vitro “exposure”

Live physiological

/systemic (e.g.

cardiorespiratory physiology)

Postmortem biochemical

assays(e.g. antioxidant

enzymes, damage markers)

Complex media

(e.g. pooled rat blood plasma)

Simplified conditions

(e.g. BSA solution)

Nanotoxin?

Page 56: Michael Owens

In vivo exposure In vitro “exposure”

Live physiological

/systemic (e.g.

cardiorespiratory physiology)

Postmortem biochemical

assays(e.g. antioxidant

enzymes, damage markers)

Complex media

(e.g. pooled rat blood plasma)

Simplified conditions

(e.g. BSA solution)

Nanotoxin?

No indications of oxidative

damage

Page 57: Michael Owens

In vivo exposure In vitro “exposure”

Live physiological

/systemic (e.g.

cardiorespiratory physiology)

Postmortem biochemical

assays(e.g. antioxidant

enzymes, damage markers)

Complex media

(e.g. pooled rat blood plasma)

Simplified conditions

(e.g. BSA solution)

Nanotoxin?

heart rate

Page 58: Michael Owens

In vivo exposure In vitro “exposure”

Live physiological

/systemic (e.g.

cardiorespiratory physiology)

Postmortem biochemical

assays(e.g. antioxidant

enzymes, damage markers)

Complex media

(e.g. pooled rat blood plasma)

Simplified conditions

(e.g. BSA solution)

Nanotoxin?

G6PDH aconitase

glutathione

Page 59: Michael Owens

In vivo exposure In vitro “exposure”

Live physiological

/systemic (e.g.

cardiorespiratory physiology)

Postmortem biochemical

assays(e.g. antioxidant

enzymes, damage markers)

Complex media

(e.g. pooled rat blood plasma)

Simplified conditions

(e.g. BSA solution)

Nanotoxin?

G6PDH aconitase

glutathione heart rate

No indications of oxidative

damage

Page 60: Michael Owens

Thank you!Dieni Research Group

Neal I. CallaghanPatrick T. Gormley

MacCormack Lab

Dr. Tyson J. MacCormackKathryn M. A. Butler

Wayne Anderson – Harold Crabtree AqualabJames Ehrman – Mount Allison University Digital Microscopy Facility

Dr. Terry Belke and Jackie Jacob-Vogels – Belke Lab rat blood plasma (initial plasma trials)

Maria Thistle – biostatistics (revisions of latest manuscript)

Marjorie Young Bell FundGoodridge Summer Research Scholarship

Universitas Summer Undergraduate Award

Page 61: Michael Owens

Questions?

[email protected] http://chrisdieni.com

http://www.facebook.com/DieniResearchGroup

Dieni CA, Callaghan NI, Gormley PT, Butler KMA, MacCormack TJ. Physiological hepatic response to zinc oxide nanoparticle exposure in the white sucker, Catostomus commersonii. Comp Biochem Physiol Toxicol Pharmacol in press Dieni CA, Stone CJL, Armstrong ML, Callaghan NI, MacCormack TJ. 2013. Spherical gold nanoparticles impede the function of bovine serum albumin in vitro: a new consideration for studies in nanotoxicology. J Nanomater Mol Nanotechnol 2:6