mh1200 lecture 12b

43
7/23/2019 MH1200 Lecture 12b http://slidepdf.com/reader/full/mh1200-lecture-12b 1/43 Basis and Dimension

Upload: dicky-djayadi

Post on 19-Feb-2018

231 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MH1200 Lecture 12b

7/23/2019 MH1200 Lecture 12b

http://slidepdf.com/reader/full/mh1200-lecture-12b 1/43

Basis and Dimension

Page 2: MH1200 Lecture 12b

7/23/2019 MH1200 Lecture 12b

http://slidepdf.com/reader/full/mh1200-lecture-12b 2/43

Finite-dimensional spacesRecall we defined a finite-dimensional space as one that

is spanned by a finite number of vectors.

Today we will see how questions about a finite-dimensionalvector space can be translated into questions about

Euclidean space.

Then we can use all the techniques we have developed

for Euclidean space to solve them.

Page 3: MH1200 Lecture 12b

7/23/2019 MH1200 Lecture 12b

http://slidepdf.com/reader/full/mh1200-lecture-12b 3/43

BasisLet be a vector space. Vectors are a finite

basis for if they are linearly independent and

v1, . . . , vrV  

V  

Note: Every vector can be written as a linear

combination of in a unique way.

span({v1, . . . , vr}) = V  .

v  ∈  V  

1, . . . ,   r

Page 4: MH1200 Lecture 12b

7/23/2019 MH1200 Lecture 12b

http://slidepdf.com/reader/full/mh1200-lecture-12b 4/43

Example

Consider the vector space of degree polynomials.2   ≤ 2

A basis for this space is given by .{1, x, x2}

We saw yesterday that these functions are linearly

independent and span .2

More generally, a basis for the vector space ofpolynomials of degree is given by .

P n

≤ n   {1, x, x2

, . . . , xn}

This is the canonical basis for .n

Page 5: MH1200 Lecture 12b

7/23/2019 MH1200 Lecture 12b

http://slidepdf.com/reader/full/mh1200-lecture-12b 5/43

Example

Consider the vector space of degree polynomials.2   ≤ 2

Another basis for this space is given by .{1 +  x, x, x2− x}

These functions span  because their span contains

the functions .

P 2

1 = 1 + x + (−1)x

x = x

1, x, x2

x2= x

2− x+ x

Page 6: MH1200 Lecture 12b

7/23/2019 MH1200 Lecture 12b

http://slidepdf.com/reader/full/mh1200-lecture-12b 6/43

Example

Consider the vector space of degree polynomials.2   ≤ 2

Another basis for this space is given by .{1 +  x, x, x2− x}

These functions are linearly independent. Suppose

a ·

 1 + (a +  b−

c)x + c · x2 =  0

a(1 +  x) +  bx +  c(x2 − x) =  0.

.

By linear independence of this means1, x, x2

a = 0, a+ b− c = 0, c = 0   a   = 0, b   = 0, c  = 0

Page 7: MH1200 Lecture 12b

7/23/2019 MH1200 Lecture 12b

http://slidepdf.com/reader/full/mh1200-lecture-12b 7/43

ExampleConsider the vector space of 2-by-3 matrices with real

entries.

A basis for this space is given by the matrices

1 0 0

0 0 0 , 0 1 0

0 0 0 , 0 0 1

0 0 0 ,

0 0 0

1 0 0

,

0 0 0

0 1 0

,

0 0 0

0 0 1

.

This is the canonical basis for M (2, 3).

Page 8: MH1200 Lecture 12b

7/23/2019 MH1200 Lecture 12b

http://slidepdf.com/reader/full/mh1200-lecture-12b 8/43

Construction of a basis

Theorem: Every finite-dimensional vector space has afinite basis.

V  

Proof: Let  be such that  .v1, . . . , vr  span({v1, . . . , vr}) = V  

We know that such vectors exist as is finite-dimensional.V  

If are linearly independent, then we have found a

basis.

v1, . . . , vr

Otherwise, some can be expressed as a linear

combination of the others.i

vi  = a1v1 + . . .+ ai−1vi−1 + ai+1vi+1 + . . .+ arvr

Page 9: MH1200 Lecture 12b

7/23/2019 MH1200 Lecture 12b

http://slidepdf.com/reader/full/mh1200-lecture-12b 9/43

Construction of a basis

Theorem: Every finite-dimensional vector space has afinite basis.

V  

Otherwise, some can be expressed as a linearcombination of the others.i

vi  = a1v1 + . . .+ ai−1vi−1 + ai+1vi+1 + . . .+ arvr

Proof:

This means

span({v1, . . . , vr}) = span({v1, . . . , vi−1, vi+1, . . . , vr})

We can “throw away” without changing the span.i

Page 10: MH1200 Lecture 12b

7/23/2019 MH1200 Lecture 12b

http://slidepdf.com/reader/full/mh1200-lecture-12b 10/43

Construction of a basis

Theorem: Every finite-dimensional vector space has afinite basis.

V  

Proof:

We can “throw away” without changing the span.i

If the vectors are linearly

independent, then we are done.1, . . . ,   i−1,   i+1, . . . ,   r

Otherwise, we repeat this process.

This process must terminate, and when it does, we have

found a basis.

the “throw away” theorem

Page 11: MH1200 Lecture 12b

7/23/2019 MH1200 Lecture 12b

http://slidepdf.com/reader/full/mh1200-lecture-12b 11/43

CoordinatesWe discussed the coordinates of a vector with respect to

a given basis in Euclidean space.

Let be a basis for .B  = {(1, 0, 0), (1, 1, 0), (1, 1, 1)}   R

3

(0,−1, 1) = 1 · (1, 0, 0) + (−2) · (1, 1, 0) + 1 · (1, 1, 1)

Example:

The coordinates of with respect to thebasis are

v = (0,−

1, 1)

(v)B  = (1,−2, 1).

Page 12: MH1200 Lecture 12b

7/23/2019 MH1200 Lecture 12b

http://slidepdf.com/reader/full/mh1200-lecture-12b 12/43

CoordinatesWe can do the same thing in a general finite-dimensional

vector space .V  

Fix some basis for . We have already seen

such a basis exists.

v1, . . . , vr   V  

Every vector can be written as a unique linear

combination of the basis vectors .u  ∈

v1, . . . , vr

u = a1v1 + · · ·+ arvr

(a1, . . . , ar)  ∈ Rr

The coordinate vector of with respect to the

basis is .1, . . . ,   r

Page 13: MH1200 Lecture 12b

7/23/2019 MH1200 Lecture 12b

http://slidepdf.com/reader/full/mh1200-lecture-12b 13/43

ExampleConsider the vector space of degree polynomials.P 2   ≤ 2

A basis for this space is given by .{1 +  x, x, x2− x}

What is the coordinate vector of with respect to thisbasis?

x

2

It is because(0, 1, 1)

x2 = 0 · (1 +  x) + 1 ·  x + 1 · (x2 − x).

Page 14: MH1200 Lecture 12b

7/23/2019 MH1200 Lecture 12b

http://slidepdf.com/reader/full/mh1200-lecture-12b 14/43

Coordinate MappingFix some basis for .1, . . . ,   r   V  

u = a1v1 + · · ·+ arvr

(a1, . . . , ar)  ∈ Rr

then the coordinate vector of with respect to the

basis is .v1, . . . , vr

u

The basis defines a mapping= {v1, . . . , vr}

coordB   :  V    → Rr

where if .coordB(u) = (a1, . . . , ar)   u = a1v1 + · · ·+ arvr

This is a function, because the representation is unique.

If

Page 15: MH1200 Lecture 12b

7/23/2019 MH1200 Lecture 12b

http://slidepdf.com/reader/full/mh1200-lecture-12b 15/43

Coordinate MappingThe basis defines a mappingB   = {v1, . . . , vr}

coordB   :  V    → Rr

where if .coordB(u) = (a1, . . . , ar)   u = a1v1 + · · ·+ arvr

This is a function, because the representation is unique.

Claim: The coordinate mapping is one-to-one.

coordB(u1) = coordB(u2)If then .1   = 2

Claim: The coordinate mapping is onto.

for any (a1, . . . , ar)  ∈ Rr

a1v1 + · · ·+ arvr  ∈

Page 16: MH1200 Lecture 12b

7/23/2019 MH1200 Lecture 12b

http://slidepdf.com/reader/full/mh1200-lecture-12b 16/43

Coordinate MappingThe basis defines a mappingB   = {v1, . . . , vr}

coordB   :  V    → Rr

where if .coordB(u) = (a1, . . . , ar)   u = a1v1 + · · ·+ arvr

This mapping is one-to-one and onto. It is a bijection between and .V     R

r

This mapping has even more nice properties.

coordB(u +  v) = coordB(u) + coordB(v)

u = a1v1 + · · · + arvr

v  = b1v1 + · · · + brvru + v = (a1 +  b1)v1 + · · · + (ar + br)vr

Page 17: MH1200 Lecture 12b

7/23/2019 MH1200 Lecture 12b

http://slidepdf.com/reader/full/mh1200-lecture-12b 17/43

Coordinate MappingThe basis defines a mappingB   = {v1, . . . , vr}

coordB   :  V    → Rr

where if .coordB(u) = (a1, . . . , ar)   u = a1v1 + · · ·+ arvr

This mapping is a bijection between and .V     Rr

§

coordB(u +  v) = coordB(u) + coordB(v)§

§   coordB(c ·  u) =   c · coordB(u)   c  ∈ Rfor any

u = a1v1 + · · ·+ arvrIf then c ·  u =   c(a1v1 + · · · +  arvr)

=   ca1v1 + · · · +  carvr

Page 18: MH1200 Lecture 12b

7/23/2019 MH1200 Lecture 12b

http://slidepdf.com/reader/full/mh1200-lecture-12b 18/43

ExampleConsider the vector space of degree polynomials.P 2   ≤ 2

Fix the basis .B  = {1,x ,x2}

coordB(3− 2x + 5x2) = (3,−2, 5)

coordB(−

1 +  x +  x2) = (−

1, 1, 1)

(3− 2x + 5x2) + (−1 + x + x2) = 2− x + 6x2

(3,−2, 5) + (−1 + 1 + 1) = (2,−1, 6)

Adding polynomials in is just like adding vectors in .2   R3

Page 19: MH1200 Lecture 12b

7/23/2019 MH1200 Lecture 12b

http://slidepdf.com/reader/full/mh1200-lecture-12b 19/43

IsomorphismLet and be two vector spaces. A function

is an isomorphism if

V     W    f   : V    → W 

  is a bijection between and .V  §

§

§

f    W 

f (u + v) = f (u) + f (v) for all  u, v  ∈ V  

f (c · v) = c · f (v) for all  c  ∈ R, v  ∈ V  

Two spaces are isomorphic if there is an isomorphism

between them.

Isomorphic spaces are essentially the same.

Page 20: MH1200 Lecture 12b

7/23/2019 MH1200 Lecture 12b

http://slidepdf.com/reader/full/mh1200-lecture-12b 20/43

Linear combinationsLet and be two vector spaces. If is

an isomorphism then

V     W    f   : V    →W 

f (c1v1 + c2v2 + · · · + crvr) = c1f (v1) + c2f (v2) + · · · + crf (vr)

This follows by progressively applying the properties of an

isomorphism.

f ((c1v1) + (c2v2 + · · · + crvr)) = f (c1v1) + f (c2v2 + · · · + c

rvr)

= c1f (v1) + f (c2v2 + · · · + crvr)

= c1f (v1) + c2f (v2) + · · · + crf (vr)

Page 21: MH1200 Lecture 12b

7/23/2019 MH1200 Lecture 12b

http://slidepdf.com/reader/full/mh1200-lecture-12b 21/43

Coordinate MappingThe basis defines a mappingB   = {v1, . . . , vr}

coordB   :  V    → Rr

where if .coordB(u) = (a1, . . . , ar)   u = a1v1 + · · ·+ arvr

This mapping is a bijection between and .V     Rr

§

coordB(u +  v) = coordB(u) + coordB(v)§

§   coordB(c ·  u) =   c · coordB(u)   c  ∈ Rfor any

If has a basis with many elements then is

isomorphic to .

V     V  r

Rr

Reason: The coordinate mapping is an isomorphism.

Page 22: MH1200 Lecture 12b

7/23/2019 MH1200 Lecture 12b

http://slidepdf.com/reader/full/mh1200-lecture-12b 22/43

ConsequencesExample: The vector space of polynomials of degree 

is isomorphic to .2   ≤ 2

R3

An isomorphism is given by the coordinate mapping with

respect to the basis .{1, x, x2}

The coordinate mapping lets us transfer questions about

a general finite-dimensional vector space to questions about

Euclidean space.

We are already familiar with Euclidean space, and know how

to answer the questions there!

Page 23: MH1200 Lecture 12b

7/23/2019 MH1200 Lecture 12b

http://slidepdf.com/reader/full/mh1200-lecture-12b 23/43

Consequences

Theorem: Let be a vector space with zero element andbasis . Then

V  B   = {v1, . . . , vr}

coordB(0) = 0̄  ∈ Rr

Proof: coordB(0) = coordB(0 · 0)

= 0 · coordB(0)

= 0̄

Question: Does the same hold for any isomorphism?

Li I d d

Page 24: MH1200 Lecture 12b

7/23/2019 MH1200 Lecture 12b

http://slidepdf.com/reader/full/mh1200-lecture-12b 24/43

Linear IndependenceTheorem: Let be a finite-dimensional vector space and fix

a basis for . Then vectorsare linearly dependent if and only if

V  

B  =

{v1, . . . , vr}   V     u1, . . . , uk  ∈

 V  

coordB(u1), . . . , coordB(uk)  ∈ Rr

are linearly dependent.

Proof:

Suppose are linearly dependent, thusu1, . . . , uk   ∈ V  

c1u1 + · · · ckuk  = 0

where some .ci  6= 0

Apply the function to both sides.coordB

coordB

(0

) = ¯0

Page 25: MH1200 Lecture 12b

7/23/2019 MH1200 Lecture 12b

http://slidepdf.com/reader/full/mh1200-lecture-12b 25/43

Theorem: Let be a finite-dimensional vector space and fix

a basis for . Then vectors

are linearly dependent if and only if

V  

B   = {v1, . . . , vr}   V     u1, . . . , uk  ∈  V  

coordB(u1), . . . , coordB(uk)  ∈ Rr

are linearly dependent.

Proof:

c1u1 +· · ·

ckuk  = 0 where some .ci  6= 0

Apply the function to both sides.coordB   coordB(0) = 0̄

Simplifying the left hand side:

coordB(c1u1 + · · ·

 +  ckuk) = coordB(c1u1) + coordB(c2u2 + · · ·

 +  ckuk)

=   c1coordB(u1) + coordB(c2u2 + · · · +  ckuk)

=   c1coordB(u1) + · · · +  ckcoordB(uk)

This shows are lin. dependent.coordB(u1), . . . , coordB(uk)

Page 26: MH1200 Lecture 12b

7/23/2019 MH1200 Lecture 12b

http://slidepdf.com/reader/full/mh1200-lecture-12b 26/43

Theorem: Let be a finite-dimensional vector space and fix

a basis for . Then vectors

are linearly dependent if and only if

V  

B   = {v1, . . . , vr}   V     u1, . . . , uk  ∈  V  

coordB(u1), . . . , coordB(uk)  ∈ Rr

are linearly dependent.

Proof:

Suppose are lin. dependent.coordB(u1), . . . , coordB(uk)

0̄ =   c1 · coordB(u1) + · · · +  ck · coordB(uk)

= coordB(c1u1) + · · · + coordB(ckuk)

= coordB(c1u1 + · · · +  ckuk)

We know that and as is

one-to-one this means

coordB(0) = 0̄   coordB   :  V    → Rr

c1u1 + · · · + ckuk  = 0

Page 27: MH1200 Lecture 12b

7/23/2019 MH1200 Lecture 12b

http://slidepdf.com/reader/full/mh1200-lecture-12b 27/43

Comment

Notice that in the last proof we only used the fact thatis an isomorphism.

coordB

We did not use any specific details about the action ofcoord

B

The last theorem actually holds with respect to any 

isomorphism.

Page 28: MH1200 Lecture 12b

7/23/2019 MH1200 Lecture 12b

http://slidepdf.com/reader/full/mh1200-lecture-12b 28/43

SpanTheorem: Let be a finite-dimensional vector space and fix

a basis for . Thenif and only if

V  

B   = {v1, . . . , vr}   V     v  ∈ span({u1, . . . , uk})

for any .v, u1, . . . , uk  ∈  V  

Proof: If thenv  ∈ span({u1, . . . , uk})   v  = c1u1 + . . .+ ckuk

coordB(v) = coordB(c1u1 + · · ·

 +  ckuk)=   c1coordB(u1) + · · · +  ckcoordB(uk)

and so .coordB(v)  ∈ span({coordB(u1), . . . , coordB(uk)})

coordB(v)  ∈ span({coordB(u1), . . . , coordB(uk)}),

Page 29: MH1200 Lecture 12b

7/23/2019 MH1200 Lecture 12b

http://slidepdf.com/reader/full/mh1200-lecture-12b 29/43

SpanTheorem: Let be a finite-dimensional vector space and fix

a basis for . Thenif and only if

V  

B   = {v1, . . . , vr}   V     v  ∈ span({u1, . . . , uk})

coordB(v)  ∈ span({coordB(u1), . . . , coordB(uk)})

for any .v, u1, . . . , uk  ∈  V  

Proof: If

coordB

(v

) =  c1

coordB

(u1

) + · · ·

 + ck

coordB

(uk

)= coordB(c1u1 + · · · +  ckuk)

Again as is one-to-one, this meanscoordB

v  = c1u1 + · · · + ckuk

coordB(v)  ∈ span({coordB(u1), . . . , coordB(uk)}),

Page 30: MH1200 Lecture 12b

7/23/2019 MH1200 Lecture 12b

http://slidepdf.com/reader/full/mh1200-lecture-12b 30/43

Dimension TheoremTheorem: Let be a finite dimensional vector space and

let and be two bases

for .

V  

B1   = {u1, . . . , ur}   B2   = {v1, . . . , vs}V   Then .r = s

Proof: Suppose that . From the dimension theorem

in Euclidean space we know that the largest linearly

independent set in is of size .

r < s

Rr

r

Consider . As are linearly

independent, so arecoordB1

  :  V    → Rr

coordB1(v1), . . . , coordB1

(vs)

v1, . . . , vs

∈ Rr

.

This is a contradiction as r < s.

Page 31: MH1200 Lecture 12b

7/23/2019 MH1200 Lecture 12b

http://slidepdf.com/reader/full/mh1200-lecture-12b 31/43

Dimension TheoremTheorem: Let be a finite dimensional vector space and

let and be two bases

for .

V  

B1   = {u1, . . . , ur}   B2   = {v1, . . . , vs}V   Then .r = s

Proof: We can make an analogous argument if This

completes the proof.s < r.

Page 32: MH1200 Lecture 12b

7/23/2019 MH1200 Lecture 12b

http://slidepdf.com/reader/full/mh1200-lecture-12b 32/43

Dimension

Definition: Let be a finite-dimensional vector space. Thedimension of is the number of elements in a basis for

V  

V     V.

This definition makes sense by the dimension theorem.

Remark: If is a vector space of dimension then it is

isomorphic to .V     d

Rd

Page 33: MH1200 Lecture 12b

7/23/2019 MH1200 Lecture 12b

http://slidepdf.com/reader/full/mh1200-lecture-12b 33/43

Example: PolynomialsConsider the vector space of polynomials of degree

at most

P n

.

A basis is given by {1, x, x2

, . . . , xn}.

The dimension of is .P n   n + 1

Page 34: MH1200 Lecture 12b

7/23/2019 MH1200 Lecture 12b

http://slidepdf.com/reader/full/mh1200-lecture-12b 34/43

Example: MatricesLet be the vector space of m-by-n matrices

with real entries.

M (m,n)

A basis for this space is given by the matrices

E ij(k, `) =

(1 if  k = i, ` =  j

0 otherwise

where 1 ≤ i ≤ m, 1 ≤  j  ≤ n.

In total, there are elements in this basis.mn

The dimension of isM (m,n)   .

S b

Page 35: MH1200 Lecture 12b

7/23/2019 MH1200 Lecture 12b

http://slidepdf.com/reader/full/mh1200-lecture-12b 35/43

SubspacesTheorem: Let be a vector space of dimension with a

basis and let If

rV  

U  ⊆ V.B   = {v1, . . . , vr},

{coordB(u) :  u  ∈  U }  ⊆ Rr

is a subspace of then is a subspace ofRr

U    V.

S   =

Proof:  As is a subspace of it contains .S    R   0̄

Thus as this is the only vector satisfying0  ∈  U    coordB(v) = 0̄.

S b

Page 36: MH1200 Lecture 12b

7/23/2019 MH1200 Lecture 12b

http://slidepdf.com/reader/full/mh1200-lecture-12b 36/43

SubspacesTheorem: Let be a vector space of dimension with a

basis and let If

rV  

U  ⊆ V.B   = {v1, . . . , vr},

{coordB(u) :  u  ∈  U }  ⊆ Rr

is a subspace of then is a subspace ofRr

U    V.

S   =

Proof:  Now we see that is closed under scalar mult.U 

Let and As is a subspace,

alsou  ∈ U, c  ∈ R   s = coordB(u)  ∈  S.   S 

c ·  s  ∈  S.

Note that , and is theonly vector with this property as is one-to-one.

coordB(c ·

 u) =   c ·

 coordB(u) =   c ·

 s   c ·

 u

coordB

Thus c ·  u  ∈  U.

S b

Page 37: MH1200 Lecture 12b

7/23/2019 MH1200 Lecture 12b

http://slidepdf.com/reader/full/mh1200-lecture-12b 37/43

SubspacesTheorem: Let be a vector space of dimension with a

basis and let If

rV  

U  ⊆ V.B   = {v1, . . . , vr},

{coordB(u) :  u  ∈  U }  ⊆ Rr

is a subspace of then is a subspace ofRr

U    V.

S   =

Proof:  Now we see that is closed under vector addition.U 

Take and letu1, u2  ∈ U    s1  = coordB(u1), s2  = coordB(u2)  ∈ S.

S As is a subspace also s1 + s2  ∈  S.

Note that coordB(u1 +  u2) = coordB(u1) + coordB(u2) =   s1 +  s2

and this is the only vector with this property (as one-to-one).

Thus u1 + u2  ∈  U.

E l

Page 38: MH1200 Lecture 12b

7/23/2019 MH1200 Lecture 12b

http://slidepdf.com/reader/full/mh1200-lecture-12b 38/43

ExampleConsider the vector space of 2-by-2 matrices.M (2, 2)

S   =

a11   a12

a21   a22

  :  a11  + a22   = 0

Let

be the subset of of matrices whose diagonalelements sum to zero.

M (2, 2)

We could show this directly and verify that contains

the all-zero matrix and satisfies the closure conditions.S 

Is a subspace?S 

Page 39: MH1200 Lecture 12b

7/23/2019 MH1200 Lecture 12b

http://slidepdf.com/reader/full/mh1200-lecture-12b 39/43

Consider the vector space of 2-by-2 matrices.M (2, 2)

S   =a11   a12

a21   a22

  :  a11  + a22   = 0

Let

be the subset of of matrices whose diagonal

elements sum to zero.

M (2, 2)

A basis for is given by the set of matricesM (2, 2)

E   = 1 0

0 0 , 0 1

0 0 , 0 0

1 0 , 0 0

0 1 .

Note that

coordE 

a11   a12

a12   a22

 = (a11, a12, a21, a22)

Page 40: MH1200 Lecture 12b

7/23/2019 MH1200 Lecture 12b

http://slidepdf.com/reader/full/mh1200-lecture-12b 40/43

Consider the vector space of 2-by-2 matrices.M (2, 2)

S   =

a11   a12

a21   a22

  :  a11  + a22   = 0

Let

be the subset of of matrices whose diagonal

elements sum to zero.

M (2, 2)

Consider the set .T   = {coordE (A) :  A  ∈  S }  ⊆ R4

By the previous theorem, if is a subspace then so is .T    S 

But is simply the null space of the matrixand therefore is a subspace.

1 0 0 1

E l ti d

Page 41: MH1200 Lecture 12b

7/23/2019 MH1200 Lecture 12b

http://slidepdf.com/reader/full/mh1200-lecture-12b 41/43

Consider the vector space of 2-by-2 matrices.M (2, 2)

S   =

a11   a12

a21   a22

  :  a11  + a22   = 0

Let

be the subset of of matrices whose diagonal

elements sum to zero.

M (2, 2)

Example continued

What is a basis for S ?

To do this, we can first find a basis for

T   = {coordE (A) : A  ∈ S }

= {(a11, a12, a21, a22) : a11 + a22  = 0}

Page 42: MH1200 Lecture 12b

7/23/2019 MH1200 Lecture 12b

http://slidepdf.com/reader/full/mh1200-lecture-12b 42/43

To do this, we can first find a basis for

T   = {coordE (A) : A  ∈ S }

= {(a11, a12, a21, a22) : a11 + a22  = 0}

We can do this by finding the special solutions:

{(−1, 0, 0, 1), (0, 1, 0, 0), (0, 0, 1, 0)}

Now we look for vectors in which map to these special

solutions under .S 

coordE 

coordE 

0 10 0

 = (0, 1, 0, 0)

coordE 

0 01 0

 = (0, 0, 1, 0)

coordE 

1 00 1

 = (

−1, 0, 0, 1)

Page 43: MH1200 Lecture 12b

7/23/2019 MH1200 Lecture 12b

http://slidepdf.com/reader/full/mh1200-lecture-12b 43/43

To do this, we can first find a basis for

T   = {coordE (A) : A  ∈ S }

= {(a11

, a12

, a21

, a22

) : a11

 + a22

 = 0}

The matrices form a basis for .

−1 0

0 1

,

0 1

0 0

,

0 0

1 0

  S 

They are linearly independent as their coordinate imagesare.

They span  as their coordinate images span .S    T 

The dimension of is 3.S