mh news summer09 - fire in the ice

24
1 CONTENTS JIP Leg II Discovery ....................... 1 Alaska Seep Studies ..................... 6 Gas Hydrates Offshore Mexico 10 Alaska Reservoir Testing...........12 Naval Research Laboratory Methane Hydrate Research .....17 Announcements ...................... 21 Call for Papers 2009 Hydrate Fellows USGS Mendenhall Fellowship AGU Annual Meeting Moscow Conference Gordon Research Conference Spotlight on Research .......... 24 Dan McConnell CONTACT Ray Boswell Technology Manager—Methane Hydrates, Strategic Center for Natural Gas & Oil 304-285-4541 [email protected]v Methane Hydrate Newsletter Summer 2009 Joint Industry Project Leg II Discovers Rich Gas Hydrate Accumulations in Sand Reservoirs in the Gulf of Mexico Ray Boswell, Tim Collett, Dan McConnell, Matt Frye, Bill Shedd, Stefan Mrozewski, Gilles Guerin, Ann Cook, Paul Godfriaux, Rebecca Dufrene, Rana Roy, and Emrys Jones The Gulf of Mexico Gas Hydrate Joint Industry Project (“the JIP”) is a cooperative research program between the US DOE and an international industry consortium led by Chevron. In April and May of 2009, the JIP conducted a logging-while-drilling program (Figure 1) designed to test geological and geophysical models for the occurrence of gas hydrate in sand reservoirs in the Gulf of Mexico and to delineate sites for future JIP logging and coring programs (for more information on expedition planning and objectives—see Spring 2009 issue of Fire in the Ice). Seven holes representing 15,380 feet of sedimentary section were drilled at three sites (Figure 2). Despite drilling by far the deepest and most challenging holes yet attempted in a gas hydrates marine expedition, the program was completed safely and under budget, and met or exceeded all its scientific objectives. Furthermore, by specifically targeting gas hydrates in sand reservoirs, the expedition accepted significant geologic risk. However, the careful work of the JIP contributors (see sidebars), including those Figure 1: Schlumberger and Chevron personnel inspect drillstring onboard the Q4000, the floating drilling unit used on Leg II.

Upload: dr-k-gallowglaich

Post on 03-Mar-2015

12 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: MH News Summer09 - Fire in the Ice

1

ContentsJIP Leg II Discovery .......................1

Alaska Seep Studies .....................6

Gas Hydrates Offshore Mexico 10

Alaska Reservoir Testing ...........12

Naval Research Laboratory Methane Hydrate Research .....17

Announcements ...................... 21• CallforPapers• 2009HydrateFellows• USGSMendenhallFellowship• AGUAnnualMeeting• MoscowConference• GordonResearchConferencespotlight on Research .......... 24 DanMcConnell

ContACtRay Boswell

Technology Manager—Methane Hydrates,StrategicCenterforNatural Gas & Oil

304-285-4541

[email protected]

MethaneHydrateNewsletterSummer2009

Joint Industry Project Leg II Discovers Rich Gas Hydrate Accumulations in sand Reservoirs in the Gulf of MexicoRay Boswell, Tim Collett, Dan McConnell, Matt Frye, Bill Shedd, Stefan Mrozewski, Gilles Guerin, Ann Cook, Paul Godfriaux, Rebecca Dufrene, Rana Roy, and Emrys Jones

TheGulfofMexicoGasHydrateJointIndustryProject(“theJIP”)isacooperativeresearchprogrambetweentheUSDOEandaninternationalindustryconsortiumledbyChevron.InAprilandMayof2009,theJIPconductedalogging-while-drillingprogram(Figure1)designedtotestgeologicalandgeophysicalmodelsfortheoccurrenceofgashydrateinsandreservoirsintheGulfofMexicoandtodelineatesitesforfutureJIPloggingandcoringprograms(formoreinformationonexpeditionplanningandobjectives—seeSpring2009issueofFire in the Ice).Sevenholesrepresenting15,380feetofsedimentarysectionweredrilledatthreesites(Figure2).

Despitedrillingbyfarthedeepestandmostchallengingholesyetattemptedinagashydratesmarineexpedition,theprogramwascompletedsafelyandunderbudget,andmetorexceededallitsscientificobjectives.Furthermore,byspecificallytargetinggashydratesinsandreservoirs,theexpeditionacceptedsignificantgeologicrisk.However,thecarefulworkoftheJIPcontributors(seesidebars),includingthose

Figure 1: Schlumberger and Chevron personnel inspect drillstring onboard the Q4000, the floating drilling unit used on Leg II.

Page 2: MH News Summer09 - Fire in the Ice

22

national energy technology Laboratory

1450 Queen Avenue SWAlbany,OR97321541-967-5892

2175UniversityAvenueSouthSuite 201Fairbanks,AK99709907-452-2559

3610CollinsFerryRoadP.O. Box 880Morgantown,WV26507-0880304-285-4764

626CochransMillRoadP.O.Box10940Pittsburgh,PA15236-0940412-386-4687

13131DairyAshford,Suite225Sugar Land, TX 77478 281-494-2516

VisittheNETLwebsiteat:www.netl.doe.gov

CustomerService:1-800-553-7681

Fire in the Ice is published by the NationalEnergyTechnologyLaboratory to promote the exchangeofinformationamongthose involved in gas hydrates research and development.

Interested in contributing an article to Fire in the Ice?Thisnewsletternowreachesmore than 1000 scientists and other individuals interested in hydrates in sixteen countries. Ifyouwouldliketosubmitan article about the progress ofyourmethanehydratesresearchproject,pleasecontact JenniferPresleyat281-494-2560.

[email protected]

this newsletter is available online at http://www.netl.doe.gov/MethaneHydrates

involvedinthesiteselectionandtheoperationalplanning,wasrewardedwiththediscoveryofgashydrateathighsaturations(50%ormore)insandreservoirsinatleastfourofthesevenwellsdrilled.

operationsJIPLegIIwasconductedfromApril16toMay6,2009aboardtheDynamically-Positioned(DP)ModularDrillingUnit(MODU)Q4000ownedandoperatedbyHelix,Inc.Theprogrammobilized(andlaterdemobilized)at sea, aided by the MV Mia.TheperformanceoftheQ4000crewinsafelyandefficientlydrillingthewellswasoutstanding.Similarly,thecomplex,state-of-the-artSchlumbergerLWDtoolstringfunctionedextremelywell,withonlyminimaloperationalissues.

DrillingparameterswithinJIPLegIIwerecarefullymanagedinanattempttooptimizedataqualitywhilemaintainingboreholestability.Despitethelargevolumesofgashydratethattheexpeditionencountered,theprimarydrillinghazardsthatneededtobemanagedduringthedrillingprogramwerenotspecifictogashydrate,butwereinsteadthecommonproblemsthatfaceanydrillingprogram:boreholestability,drillcuttingremoval,gasreleasesintotheborehole,andwaterflows.Throughouttheexpedition,criticalexperiencewasgainedwithrespecttodrillingparameters,useofweighteddrillfluids,andthenatureofgashydratereservoirresponsetodrilling.

Drilling ResultsJIPLegIIdrilledsevenwellsasshowninTable1:twowellsatthesiteinWalkerRidgeblock313(WR313),threewellsinGreenCanyonblock955(GC955)andtwowellsinAlaminosCanyonblock21.Theresultsaresummarizedbelow.

WR 313 Site:TwowellsweredrilledinWR313totestanomalousseismicamplitudesassociatedwithphasereversalsalonghorizonsthatwereinterpretedtoberelatedtotheupdiptransitionfromgastogashydratewithinsandlayers(Figure3a&3b).Whiledrillingtheprimarilymuddysedimentsatadepthof800to1,300feetbelowtheseafloor(fbsf)inthe

Figure 2: Locations of sites drilled in JIP Leg II.

Alaminos Canyon 21 Walker

Ridge 313

Green Canyon 955

Kilometers0 70 140 210 280

Page 3: MH News Summer09 - Fire in the Ice

3

Stratal-bound Fracture-�lling Gas Hydrate

WR 313 G GR RES

WR 313 H GR RES

WR 313 #001 GR

“Blue”

“Orange”

“Green”

3

initialWR313-Gwell,anunexpected,500’-thickintervalofstratal-boundfracture-fillinggashydratewasencountered.Belowthissection,thewellincludednumerousthingashydrate-saturatedsandsandsilts(upto10ft-thick)withinapredominantlyfine-grainedsection.Theprimarytarget(“blue”horizon)oftheGwellwasencounteredasexpectedat2,850fbsfwithanetof~30ftofsandcontaininggashydrateatapparenthighsaturationswithina70ftgrossinterval.Laterintheexpedition,theWR313-Hwellwasdrilledinanup-diplocation~1nmtotheeastoftheGwell.Theshallow,fracture-fillinggashydrateoccurrencewasagainobserved,andinaccordancewithpredictions,the(“blue”)horizonfromthe“G”wellwasfoundtohavegradedintoamoremud-richintervalwithreducedporosityandlimitedoccurrenceofgashydrate.Themain(“orange”)target,drilledat2,646fbsf,consistedof36ftofsandintwolobeswithresistivityashighas300ohm-m(Figure4).Additionalreservoir-qualitysands(“green”horizon)werepenetratedbelowtheinferredbaseofgas hydrate stability. These sands ascend into the stability zone to the east oftheWR313-Hwell,wheretheydisplayseismicresponsesindicativeofgashydrate occurrence.

Figure 3b: Location of drilled wells WR313-G and H, and pre-existing industry well (solid red star) in relation to pre-drill predictions of gas hydrate occurrence in the “blue” horizon (Left) and the “orange” horizon (Right).

Figure 3a: West to East seismic section across the WR 313 Site, showing the JIP drilling results and target horizons. Dashed line is inferred base of gas hydrate stability. Image Courtesy WesternGeco.

JIP LeG II ContRIButoRs

JIP Executive BoardEmrysJones–ChevronJamesHoward–ConocoPhillipsDr.EspenSlettenAndersen–StatoilHydro ASADr.LewisNorman–HalliburtonEnergyServicesPhilippeRemacle–TotalE&PUSADr.PatrickJ.Hooyman–SchlumbergerData&ConsultingServicesMattFrye–MineralsManagementServiceMr.Ken’ichiYokoi–JapanOil,Gas&MetalsNationalCorporationMr.I.L.Budhiraja–RelianceIndustriesLimitedMr.Hong-GeunIm–KoreaNationalOilCorporation

Site Hazards, Operational PlanningEmrysJones,RanaRoy–ChevronDanMcConnell,ZijianZhang,BrendaMonsalve, Hunter Danque, Jim Gharib, Marianne Mulrey, Brent Dillard, Adrian Digby,AnaGarcia-Garcia–AOAGeophysicsEvanPowell,RichardBirchwood–SchlumbergerDaveGoldberg,StefanMrozewski–LamontDohertyEarthObservatoryTimCollett–USGS

Page 4: MH News Summer09 - Fire in the Ice

4

GC 955 Site:ThreewellsweredrilledinGreenCanyon955totestanomalousseismiceventsthatoccurwhereaninferredsandpronefacieshasbeenupliftedinthegashydratestabilityzonebyashallow,faulted,four-waystructuralclosure.Thefirstwell(GC955-I)wasdrilledveryclosetoaprominent,late-stagechannelaxis(tomaximizetheoccurrenceofsandreservoirs)inalocationoffthestructurewithrelativelymutedgeophysicalindicationsofgashydrate.Thewellencounteredmorethan300ftofporoussandsaspredicted;howeverthesandscontainedlessthan5ftofpotentialgashydratefill.Thewellalsoflowedwater,requiringroughlyadayofefforttocontrol.Thesecondwell,GC955-H,targetedstronggeophysicalanomaliessuggestiveofgashydrateinastructurallyhigherpositiononthestructure.Whiledrillingtheshallowsection,athickzoneofgashydrate-filledfracturesinmud-richsedimentswasobservedfrom~600to~1,000fbsf.At1,305fbsf,thewellencounteredthetopofathickgas-hydrate-bearingsandinterval.Threegas-hydrate-bearingzonesof88ft,13ft,and3ftthickwerelogged,separatedbythinzonesofapparentlywater-bearingsandswithinasingle,apparentlycontiguoussandbody(Figure5).ThethirdGC955well(“Q”)wasdrilledintoaseparate,structurally-higher,faultblock.Atadepthof1,405fbsf,thewellencounteredgashydrate-bearingsand,whichcontinuedtoadepthofatleast1,458fbsf.Atthatdepth,drillingwashaltedwhenashort-durationgasreleasefromthewellwasobservedbytheQ4000’sremotelyoperatedvehicle(ROV).

Hole WR313-H

2550

2600

2650

2700

2750

1 Ωm 300Gamma Ray

Caliper

DensityLo Hi

SonicVISIONVp

1400 m/s 3000Coherence

SonicVISIONWaveformsamplitude

- +20 gAPI 100

Deep RAB

low Resistivity high

N E S W N8 In. 11Resistivity

Deep RAB avg.Ring

Dep

th (f

bsf)

1.8 g/cm3 2.4

Figure 5: Summary log display from Well GC955-H. The data show the gamma-ray (green); density (blue) and resistivity curves (red) as well as 360 degree displays of each parameter as measured around the borehole. The far right columns show velocity data as recorded by the expedition’s two acoustic LWD tools.

Figure 4: Log summary display of well WR 313-H at the “orange” horizon. Leftmost track shows low natural radioactivity indicative of a sand reservoir. Blue track shows reduced density indicating that the reservoir has significant porosity. Red track shows the unit to be resistive, indicating that the porosity is most likely not filled with formation water (brine). Right-most track shows the unit to have high acoustic velocities, indicating that the porosity is filled with gas hydrate.

0

200

400

600

800

1000

1200

1400

1600

1800

0

50

100

150

200

250

300

350

400

450

500

550

0.5 Ωm 50

20 gAPI 100 Density imageCaliper

4.2 In 4.9

Hole Radius

1.55 g/cm3 2.15

Deep RAB

low Resistivity high8 in 14

Shallow RAB

low Resistivity high

Resistivityγ-Ray (Eco.)

Depth

(fb

sf)

Depth

(mbsf)

Deep RAB avg.Ring

N E S W N N E S W N N E S W N E S W NIDRO1.4 g/cm3 2.2

IDRO corr.-0.2 g/cm3 0.6

Page 5: MH News Summer09 - Fire in the Ice

5

AC21 Site:TwowellsweredrilledattheAC21sitetotestanextensivecomplexofveryshallowsandswithlikelylowtomoderategashydratesaturation.TheAC21-Bwellloggedasinglesandbody125ftthickat520fbsf.Theresistivityofthesandwasremarkablyconsistentat1.8to2.5ohm-m,onlyslightlymoreresistivethantheboundingshales(1.5ohm-m).TheAC21-Alocation,approximately1.2nmtothesouthoftheBwell,encounteredtwocleansands(at540and570fbsf)separatedbya15footthickshale.AsintheAC21-Bwell,resistivityinthesesandswasconsistently~2ohm-m.Theelevatedresistivitiesaresuggestiveofgashydrateatlowtomoderateconcentrationssincenearbywellsshowresistivitiesof0.2to0.4ohm-minstratigraphically-equivalentwater-saturatedsands.

PlannedoperationsintheEastBreaks992(EB992)site,werecomplicatedbythearrivaloftherigOcean Valiant inAC24toconductdevelopmentoperationsonbehalfofExxonMobil.ExxonMobilrepresentativeswereextremelysupportiveoftheJIPproject,andgavepermissionfortwoEB992locationstobedrilled.However,basedontheconsistencyofdrillingresultsfromtheAC21siteswiththepre-existingwelldatainEB992,thescienceteamdeterminedthatfurtherdrillingwasnotcost-effective.

summaryJIPLegIIsetouttoconductLWDoperationstoconfirmtheexistenceofgashydrateinsandreservoirsintheGulfofMexicoandtotestexistingapproachesandtechnologiesforpre-drillappraisalofgashydrateconcentration.Bothoftheseobjectiveswerefullyachieved.

Goingforward,theJIPwillusethedrillingresultstogroundtruthandfurthercalibratetheseismictechniquesusedtoproducepre-drillestimatesofgashydrateoccurrenceandsaturationandtoselectlocationsforfuturedrilling,logging,andcoringprograms.ItistheintentoftheJIPandtheDOEtoconductJIPLegIII,topotentiallyincludelogging,conventionalcoring,andpressurecoring,inthespringof2010.PleasechecktheNETLgas hydrates program websiteforpostingoftheinitialscientificreportrelated to JIP Leg II.

Hole API Number Latitude (N)deg/min/sec Longitude (W) Water Depth

(ft)Hole Depth

(fbrf)Hole Depth

(fbsf)

AC21A 608054007000 26 55 23.8503 94 54 00.0702 4889 6700 1760

AC21B 608054007100 26 56 39.1900 94 53 35.6216 4883 6050 1116

GC955H 608114053700 27 00 02.0707 90 25 35.1142 6670 8654 1933

GC955 I 608114054400 27 00 59.5305 90 25 16.8928 6770 9027 2205

GC955Q 608114054300 27 00 07.3484 90 26 11.7156 6516 8078 1511

WR313G 608124003900 26 39 47.4841 91 41 01.9404 6562 10200 3586

WR313H 608124004000 26 39 44.8482 91 40 33.7467 6450 9770 3269

Table 1: Final Surveyed Locations with Water Depth and Measured Depth in feet below rig floor (fbrf) and feet below sea floor (fbsf).

JIP LeG II ContRIButoRs ContInueD

Site Selection TeamDebbieHutchinson,CarolynRuppel,TimCollett,MyungLee–USGeological SurveyBillShedd,MattFrye–USMineralsManagement ServiceDanMcConnell–AOAGeophysicsDiannaShelander,JianchunDai–SchlumbergerRayBoswell,KellyRose–USDOE/NETLWarrenWood–NavalResearchLaboratoryTomLatham–ChevronBrandonDugan–RiceUniversity

Onboard Science TeamTimCollett–USGSRayBoswell–USDOE/NETLGillesGuerin,StefanMrozewski,AnnCook–LamontDohertyEarthObservatoryMattFrye,BillShedd,RebeccaDufrene,PaulGodfriaux–MMSDanMcConnell-AOAGeophysics

Page 6: MH News Summer09 - Fire in the Ice

6

Permafrost Gas Hydrates and Climate Change: Lake-Based seep studies on the Alaskan north slope M. J. Wooller (UAF), C. Ruppel (USGS), J.W. Pohlman (USGS), M.B. Leigh (UAF), M. Heintz (UCSB) and K. Walter Anthony (UAF)

Contacts: Matthew Wooller ([email protected]), Carolyn Ruppel ([email protected])

Thepotentialinteractionsbetweenclimatechangeandmethanehydratedestabilizationareamongthemostsocietally-relevantaspectsofgashydratesresearch.MassivedissociationofdeepmarinemethanehydratesfollowingrapidEarthwarmingisthemostplausibleexplanationforcarbonisotopicdatathatimplywidespreadreleaseofmicrobialmethaneduringtheLatePaleoceneThermalMaximum(~55millionyearsago),andmassivemethanehydratedegradationmayhavebeenassociatedwithamajorwarmingeventintheLateNeoproterozoicaswell.OncontemporaryEarth,circumstantialevidenceimpliesthatpermafrost-associatedmethane hydrate dissociation, possibly related to climate change, may be contributingtogasseepsintheMacKenzieDelta(Dallimoreetal.,2008).Gasisalsocurrentlybeingreleasedfromshallowsubseafloorhydratesinsomeareas,andtransientbottomwatertemperatureincreasesaresometimesknowntobethedestabilizinginfluenceforthesegashydrates.Still, there is no direct evidence that gas hydrates are currently undergoing significantandsystematicdestabilizationoncontemporaryEarth,thatclimateprocessesareresponsiblefordrivinganydestabilizationthatmaybeoccurring,orthatmethanereleasedfromdissociatinghydrateisasubstantial contributor to atmospheric methane concentrations.

Thebestplacetostudytheimpactofglobalclimatechangeongashydratesisthecircum-Arctic,wheregashydratesinandbeneathcontinuouspermafrostonshoreandrelictpermafrostintheshallowoffshoreareparticularlyvulnerabletoclimatechange(e.g.,Ruppel,2009).Thisregionhasbeenexperiencingrapid climate change—rising temperatures and sea level rise—since the end oftheLastGlacialMaximum.Reportsalsodocumentwidespreadpermafrostdegradation, changes in ecological zonation, and perturbations to the hydrologiccycleandclimatepatternsintheArcticoverthepastfewdecades.

The 2000 Methane Hydrate Research and Development Act and its 2005reauthorizationhighlightconnectionsbetweengashydratesandenvironmental change as a critical research area. Starting in late 2008, the UniversityofAlaska-Fairbanks(UAF)andtheU.S.GeologicalSurvey(USGS)inWoodsHolecommencedaNETL-sponsoredstudytodeterminethesourceandrateofmethaneebullitionfromlakesontheAlaskanNorthSlope(ANS),wherepreviousresearchhasindicatedthepotentialforsubstantialamountsofgashydratetooccurinandbeneaththepermafrost.Lake-basedebullitionnorthof45ºNinjectsanestimated24.2±10.5Tgmethaneintotheatmosphere(Walteretal.,2007),andthisfigurecouldrisehigherwithincreasingdegradationofpermafrostandproductionofmethaneinthawingsoilsathighlatitudes.Thereareseveralpotentialsourcesofmethanethatcouldfeedlake-basedebullitioninmanyareasoftheANS.LakesinthewesternandcentralportionoftheANSareoftenunderlainbythawbulbswheremicrobialmethaneisgeneratedfromorganic-richsoils.Othersourcesofmethane—dissociatinggashydrates,deep-seatedthermogenicgas,andcoalbeds—couldalsobefeedingtheebullitionsites.

In2009,fieldresearchforthejointUAF-USGSprojectfocusedonanebullitionsiteinshallow(~1mdeep)LakeQalluuraq,whichislocatedincontinuouspermafrost~90kmsouthofBarrow.ThedominantebullitionsiteatLakeQalluuraqisestimatedtoemit~100kgofmethaneperdaybasedon

Page 7: MH News Summer09 - Fire in the Ice

7

measurementscarriedaboutbyKateyWalterAnthony(UAF).ThelakeliesnearasmallareaoftheANShavingalocallyelevatedthermalgradientandaverythin or completely absent gas hydrate stability zone on maps produced by theUSGSinthe1990s(Figure1).Thus,anygashydrateatdepthinthisvicinitymightbepoisedtodestabilizeinresponsetodownwardpropagationofevenrelativelysmallperturbationsinclimateconditionssince~10,000yearsago.

Sampleanddataacquisitionforthe2009fieldworkwasstagedfromtheInupiatvillageofAtqasukintwophases.SnowmobileswereusedtotransportthefieldpartyandallinstrumentationinPhaseI(May),whenoperationswereconductedfromthelake’sicecover.Duringopen-waterconditionsinPhaseII(July),transportofpeopleandequipmentreliedmostlyonall-terrainvehicles,withadditionalheavyliftsupportfromaUSGS-contractedfloatplane.TheBarrowArcticScienceCenterprovidedaccesstotheAtqasukfieldstationfortheMayresearch,whiletheSouthMeadeK-12school,partoftheNorthSlopeBoroughSchoolDistrict,hostedthefieldparty and provided laboratory space and living quarters in July. Local and Inupiatguidesaccompaniedthefieldpartiesatalltimes,servingaslogisticscoordinators,bearguides,andoverlandescortsbetweenAtqasukandthefieldsitealongpathsthroughtraditionalInupiathuntingareas.Duringbothexpeditions,NETL-fundedresearchersparticipatedinformalandinformaloutreachactivitieswithlocalresidents,teachers,andschoolchildren.

Duringbothphasesofresearch,UAFresearchersMatthewWooller,MaryBethLeigh,RuoHe,andBenjaminGagliotiandUSGSscientistJohnPohlmanretrievedcores(Figure2)upto2.5mlongfromlakebottomsedimentsalongatransectfromtheseeptoabackgroundreferencelocation.ThefieldpartywasjoinedbyRobertVagnettiofDOE-NETLforthe

Figure 2: (Left) Mary Beth Leigh, Ben Gaglioti, and Rob Vagnetti coring from the ice in May 2009; (Right) Ben Gaglioti (UAF) and John Pohlman (USGS) using rhizons to extract pore waters from lake-bottom push cores aboard the coring platform on Lake Qalluuraq in July 2009.

Figure 1: Map of Alaska North Slope from Collett et al. (2008), showing the location of Atqasuk, the limit of gas hydrate stability (red), and the ANS gas hydrate total petroleum system (TPS) in tan.

Page 8: MH News Summer09 - Fire in the Ice

8

Mayexpedition,andKateyWalterAnthony(UAF)conductedlimnologicalmeasurementsandcollectedgasgeochemistrysamplesinMayaswell.Thecoresarebeingusedformicrobial,geochemical,sedimentological,andgeochronologicstudiesthatwill(1)documenttheHolocenerecordofmethaneemissionsinthelake(Figure3);2)unravelactivebiogeochemicalpathwaysregulatingmethaneproductionandoxidationduringice-coveredandice-freeconditions;and3)characterizethetaxonomyandfunctionalroleofmicrobesthatcyclesedimentarycarbonandmethane.Specificcore-basedstudiesinclude14C-geochronologicallyreferencedlipidbiomarkerandchironomidhead-capsuleanalysestoinferthemillennialscalerecordoflakemethaneemissions,concentrationandisotoperatiomeasurementsofpore-fluiddissolvedgases,inorganic species and organic compound determinations to delineate biogeochemicalpathways,andstableisotopeprobingandintactpolarlipid analysis to characterize the active microbial consortium.

Preliminarydataindicateaveryhighconcentrationofmethaneintheseepagegas.Althoughcompositionalandisotopicanalysesofseepgassamplesareunderway,welackadirectsampleofgashydratefromthisarea.Thus,itwillnotbepossibletolinktheseepgastodissociatedmethane hydrate through circumstantial similarities in composition andisotopicsignatures.AspartofthisprojectandrelatedNETL-fundedresearch,theUSGSisdevelopingfingerprintingtechniquesusingtracegasconstituentsthatcouldreliablydiagnosethepresenceofseepgasformerlycontainedwithingashydrates.Thistechniquewillbeapplicabletoseepgasesfrombothmarineandlacustrinesettings.

Watercolumnmethaneoxidationisacriticalsinkformethaneinsomesettings.Duringbothphasesoffieldresearch,NETL-NASgraduatefellowMonicaHeintz(UCSB)acquiredlakewatersamplesfordeterminationofmethane concentrations, oxidation rates, and stable isotope signatures andalsocollectedandfilteredwatersamplesforDNAextraction.TheDNAanalysesarepartofalargereffortwithintheUAF-USGSprojecttoidentifyandenumeratemethaneoxidizersinboththesedimentsandwatercolumn.

Figure 3: Integration of different types of data will be required to constrain paleoclimate and paleomethane conditions in lakes. Headcapsules of chironomids, which are larval stages of flies, are preserved in lake-bottom cores. The chironomid fossils retain isotopic signatures (δ13C) that can be used to reconstruct past climate and determine whether methane was present. Chironomid data therefore record some of the same information that can be inferred from foraminifera analyses in marine settings.

Page 9: MH News Summer09 - Fire in the Ice

9

Toprovidecontextualinformationforthegeochemical,microbiological,andpaleoclimaticanalyses,USGSgeophysicistCarolynRuppelandtechnicianCharlesWorleycollectedChirpseismicdata(4-24kHzfrequency),50MHzgroundpenetratingradardata,continuousresistivityprofiles,lake-bottomsonarimages,andimagesofmethaneplumesinthewatercolumnduringtheJulyfieldexpedition(Figure4).Thedatarevealawell-developedpockmarkattheebullitionsiteandadditionalleakageofmethanetothewatercolumnevenoutsidetheareadirectlybelowthelake’ssurfacebubbling.

InYear2oftheproject,researchersplantoaddadditionalsitesinthePrudhoeBayarea,whereboththepermafrostandhydratestabilityzonethicknessesareappreciablygreaterthannearLakeQalluuraqandwherecompositionalandisotopicinformationaboutrecoveredgashydratesisavailablefromthe2007BP/DOEMt.ElbertdrillingprojectconductedatMilnePoint.Toidentifypotentiallake-basedgasseeps,theUSGSwillconductaerialphotographicsurveysinOctober2009,justafterthelakesurfacesfreeze.UAFresearcherswillattempttogroundtruththeexistenceoftheseseepstolaythegroundworkforcoringandotheractivitiesinspring/summer2010.InrelatedresearchthatisoutsidethepurviewofthejointUAF-USGSproject,theUSGSGasHydratesProjectisplanningsummer2010dataacquisitiononshoreANSandintheshallowoffshoreBeaufortSeainareaswhereexistinginformationsuggeststhepossibilityofgasseepagecoupledwithpermafrostdegradation.

ProjectsupportisfromDE-NT0005665toUAFandDE-NT0006147andDE-AI26-05NT42496totheUSGS,withadditionalsupportfromaNETL-NASfellowshiptoM.HeintzandDE-NT0005667toD.ValentineatUCSB.ThisresearchwouldnothavebeenpossiblewithouttechnicalsupportfromC.Worley,B.Jones,andP.Bernard(USGS)andfromN.Stewart(UAF);assistancefromthevillageofAtqasuk,theNorthSlopeBorough,andemployeesoftheMeadeRiverSchool;andespeciallythefieldguidingservicesofW.Kippi,D.Whiteman,andT.O.Itta.

RefeRenCesCollett,T.S.,Agena,W.F.,Lee,M.W.,Zyrianova,M.V.,Bird,K.J.,Charpentier,T.C.,Houseknecht,D.W.,Klett,T.R.,Pollastro,R.M.,andSchenk,C.J.,2008,Assessmentofgas hydrate resources on the North Slope,Alaska,2008:U.S.GeologicalSurveyFactSheet2008-3073.

Dallimore,S.R.,Bowen,R.G.,Cote,M.M.,Wright,F.J.,andLorenson,T.D.,2008, Degrading gas hydrates as a possiblesourceforgasreleaseandtheformationofpockmarkfeatures,MackenzieDelta,N.W.T.,Canada,EOS,Trans.AmericanGeophysicalUnion,89(52),AbstractU23D-0083.

Ruppel,C.,2009,Methanehydratesand global climate change; a status report[abs.]:AmericanChemicalSociety National Meeting, 237th, DivisionofFuelChemistry,SaltLakeCity,Utah.

Walter,K.M.,Smith,L.C.,andChapin,F.S.,2007,Methanebubblingfromnorthernlakes:presentandfuturecontributions to the global methane budget. Philosophical Transactions oftheRoyalSocietyofLondonA,1657-1676.

Figure 4: (A) Ebullition on the surface of Lake Qalluuraq; (B) 83 kHz image of seep, pockmark, and methane in the water column; (C) Sonar image of the pockmark associated with the ebullition site. The pockmark is ~3 m across and 2.25 m deep based on independent observations by K. Walter Anthony.

AB

C

Page 10: MH News Summer09 - Fire in the Ice

10

Potential occurrence of Gas Hydrates offshore MexicoBy Francisco J. Rocha-Legorreta, Instituto Mexicano del Petroleo

TheInstitutoMexicanodelPetroleo(IMP)hasconductedevaluationsofgeologicalandgeophysicaldataintheevaluationofgashydrateoccurrenceoffshoreMexico.ThefirstphaseofthisefforthasfocusedontheidentificationoffeaturesthatsuggestthepotentialoccurrenceofmajorgashydrateoccurrenceswithinthesouthwesternGulfofMexico,includingextensivebottom-simulatingreflectors,evidenceforgasflux,andtheexistenceoffavorablereservoirfacies.Goingforward,IMPwillworktofurthercharacterizethemostpromisinglocations,includingassessmentofpotential energy resources.

ThisreportdescribesoneparticularlyinterestingregioninwhichUpperPleistoceneandPliocenesedimentsaredeformedintoelongatefoldedstructuresthathaveclearexpressioninseafloortopography(Fig1).IMP’sevaluationofthisregionhasulitizedhigh-quality3-Dpoststackseismicdatawithoutpost-processingoranymethodthatcouldmodifythestackedamplitudes. The seismic data cover over 4,000 km2inwaterdepthsrangingfrom800to2000meters.Nowellshaveyetbeendrilledinthisarea.TheoverallgeologyofthisareaappearsanalogoustothatofthereportedAlaminosCanyonBlock818gashydrateoccurrence(seesuggestedreading),howeverwithmuchmoreareallyandverticallyextensivegashydrate potential.

Open conduit?

G-W contact

Free gas

Strong amplitudes

BSR

Figure 1: Topography of sea-floor in the study area in the southwestern Gulf of Mexico. Gas hydrate indicators are observed within folded structures associated with the linear structures on the left of the figure. (courtesy IMP and Pemex).

Figure 2: Seismic data showing the occurrence of a BSR in association with the fold structure, as well as potential gas-water contacts below the BSR, strong amplitudes above the BSR, and evidence of gas venting on fold crest (courtesy IMP, Pemex, and SEG).

Page 11: MH News Summer09 - Fire in the Ice

11

Theexistenceofgashydratesalongthecrestofthesestructuresisindicatedbynumerousfeaturesthatcanbeseenintheseismicdata(Fig.2).Mostnotableintheseismicdataareindicationsofseismicblankingandstrongbottom-simulatingreflectorsthatarebothofthecontinuousandsegmentedtype(seeSheddetal,FITISpring2009).TheBSRsareseentoextendfortensofkilometersalongthestrikeofthesestructures.Numeroustopographicfeaturesontheseafloorsuggestiveofhighgasflux,suchasventsandmounds,arealsopresent.Onenotablecrater2kmindiameterand250metersdeep(Fig.3)isthoughttorepresentarelativelylargegasreleaseeventmostlikelyassociatedwithtectonicactivityandreactivationofthefaultsthatboundthefoldstructure.

Particularlyfavorablefortheexistenceofhighly-concentratedgashydrateswithinporousandpermeablesandsedimentsaretheexistenceofseismic“flat-spots”belowtheBSR(seeFig.2).ThesefeatureshavepolarityoppositethatoftheBSR(andtheseafloor)andsuggestpossiblegas-watercontacts,indicatingtheexistingofthicksandreservoirsthatcrossthroughthebaseofgashydratestability.StrongamplitudereflectionswithinthesectionbetweentheBSRandtheseafloorarealsofavorableindicationsofpotential resource-quality accumulations.

IMPanticipatesconductingfurtherresearchonthisandothersitestofurtherconstrainthevolumeandresourcepotentialofgashydratesinMexico.

suGGesteD ReADInGRocha-Legoretta,F.J.,2009.Seismic evidence and geological distinctiveness related to gas hydrates in Mexico. The Leading Edge,June2009,pp.714-717.

Shedd,B,etal.,2009.Varietyinseismicexpressionofthebaseofgashydratestability:Fire in the Ice Newsletter,Spring,2009.

Boswell,R.,etal.,2009,OccurrenceofgashydrateinOligoceneFrioSand,AlaminosCanyon818,northernGulfofMexico,J. Marine and Petroleum Geology,v.26,pp.1499-1512

Figure 3: Seismic data showing the nature of the BSR and the large seafloor expulsion feature (courtesy IMP and Pemex).

Page 12: MH News Summer09 - Fire in the Ice

12

the Identification of sites for extended-term Gas Hydrate Reservoir testing on the Alaska north slopeBy Tim Collett, US Geological Survey; Ray Boswell, US DOE

SincetheestablishmentoftheMethaneHydrateR&DActin2000,aprimarygoalofgashydrateresearchhasbeenthedeterminationofthecommercialviabilityofgasproductionfromgashydratereservoirs.Today,awealthofdatagatheredinthelab,duringfieldtests,andinnumericalsimulation studies indicates clearly that gas is technically recoverable fromgashydrateshousedinporousandpermeable(sandorsandstone)reservoirsusingexistingtechnologies.However,whatisnotwellunderstoodishowlongitmighttaketorecoverthosevolumes,fromhowmanywells,withwhatwaterproduction,andwithwhatreservoir/wellborecompletionandmaintenancerequirements.Aprogramofextended-termfieldtestsisneededtoaddresstheseissuesandmovetowardabetterunderstandingofthepotentialcommercialviabilityofnaturalgasproductionfromgashydratesreservoirs.Tobemosteffective,thisprogramshouldfeatureaseriesoftests,utilizingdifferentapproaches,andappliedoverarangeofgeologicsettings.

Overthepast6years,aseriesofshorttermandcontrolledtests(atMountElbertinAlaska:seeBoswelletal.,ICGH-2008;andatMallikinnorthernCanada,YamamotoandDallimore,FITISummer2008)haveprovidedawealthofpetrophysicalinformationandinsightonpotentialreservoirperformance.However,areservoir’sinitialproductionresponseoftenprovides limited insight into actual deliverability due to transient effects thatareverydifficulttounderstand.Becausethetimerequiredfortheproduction response to stabilize may take many months or more, a key criterionforgashydrateproductiontestingistheavailabilityofasitethatallowscontinuousaccessoverasufficientdurationtoprovidemeaningfuldataonreservoirperformance.Thiscouldmeanonlyamonthorsoifthetest produces large and stable volumes quickly; it could mean several yearsifalltheplannedcontingenciesforsupplementaltestingneedtobeinvoked.InAlaska,thismeansthatasurfacelocationonanexistingproductionpad,whichwillallowyear-roundaccesstothewellsiteandtoneededservicesandinfrastructure,isrequired.

toward a Production test on the AnsAtpresent,theU.S.governmentisworkingcloselywithindustryandstateandlocalgovernmentsinAlaskatodevelopavarietyofpotentialtestingoptions.ThemostmatureeffortisbeingconductedinpartnershipwithBPExploration(Alaska)Inc.TheBP-DOE-USGSprogramhasbeenunderwaysince 2002, and has produced many key contributions to the evaluation ofANSgashydrates,includingthesuccessfuldrillingoftheMountElbertstratigraphictestwellatMilnePointAlaskainearly2007.Currently,DOEandBPareworkingtoexpandthisprogramintoabroadercollaboration(the“ANSJointIndustryProject,JIP”)thatwillsolicitparticipationfromnumerous groups in Alaska and beyond.

TheprimarilyobjectiveofthisJIPwouldbetheexecutionofanextended-termproductiontestfocusedondepressurizationthatwillbuildupontherecentfindingsatbothMallikandMountElbert.Overthepast18months,DOEandUSGShaveworkedwiththemembersoftheBPprojectteam to develop recommendations as to the most appropriate location andoperationaldesignfortheinitialproductiontestsite.Sevenpotential

Page 13: MH News Summer09 - Fire in the Ice

13

Figure 1: Montage of drill log data from MPU-KRU-PBU area. The data are shown relative to interpreted base of ice-bearing permafrost. The indicated zones of reservoir temperature are approximate only. Note that the PBU logs (5, 6, & 7) show inferred gas hydrate in multiple zones and are the deepest (warmest) identified locations of gas hydrate in areas with established surface facilities. The next data pointdown-dip from these wells (Well #8) has relatively poor log data and anomalous responses that may reflect drilling effects.

Target Depth(ft) LowerContact

Thickness (ft)

Gas Hydrate Saturation(%)

Porosity (%)

Intrinsic Permeability(mD) Temperature(oC) Pessure

GradientSalinity (ppt)

Milne Point unit – Mount elbert ProspectC-sand 2132 Water 52 65 35 1000 3.3-3.9 Hydrostatic 5D-sand 2014 Shale? 47 65 40 1000 2.3 - 2.6 Hydrostatic 5

Prudhoe Bay unit – L-pad vicinityC2-sand 2318 Shale 62 75 40 1000 5.0–6.5 Hydrostatic 5C1-sand 2226 Shale 56 75 40 1000 5.0–6.5 Hydrostatic 5D-sand 2060 Shale 50 70 1000 3.0–4.0 Hydrostatic 5E-sand 1915 Shale 50 60 1000 2.0–3.0 Hydrostatic 5

Prudhoe Bay unit Down-Dip from L-padC-sand 2500 Shale* 60* 75* 40* 1000* ~12 Hydrostatic* 5*

Kuparuk River unit – West sak 24 vicinityB-sand 2260 Shale? 40 65 40 1000 2.0–3.0 Hydrostatic 5

*Conditions assumed for the Prudhoe Bay Unit Down-Dip “L-pad” site

table 1: Summary of Reservoir Parameters for Potential Locations/Targets

Page 14: MH News Summer09 - Fire in the Ice

14

surfacelocationswithintheexistinginfrastructure(thePrudhoeBay,Kuparuk,andMilnePointfields)wereconsidered.Thesesitesweregroupedintofourlocationsfordetailedevaluation(Table1).

Criteriaweredevelopedagainstwhicheachofthesesiteswasevaluated.Thesecriteriadealtprimarilywithtwofactors;1)mitigatinggeologicrisksincludingcriteriaofreservoirquality,reservoirtemperature,natureofboundingunits,natureofproductionmodelingforecasts,andpresenceofmultiplepotentialtestablezones;and2)mitigatingoperational/logisticalrisksincludingcriteriaofeaseofphysicalaccesstothetestlocation,drilling/completioncomplexity,capability/capacityoflocalfacilities,localneed/useforgasproducedduringthetest,disposalofwaterproducedduringthetest,impact on ongoing operations, and overall program complexity.Theseevaluationsaresummarizedbelowand in Table 2.

evaluation of locations in Milne Point unitThe2007BP-DOE-USGSMountElbertstratigraphictestwellfullymitigatedanygeologicriskatthesiteandnoothersignificantinferredGHaccumulationinMPUhasyetbeenconfirmedbywelldata,consequently, any production test conducted in MPUwouldlikelytestthissite.Theaccumulationfeaturestworeservoirs(UnitsCandD)thatareclean,high-porosity,fine-grained,shallowmarinesandswithhighGHsaturations(Figure1).However,logdataindicatesthatthelowerunit(UnitC)islikelyincontactwithfreewater,whichcouldsignificantlycomplicateanextendedwelltest.Mostimportantly,thepositionofthisreservoirjustbelowpermafrostwouldposeadditionaloperationaldifficultiesrelatedtothelowformationtemperature(between2and3°C).Furthermore,drillingintotheaccumulationfromoneoftheexistinggravelpads(MPUBorE-pads)wouldrequireahigh-angletohorizontalwellpaththatwouldcrossatleastonemajorfault,addingadditionalcomplexitytothewelldrilling,completionandloggingoperations,aswellasthetestdataanalysis.Logistically,theMPUsitesprovideampleinfrastructuresupport.

evaluation of locations in Prudhoe Bay unit areaTwolocations(PBUL-padandthesiteoftheKuparukState3-1-11well))inthePBUareawereevaluated.Atbothlocations,aseriesofstackedgashydratefilledsandshavebeenindentifiedinexistingwelldata(Figure1).Thesands(UnitsC,D,andE)areexpected to be very similar petrophysically to the unitscoredandloggedatMountElbert.Furthermore,alocationcloselyoffsettothePBUL-106wellwilllikelyalsoencounterafourthgashydrate-saturatedsand(UnitC-1)atthebaseofthereservoirsection.

Figure 2: Comparison of typical production simulation results for ANS gas hydrate reservoirs. Top: A setting typical for known MPU and KRU reservoirs (3-4 °C); Center: Westend PBU setting (5-6 °C). Bottom: Down-dip PBU setting (10-12 °C): Courtesy: International Gas Hydrate Code Comparison Group)

Page 15: MH News Summer09 - Fire in the Ice

15

Intotal,GH-bearingsandsatthePBUL-padsitetotal218feetinthickness.Theprimarytesttarget,thecompositeCsand(includingCandC1),isroughly100ftthick,andis~3°CwarmerthanthepotentialtargetatMPU.UnitsDandEalsoprovideexcellentupholetargetstoaccommodateoperationalcontingenciesortoprovidetestingoptionsacrossarangeofinitialtemperatureconditions.GeologicriskfortheUnitC,DandEsandsislowgivennearbywellcontrolandtheinferredlaterallycontinuityofthemarineshelfsands;however,seismicdelineationofthesand-bodieswouldbeneededbeforetheselectingthefinalwelllocation.ThesecondevaluatedPBUlocationwouldcloselyoffsettheKuparukState3-1-11well.ThegeologyseeninthiswellmimicsthatofthePBUL-106well(Figure1),withtheexceptionthattheC1sandisnotpresentbut,theKuparukState3-1-11wellisnotonaoperationalgravelpadandwouldrequiresignificantinvestmentininfrastructuredevelopmentandgreateroperational/logisticalsupportforthetestingprogram.

evaluation of Locations in Kuparuk River unitGashydratesarepresentintheeasternmarginoftheKRUandcouldbeaccessedfromaseveralofexistingwellpads.However,welldatafromKRUareoflowerqualitythanthoseatPBUandthereservoirssandsoccurstructurallyup-dip(tothewest)ofthepotentialPBUsites.TheUnitCandDhydratereservoirsatKRUarewellwithinthepermafrostsectionandarethereforenotviabletargetsforaninitialproductiontest.However,UnitB,whichisaveryhigh-qualityreservoirthroughoutMPUandPBU,appearstobeGH-saturatedfromtheavailablelogdata.Overall,thetemperatureandreservoirqualityofthesingleKRUtargetisexpectedtobeverysimilartothoseinMPU,butwithsomewhathighergeologicrisk.

evaluation of Locations in “down-dip” PBu USGSregionalmappinginthegreaterANSinfrastructureareaindicatesthatthereshouldbeopportunitiestotrackthegas–hydrate-bearingUnitC,D,andEsandsdown-diptotheeastofthePBUL-padsite.Suchalocationwouldbehighlyfavorableasthegas-hydrate-bearingreservoirswouldoccur at higher temperatures up to 12°C.However,thereisalackofwellpenetrations in this region. The only control point in the area is the Beechy

parameter MP e-pad MP B-pad PBu L-pad PBu Kup st. 3-11-11

PBu Down-dip L-pad KRu W24 KPu 1H

Reservoir Temperature H H M M L H H

Ownership L L H H H M-L M-L

Site Access M M L L H L L

Geologic Risk L L L L H M M

Data Availability L L L M H M M

Well Risk L-M L-M M M H M M

FacilitiesAccess L L L M H M L

Gas Disposal H H H H H H H

Interferencew/Opera-tions L ? H? L L L H?

Water Disposal L L L M H M L

UseforGas L? L? M M M L L?

Test Options M-H M-H L L M-H H H

table 2: Review of relative favorableness of each location for long-term production testing. H = high risk associated with this parameter (unfavorable); M = medium risk; L = low risk (favorable)

Page 16: MH News Summer09 - Fire in the Ice

16

State#1well(Figure1)whichencounteredapparentfreegasintheUnitDsandanditisnotpossibletoconfirmwithanyconfidencethecontinuityofthereservoirsbetweentheBeechyStatelocationandthewesternPBUwells.Asaresult,andanylocationselectedwouldhaveveryhighgeologicrisk.Significantadditionalseismicinterpretationandwellcorrelationworkwouldberequiredtodetermineifgashydrateexistatthissite.Furthermore,thisareaalsolacksexistingsurfacefacilitiesintheregion.

Modeling results Tobetterunderstandthepotentialreservoirresponseforthelocationsconsideredinthisstudy,DOEandUSGScollaboratedwithBPandtheparticipantsoftheInternationalCodeComparisongroup(seeAndersonetal.,ICGH-2008)toconductnumericalgashydrateproductionsimulationsfortheidealizedMPU,KRU,PBU,andDD-PBUsettings.Theseanalysesleveragedthe2007MountElbertdatainordertocompareproductionbetweendifferentgeologicsettingsandbetweenthevariousparticipatingmodeling approaches. To ease these comparisons, the geologic representationsinputtothemodelsweresimplifiedandhomogenized.Asaconsequence,themostmeaningfuldatafromthiseffortarenotthe absolute predicted production values, but instead the comparative productivitybetweensitesandtherelativeperformanceofthemodels(seeFITI,2009Anderson,etal.).

GiventhesimilarityoftheKRUandMPUsettings,onlythreesetsofmodelingrunswereundertaken(Figure2).Althoughthesecasesdifferedsomewhatinreservoirthicknessandpressure,themodelinggroupagreedthereservoirtemperaturesweretheprimarycontrolonthemodeledproductionrates.TheMPU/KRUmodelshowedconsistentpredictions,withverymodestproductionratesandlong“lead”times(timebeforefirstgasproductionoccursandallproductioniswater).AnalysisofthePBUcase(productionfromthecompositeUnitCandC1sands)resultedinproductionratesroughlyfivetimesthoseofMPUandwithzeroleadtime.TheDD-PBUcaserevealedtheclearbenefitsofhighertemperatures,withratesincreasinganotherfive-fold(Andersonetal.,ICGH-2008).

summaryFromthisreview,thePBUsite,particularlytheL-padlocation,isclearlyfavoredastheoptimalsiteforaninitialextendedgashydrateproductiontest.Thesiteoffersthebestcombinationoflowgeologicrisk,maximaloperationalflexibility(multiplezones),lowoperationalrisk(verticalwellsadjacenttoinfrastructure)andpromiseofnear-termandmeaningfulreservoirresponse.Theprimaryconcernwiththislocationisthelogisticalissueassociatedwithgainingapprovalofthreemajorresourceindustrypartners.AlthoughMPUremainsapossibility,thesiteisclearlylessfavorableduetoamuchmorecomplexoperationalenvironment(colderreservoirs,deviatedwells,asinglepotentialtarget).TheKRUlocationswereassessedasofferingnogeologicaladvantagestotheMPUlocation,butwithgreatergeologicrisk.ThePBUdown-diplocation,thoughofferingthepotentialforencounteringthewarmestreservoirsintheregion(andthereforepotentiallythemostsuccessfultestintermsofrates),wasdeemedunacceptableduetohighgeologicrisk,andthelackofexistingfacilitiestosupportatest.

suGGesteD ReADInGAnderson, B. et al. 2008, Analysis ofmodulardynamicformationtestresultsfromMountElbert-01stratigraphictestwell,MilnePointUnit,NorthSlope,Alaska.ICGH, 2008.

Anderson,B.etal.2008,Effectsofreservoirheterogeneityonproductivityofgashydratereservoirs.Fire in the Ice,Fall2008.

Boswell,R.etal.2008,Investigationofgashydrate-bearingsandstonereservoirsattheMountElbertstratigraphictestwell,MilnePoint,Alaska. ICGH, 2008

Yamamoto,K.,Dallimore,S.2008.Aurora-JOGMEC-NRCanMalik2006-2008gashydrateresearchprojectprogress. Fire in the Ice, Summer 2008.

Page 17: MH News Summer09 - Fire in the Ice

17

naval Research Laboratory Contribution to Global Methane Hydrate ResearchBy Richard Coffin (NRL, Marine Biogeochemistry Section Lead– Washington, D.C.) and Warren Wood (NRL, Geology/Geophysics Section Lead – Stennis, MS)

Approximately10yearsago,scientistsinTheNavalResearchLaboratory’sMarineBiogeochemistrySectioninWashington,D.C.andtheGeology-GeophysicsSectioninStennis,Mississippibeganworkingtowardsasharedgoalofunderstandingtheprocessessurroundingmethanehydratedevelopment in coastal regions.

Alongtheway,theirresearchprogramgrewtoincludecollaborativeresearchpartnershipswithscientistsindomesticandinternationalsciencecommunities.ThesuccessofNRL’smethanehydrateresearchprogramcan,inpart,beattributedtothesecollaborativepartnerships,whichhaveproducedresultsincountriesasnearasCanadaandasfarawayasNewZealand.

InthisarticlewewilltouchbrieflyontheNRLhydratesresearchprogram,elaboratemoreontheglobalpartnershipsthathaveformed,anddiscusshowthesepartnershipsplayedanimportantroleinthecontributionstothestudyofmethanehydratemadebyNRL.

the ProgramComprisedof10scientistsfromtheNRLandalargenumberofdomesticand international scientists, the research team seeks to integrate geophysics, geochemistry,andgeologytoaddressawiderangeofbasicandappliedresearchtopics.Usingseismicdata,shallowsedimentgeochemicaldataandverticalfluidmigrationdata,theresearchteamcandetermine:

• Deepsedimentmethaneandpotentialhydratebeds

• Variationsintheverticalgasflux

• Shallowsedimentcarboncycling

• Methanefluxtothewatercolumn

Alargeamountofthisdataiscollectedbyteammembersinthefieldtoensurethattheexpeditionaddressesallplannedprojectresearchtopics.Thesetopicstypicallyinclude:

• Seismicdatainterpretationofgasandgashydrateaccumulationsandfluidflowconduits

• Initialpredictionofdeep,sedimentmethanedeposits

• Shallowsedimentandwatercolumncarboncycling

• Influenceofmethaneonmicrobialcommunitydiversity,oceancarbon modeling, and climate change

NRL has expertise in seismic data acquisition and interpretation, onboard analysisofshallowsedimentandporewatersamples,elementalisotopeanalysis(13C,14C,18O,anddeuterium)totracksedimentmethanesourcesandcyclingandstate-of-the-artanalysisofmicrobialcommunitydiversity.

thinking globallyThroughaseriesofinternationalworkshops,theglobalreachoftheNRLmethane hydrates research team has extended considerably over the last 10years.LedbyscientistsfromNRL,UniversityofHawaii,theNationalInstituteofAdvancedIndustrialScienceandTechnology(AIST)-Hokkaido,

Page 18: MH News Summer09 - Fire in the Ice

18

andtheUniversityofBergen,theseworkshopshavebeenattendedbyoverathousandscientistsfrom22nations.

Fromtheseworkshops,severalcollaborativefieldresearchprogramsintheGulfofMexico,CascadiaMargin,mid-ChileanMargin,HikurangiMargin,andtheBeaufortSeahavebeendeveloped.

AreturntotheGulfofMexico,mid-ChileanMargin,andtheHikurangiMargin is in discussion to continue previous research efforts. In September 2009,NRL-ledresearcherswilltraveltoBarrow,AlaskatoparticipateintheBeaufortSeaMethaneHydrateExpeditiononboardtheU.S.CoastGuardPolar Sea.USscientistsfromNRL,NETL,USGS,UniversityofDelaware,UniversityofTexas,UniversityofMaryland,UniversityofHawaiiandSaintMary’sCollegearecollaboratingwithinternationalresearchersfromNIOZ(Netherlands),IFM-Geomar(Germany),andHeriot-WattUniversity,Scotland.Researchfocusesonmethanesourcesandcyclingintheshallowsedimentandwatercolumninanearshoretocontinentalslopefieldplan.

TherearealsodiscussionscurrentlybeingheldfornewfieldprogramsintheLaptevandEastSiberianSeasoffthecoastofRussia,aswellasareasintheNorwegian-GreenlandSea,andintheBayofBengaloffthecoastofIndia.FutureparticipantsfortheseexpeditionswillincluderesearchersfromCanada,Chile,Germany,theNetherlands,Norway,NewZealand,theUnitedKingdomandtheUnitedStates.

Reflecting on the Past: Domestic and International field Program successesOver the last 10 years, several NRL accomplishments via domestic and international collaborations have contributed to a more thorough understandingofhydrateformation,stability,andabundance.

Bycouplinggeochemicalanalysesofshallowsedimentcarbonpoolstostablecarbon/radiocarbonisotopeanalysisofdifferentorganicandinorganic carbon pools, the strong control that methane has over the shallowsedimentmicrobialcarboncyclinginregionsthathaveastrongvertical methane flux is demonstrated.

The hydrate structures in the coastal sediments on the Texas-Louisiana ShelfwereoriginallybelievedtobeStructuresIandII.StructureHhydratewasthoughttoonlybeformedinlaboratoryexperiments.However,therewasrecognitionofgascompositionsfromsamplescollectedduringthe2004researchexpeditionlocatedintheGulfofMexico’sAtwaterValleythatindicatedthatthenaturally-formedsamplescouldbeStructureHhydrates.Usingthesesamples,athoroughanalysisofthestructuralcompositionusingtheAdvancedPhotonSource(APS)byresearchersattheArgonneNationalLaboratoryconfirmedthepresenceofStructureHhydrateintheGulfofMexico(Figure1)

FurtheranalysisofhydratescollectedfromtheCascadiaMarginduring2004alsoconfirmedthepresenceofStructureHhydratesinthisregion.Relatedtothisdiscovery,fieldworkhadbeenfocusedonthedistributionofbiogenicmethanehydratesintheHydrateRidge.WiththeaccidentaldiscoveryofshallowsedimenthydratesbynearbytrawlersattheBarkleyCanyonsite,NRL,UniversityofVictoriaandCanadianGeologicalSurveyresearch teams conducted seismic and geochemical surveys. There they foundStructureIIthermogenichydrateinaregionthatwasthoughttobea dominantly biogenic methane source.

In2003,NRL-ledresearchersfromtheUnitedStates,Chile,CanadaandJapan,initiatedmethanehydrateexplorationoffthemid-ChileanMargin.

Page 19: MH News Summer09 - Fire in the Ice

19

InOctoberofthatyear,acquiredseismicdatasetthestageforgeochemicalevaluationofhydrateloadingsduring2003and2004(Figure2).Acombinationofshallowsedimentgeochemistry,analysisofverticalfluidmigrationandseismicdatainterpretationresultedinthefirstdiscoveryofhydratesinthisregion.ThisresultedintheChileansdevelopingalongtermmethane hydrate exploration program. NRL plans to continue contribution tothisresearchin2011.(Formoreinformationonthisexpedition,pleasesee International Science Team Studies Hydrates Off the Coast of Chile in the Summer2003editionofFire in the Ice.)

Withthisfieldprotocolwelldeveloped,theNRLresearchersjoinedaNewZealandresearchteamledbyIngoPecherfromGeologicalandNuclearSciences in Wellington to conduct the initial hydrate exploration on the Hikurangi Margin, across the Porangahau Ridge. The thorough seismic, geochemical and vertical fluid migration data interpretation suggested that the initial region did not have a large deep sediment methane hydrate distribution.

However,whentheNRLfielddatawaslatercoupledwithdatafromIFM-Geomar’sfieldworkandacontrolledsourceelectromagneticsurvey,athoroughdataevaluationrevealedhorizontalandverticaldistributionofmethane hydrate deposits.

Thesepastexpeditionshavedevelopedbroadknowledgeforbasicresearchinmethanehydrateexploration.Forexample,observationofshallowsedimentporewatermethaneandsulfateprofilescanbeusedto assess spatial variation in deep sediment methane concentrations. However,thesulfateprofilesareinfluencedbythedeepsedimentmethaneverticalfluxandtheshallowsedimentmethaneandsulfatecycling.Fora complete interpretation, the biogenic cycles controlling methane and sulfateneedtobeunderstoodateachsite.

While it is assumed that biogenic methane is a dominant source in many study regions,thereispotentialforthermogenicmethanenearby;suggestingsome

Figure 1: Hydrate structure analysis on the Argonne National Laboratory Advanced Photon Source showed the presence of Structure H in natural hydrate samples from the Texas-Louisiana Shelf in the Gulf of Mexico.

Page 20: MH News Summer09 - Fire in the Ice

20

deep sediment hydrate deposits are localized and not spread across long distances.Basicresearchinsedimentbiogeochemistryshowsclearpotentialformethanetobethedominantenergysourceintheshallowsedimentcarboncycling,andhaspotentialtocontributetothewatercolumncarboncycling.

StablecarbonandradiocarbonisotopeanalysisofdifferentcarbonpoolsinAtwaterValleysedimentshowtheverticalfluxonmethaneonamoundcancontributeto97%oftheshallowsedimentorganiccarbon(Figure3).ThisapproachiscurrentlyplannedtoaddressthevariationbetweenpermafrostanddeepsedimenthydratecontributiontoshallowsedimentandwatercolumncarboncyclingintheBeaufortSea,LaptevSeaandNorwegian-Greenland Sea over the next three years.

Toobtainpeer-reviewedmanuscriptsandreportsforthedifferentresearchprojects,contactRichardCoffin([email protected])orWarrenWood([email protected]).

Figure 2: The international science team involved with methane hydrate research off the mid Chilean Margin during 2004. Juan Diaz Catholic (University of Valparaiso) and Rick Coffin served as chief and co chief scientists off the coast of Concepcion Chile.

Core 2 Core 7

PhytoplanktonSedimentation

Methane Flux

� based on � 14C

� based on � 14C

SOCSOC

3% Organic Carbon

97% Organic Carbon� based on � 14C

� based on �13C

42% Organic Carbon

55% Organic Carbon

~50% Organic Carbon

Figure 3: Estimates of deep methane contribution to shallow sediment carbon cycling between regions with advective (on the mound) and diffusive vertical fluxes (off the mound).

Page 21: MH News Summer09 - Fire in the Ice

21

Announcements

Marine Geophysical Researches Call for PapersTheJournalofMarine Geophysical Researches(MGR),ahigh-qualityresourcefortheanalysisofgeophysicaldataindeep-oceanbasins,isexpandingtheirfocustoincludesubmissionsongeophysics,structure,stratigraphy,and sediment deposition processes along continental margins. MGR recentlyissuedacallforpapersfortheirupcomingspecialissue:Application of Geophysical Methods on Gas Hydrate Exploration.

PapersneedtobesubmittedbeforeNovember1,2009.Formoreinformation,pleasesee http://www.springer.com/earth+sciences/oceanography/journal/11001.Forquestions,pleasecontactthespecialissueeditorsTan-KinWang([email protected])andWin-BinCheng([email protected]).

2009 Hydrate fellows AnnouncedThisyear’scallforapplicationstotheMethaneHydrateResearchFellowshipprogramcreatedalargepoolofhighlyqualifiedapplicantsfortheselectioncommitteetochoosefrom.Itwasrecentlyannouncedthatfromthisapplicantpool,AnnCookandHughDaiglewereselectedasthenextrecipientsoftheMethaneHydrateResearchFellowship.

AnnisaPh.D.candidateinMarine/BoreholeGeophysicsatColumbiaUniversityinNewYorkCityandplanstodefendherthesis,Gas hydrate-filled fracture reservoirs on continental margins,thisfall.Usingdatashehelpedcollectduringthe2009GulfofMexicoGasHydrateJointIndustryProject(JIP,DOE/NETLMethaneHydrateProjectDE-FC26-01NT41330),AnnplanstostudygashydratedistributionandconcentrationintheGulfofMexicoatthemeterscaleandatthereservoirscale.Herstudyofhydrateatthereservoirscalewillutilizedatacollectedwiththeazmuthialresistivitytool,PeriScope,duringtherecentGOMdrillingexpeditionaswellascontrolled-sourceelectromagnetic(CSEM)surveydatacollectedoverthe2009JIPsites.AnnwillworkincollaborationwithDr.DavidGoldbergwiththeBoreholeResearchGroupatLamont-DohertyEarthObservatory.

Hugh,aPh.D.candidateinEarthScienceatRiceUniversityinHouston,Texas,willstudythefeedbackprocessesthatsurroundavarietyofrelatedconditions,includingenvironmentalfactors,sedimentphysicalproperties,fluidflowthroughfracturedandporousmedia,andmethanehydrateformation.Toachievethisgoal,hewillprimarilyfocusonthenumericalmodelingofmethanehydrateaccumulations,inparticularthemodelingoffluidflowthroughporousmediumflowandfracturedmediumflow.HisprojectwillutilizeresultsfromOceanDrillingProgramLegs164 and 204,andDOE/NETLMethaneHydrateProjectsDE-FC26-01NT41330 (GulfofMexicoGasHydrateJointIndustryProject),DE-FC26-06NT42960 (DetectionandProductionofMethaneHydrates)andDE-FC26-06NT43067 (MechanismsLeadingtoCo-existenceofGasandHydrateinOceanSediments).HughwillworkincollaborationwithDr.BrandonDuganatRiceUniversity.

Ann Cook

Hugh Daigle

Page 22: MH News Summer09 - Fire in the Ice

22

Announcements

usGs Mendenhall Postdoctoral fellowship in Climate-Hydrates InteractionsTheUSGSannouncesthestartoftheannualMendenhallPostdoctoralFellowship(http://geology.usgs.gov/postdoc/)competition.Oneofthisyear’sFellowshipopportunitiesagainfocusesontheinteractionofgashydratesandclimate,withaparticularemphasisonstudiesrelatedtoonshoreandshallowoffshorepermafrostgashydrates(http://geology.usgs.gov/postdoc/2011/opps/opp7.html).

Applicantsmustbewithin5yearsofcompletingaPh.D.ingeology,geochemistry,geophysics,microbiology,orarelatedfieldandhaveabroadenoughunderstandingofchemistry,physics,andbiologytocontributetomultidisciplinaryprojects.ApplicationsaredueonNovember9,2009forfellowshipsstartingonorafterOctober1,2010.

ThedutystationforthisfellowshipwillbeWoodsHole,Massachusetts,withC.Ruppel([email protected])andJ.Pohlman([email protected])asdesignatedresearchadvisorswithintheUSGSGasHydratesProject.ThesuccessfulapplicantwillhavetheopportunitytocollectnewdataduringfieldcampaignsontheAlaskanNorthSlopeortheshallowBeaufortShelf.

Hydrates to be the focus of two sessions at the 2009 Annual Meeting of the AGuTwosessionsongashydrateswillbeheldatthe2009AnnualmeetingoftheAmericanGeophysicalUnion.Thefirstsession,Gas Hydrates—Results of Recent Field Investigations, willbedevotedtoreportingontheresultsofrecentfieldexpeditionsdesignedtoassessandcharacterizedeeplyburiedgashydratesineithermarineorpermafrostsettings.

Detailsonthissession(OS2)canbefoundat: http://www.agu.org/meetings/fm09/program/scientific_session_search.php

The second session, Geological Setting of Gas Hydrate Reservoirs and Seeps: A Source for Clean Energy and/or a Storage for CO2,willfocusonfield,experimental,andnumericalsimulationsrelatedtotheconversionofmethaneclathratesintoCO2 hydrates.

Detailsonthissession(OS5)canbefoundat: http://www.agu.org/meetings/fm09/program/scientific_session_search.php

Conference on Gas Hydrate Resource Development set for Moscow in novemberGashydratepropertiesandthedevelopmentofhydrateresourceswillbethefocusoforalpresentationstobedeliveredattheupcomingInternationalConferenceonGasHydrateResourceDevelopment.TheconferenceisscheduledtotakeplaceonNovember17-18,2009andwillbeheldatMoscow’sGubkinRussianStateUniversityofOilandGas.Formoreinformationontheconference,pleasevisithttp://www.h-conf.gubkin.ru.

Page 23: MH News Summer09 - Fire in the Ice

23

Announcements

Gordon Research Conference on natural Gas Hydrates to be held in 2010TheinauguralGordonResearchConference(GRC)onNaturalGasHydrateswillbeheld6-10June,2010atColbyCollegeinWaterville,Maine.Thefocusofthisfirstmeetingwillbetheinteractionamonggashydrate,sediments,fluids,andfreegasatporetoregionalscales.Invitedfull-lengthpresentationswilldiscussthephysical,chemical,andbiologicalaspectsofsuchinteractions.Speakerswillincludebothestablishedgashydratesresearchersandthosefromscientific/engineeringcommunitieswithknowledgecriticaltoadvancinggashydrates research. Any attendee may contribute a poster.

Foundedin1931,theGordonResearchConferencesprovideaforumforin-depthinteractionsanddiscussionbeyondthosepermissibleintheusualmeetingformat.Currentlythereareover300Conferencesinchemistry,physics,medicine,andotherfieldsovereachtwo-yearcycle.Withnoformalproceedings,GRCsemphasizesharingofstate-of-the-art,unpublishedresearch,whichwillbefeaturedinamixofformaltalks,informaldiscussions,andafternoonpostersessions.GRCmeetingshavearetreat-likeatmospherethatprovidesampletimeforsocializingandsharingofideas.

Inthespringof2008,CarolynRuppel(USGS)andPeterFlemings(UT-Austin)submittedaproposalforthisinauguralmeetingandwereappointedChairandVice-Chairrespectively.TheirproposalwasoneofasmallhandfulacceptedbytheGRCforinitiationofanewconferenceseries.GRCorganizershaveconveyedthatthemultidisciplinarynatureofgashydratesstudiesmadethismeetingparticularlyattractivetotheirBoard.ThepopularityofmoretraditionalgashydratesmeetingsliketheInternationalConferenceonGasHydratesalsoplayedaroleinconvincingtheBoardthatthisGRCcouldbesuccessful.

TheGRCwelcomesparticipantsatallcareerstages,fromallovertheworld,andfromgovernment,academic,andindustrysectors.Partialfinancialsupportwillbeavailabletosomeparticipantstooffsetthecostsoftheall-inclusive(lodgingandmealsatColbyCollegeandworkshopregistration)price.Additionalfundsarecurrentlybeingraisedtooffsetparticipationcostsforsomeattendees.

Ifthemeetingiswell-attended,theGRCBoardwillaskparticipantstochoosethefocusofandleadersforthe2012GordonResearchConferenceon Natural Gas Hydrates during the 2010 meeting.

Regularupdatestothemeetingdescriptionandprogramwillbemadeathttp://www.grc.org/programs.aspx?year=2010&program=naturalgas. The preliminaryprogramofspeakersanddiscussionleaderswillbepostedbyGRCinDecember2009.FormoregeneralinformationontheGordonResearchConferences,pleasevisittheirwebsiteatwww.grc.org.

Page 24: MH News Summer09 - Fire in the Ice

24

Dan McConnellIflifeisajourney,thenthepeopleyoumeetalongthewaycanhavealottodowithbothyourfinaldestinationandhowyougetthere.ForDanMcConnell,hispathtowardshydratesresearchstartedwhilehewasastudentattheUniversityofTexas,andaresearchassistanttotheclasticsedimentologistDr.EarleMcBride.“IwascertainlyinfluencedbyDr.McBrideeventhoughwedidn’tdoanyadvancedworktogether,”saysDan.“MyotherinfluenceatUT-AustinwasDr.MiloBackus,therenownedgeophysicist,whotaught me a simple but important lesson about interpreting geophysical data.Milooftensaid‘itisallgeologyuntilprovenotherwise.’ItakethatmessagetohearteverytimeIbeginaninterpretationofgeophysicaldata.”

AftercompletinghisB.A.inHistoryandB.S.inGeologyatUT-Austin,Danbeganacareerintheoilandgasindustryworkinginthetechnicalsoftwaresideofexploration.Later,hegainedhisskillsasaseismicinterpreterwhileatFugro-McClellandMarineGeosciences(FMMG),wherethedailymissioninvolvedquick-response,detailedmappingofdeepwatermarinesediments.

ThroughhisworkatFMMG,Danmettwomenthatwouldhaveagreatinfluenceonhisfutureareaofwork:KerryJ.CampbellandJimHooper.“Kerryfosteredinmeanenthusiasmforthescienceandthedata,anappreciationforclientservice,andapassionfordetail,”saysDan.

“Earlyinmycareerasaseismicinterpreter,JimtoldmethatifIwasgoingtomapshallowgasindeepwaterareas,Ishouldbethinkingaboutgashydrates,”saysDan.“JimintroducedmetoDr.DendySloan’sCSMHYDgashydratemodelingprogram,therudimentsofaphasestabilitydiagram,andthedetailsofhisgashydratecharacterizationworkforindustry.”

Overtheyears,opportunitiestoinvestigatetheimplicationsofgashydraterelativetofielddevelopmentprovidedDanwithsomeremarkablememories.“Dr.HarryRobertsofLSUinvitedmeononeoftheDOE-sponsoredmannedsubmersible cruises on the Johnson Sea-Linktostudyseafloorgashydrates,”herecalls.“Seeingthenaturalhydrocarbonseepsandgashydratesontheseabedbeneath580metersofoceanwasasurreal,extraordinary,event.”

Butthiswasnottobetheonlyextraordinaryevent.In2000,whilereviewingdatafromtheGulfofMexico’sWalkerRidge,Site313,Danhadanepiphany.“IwasworkingverylateatnightmappingsedimentsbybuildinganimationsoutoftheamplitudepatternsonaseriesofhorizonsliceswhenItrulyhada‘light-bulb’moment,”Danrecalls.“Irealizedthatthepatternsonthescreenmarkedthebaseofgashydratestability.Itdidn’ttakelongtoplotthepatternoutonaphasestabilitydiagramandshowthattheamplitudephenomenaweremostcertainlycausedbytheformationofgashydrate.”

Itwasnotuntilnineyearslater–duringthe2009GulfofMexicoGasHydrateJointIndustryProject(JIP)LegII–thatDan’ssuspicionswereconfirmed.“WedrilledtwodeepholesatSite313andfoundfullysaturatedgashydratesinsandswherewepredictedtheywouldbe.Thefactthatwedrilledandconfirmedthatlate-nightinsightisstillhardformetobelieve!”

DancurrentlyservesastheVPofAOAGeophysics,ageosciencecompany.Askedforhisthoughtsonthemostimportantchallengesfacinghydrateresearcherstoday,Dansays,“AlthoughtheJIPhasestablishedamethodforfindinggashydratedepositsthatseemstohold,westillunderstandverylittleaboutthedistributionandcharacterofthesedeposits.Thereisplentyoffundamentalcharacterizationworktodo.”

spotlight on Research

DAn MCConneLLVicePresident, AOA Geophysics

When he is not studying hydrates, DanenjoyscampingaroundthestateofTexaswithhiswifeanddaughters.Heandhisfamilyalsoenjoymusicofallkinds,outdoorcookingandjustabout any day at the beach.