métodos numéricos aplicados a la ingeniería mnaiseca  · web view2013-11-25 · de manera...

43
Métodos Numéricos Aplicados a la Ingeniería 2.2. APROXIMACIÓN FUNCIONAL E INTERPOLACIÓN 2.2.0. INTRODUCCIÓN 2.2.1. APROXIMACIÓN POLINOMIAL SIMPLE E INTERPOLACIÓN LINEAL 2.2.2. POLINOMIO DE APROXIMACIÓN DE LAGRANGE 2.2.3. DIFERENCIAS DIVIDIDAS 2.2.4. APROXIMACIÓN POLINOMIAL DE NEWTON 2.2.5. POLINOMIO DE APROXIMACIÓN DE NEWTON EN DIFERENCIAS FINITAS: HACIA DELANTE – HACIA ATRÁS 2.2.6. ESTRUCTURA DEL POLINOMIO DE NEWTON EN DIFERENCIAS DIVIDIDAS HACIA ATRÁS DE GRADO n EN x n 2.2.7. APROXIMACIÓN POLINOMIAL SEGMENTARIA 2.2.8. EJERCICIOS Y APLICACIONES SOBRE INTERPOLACIÓN Y APROXIMACIÓN FUNCIONAL Aproximación e Interpolacion Funcional Numérica 1

Upload: ngodan

Post on 05-Oct-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Métodos Numéricos Aplicados a la Ingeniería MNAISECA  · Web view2013-11-25 · De manera análoga se aplica al segundo punto interior y obtenemos , Estas dos ecuaciones se resuelven

Métodos Numéricos Aplicados a la Ingeniería

2.2. APROXIMACIÓN FUNCIONAL E INTERPOLACIÓN

2.2.0. INTRODUCCIÓN

2.2.1. APROXIMACIÓN POLINOMIAL SIMPLE E INTERPOLACIÓN LINEAL

2.2.2. POLINOMIO DE APROXIMACIÓN DE LAGRANGE

2.2.3. DIFERENCIAS DIVIDIDAS

2.2.4. APROXIMACIÓN POLINOMIAL DE NEWTON

2.2.5. POLINOMIO DE APROXIMACIÓN DE NEWTON EN DIFERENCIAS FINITAS: HACIA DELANTE – HACIA ATRÁS

2.2.6. ESTRUCTURA DEL POLINOMIO DE NEWTON EN DIFERENCIAS DIVIDIDAS HACIA ATRÁS DE GRADO n EN xn

2.2.7. APROXIMACIÓN POLINOMIAL SEGMENTARIA

2.2.8. EJERCICIOS Y APLICACIONES SOBRE INTERPOLACIÓN Y APROXIMACIÓN FUNCIONAL

Aproximación e Interpolacion Funcional Numérica 1

Page 2: Métodos Numéricos Aplicados a la Ingeniería MNAISECA  · Web view2013-11-25 · De manera análoga se aplica al segundo punto interior y obtenemos , Estas dos ecuaciones se resuelven

Métodos Numéricos Aplicados a la Ingeniería

2.2. APROXIMACIÓN FUNCIONAL E INTERPOLACIÓN, 2.2.0. INTRODUCCIÓN

En el campo de la matemática aplicada es de gran importancia la manera como determinar una función o funciones a partir de un conjunto de datos discretos, i.e., puntos tabulados, situación que siempre se enfrenta cualquier investigador, para decir generalmente un Ingeniero siempre tiene al frente esta problemática fenómeno que será el objetivo de este ítem.

Pues es común encontrar datos con valores discretos, y sin embargo nosotros queremos encontrar valores entre estos puntos discretos, y esto es lo que lo llamamos ajuste de curvas y, generalmente se usa el procedimiento de mínimos cuadrados.

Cuando existe un conjunto de datos muy precisos, en este caso se usa lo que se llama interpolación.

Las funciones de aproximación generalmente es obtenida por combinación lineal de funciones elementales, que toman la forma de:

En donde:

ai: Son constantes que deseamos encontrar, i=1,2,...,n

gi(x): Son funciones elementales específicas, i=1,2,...,n

Ejemplo:

1. gi (x): Puede ser la familia de monomios en luego tenemos la combinación lineal:

2. La familia de funciones elementales de Fourier, en función de “x”1, sen x, cos x, sen 2x, cos 2x, sen 3x, cos 3x,..

La combinación lineal que genera aproximaciones de la forma:

3. La familia de funciones exponenciales en x:

Que proporciona la siguiente combinación lineal

Observación:

Aproximación e Interpolacion Funcional Numérica 2

Page 3: Métodos Numéricos Aplicados a la Ingeniería MNAISECA  · Web view2013-11-25 · De manera análoga se aplica al segundo punto interior y obtenemos , Estas dos ecuaciones se resuelven

Métodos Numéricos Aplicados a la Ingeniería

1. De las tres familias observadas podemos decir que la primera es la más utilizada y la más sencilla en su manejo.

2. ¿Qué buscamos en esta unidad?Buscamos unan función f(x) a partir de una tabulación funcional f (x):

Punto 0 1 2 ..... nVariable x0 x1 x2 .... xn

Función f (x0) f (x1) f (x2) ....... f (xn)

Es decir queremos aproximar a f(x) por medio de la familia elemental de monomios es decir,

, que se puede realizar por medio de los siguientes criterios:

Ajuste exacto Mínimos cuadrados

Ajuste Exacto:

Consiste en determinar una función polinomial que pase por los puntos proporcionados tubularmente. Esto es:

Mínimos Cuadrados:

Consiste en determinar una función polinomial que pase por los puntos y que cumpla la condición de minimizar la suma de las desviaciones (di) elevados al cuadrado.

i.e.; = mínimo

Aproximación e Interpolacion Funcional Numérica 3

Page 4: Métodos Numéricos Aplicados a la Ingeniería MNAISECA  · Web view2013-11-25 · De manera análoga se aplica al segundo punto interior y obtenemos , Estas dos ecuaciones se resuelven

Métodos Numéricos Aplicados a la Ingeniería

Encontrado el polinomio de aproximación podemos utilizarlo para determinar otros puntos que no están en la tabla, mediante una evaluación, fenómeno que se llama Interpolación, así mismo se puede derivar o integrar con la finalidad de buscar alguna otra información adicional de la función tabular.

2.2.1. APROXIMACIÓN POLINOMIAL SIMPLE E INTERPOLACIÓN LINEALPodemos decir que la interpolación lineal es el eje para muchos métodos numéricos y de gran relevancia en la ingeniería, puesto que una gran información se encuentra en su forma tabular como veremos más adelante y es usado por una diversidad de métodos numéricos, por ejemplo si integramos este método tendremos el método de integración trapezoidal.

¿En qué consiste este método?

Supongamos que tenemos los siguientes cuadros:

Puntos 0 1 2 3 4 5 6

f(x) 56 78 113 144 181 205 214

X 1 2 5 10 20 30 40

Puntos 0 1 2 3

f(x) 56 ¿-? 113 181 214

X 1 2 5 20 40

Supongamos por un instante que sólo se dispone del cuadro 2 y que queremos el valor de la variable “y=f(x)” cuando x tiene un valor de 2 unidades. Una manera muy común es considerar la ecuación de una línea recta así:

, y sustituirlos valores de los puntos 0 y 1, obteniendo dos ecuaciones con variables a0 y a1

Punto “0” = (1,56); punto 1: (5,113); (x, f(x))

Luego la ecuación de la función lineal:

p(x) = 41.8 + 14.2x

Aproximación e Interpolacion Funcional Numérica 4

Cuadro 1

Cuadro 2

Page 5: Métodos Numéricos Aplicados a la Ingeniería MNAISECA  · Web view2013-11-25 · De manera análoga se aplica al segundo punto interior y obtenemos , Estas dos ecuaciones se resuelven

Métodos Numéricos Aplicados a la Ingeniería

Esta ecuación puede ser usado para calcular f (x) cuando x = 2

Observación:

Si queremos una mejor aproximación para nuestra función deberíamos considerar otro punto más y tendremos:

,

Sean los puntos

Resolviendo el sistema, tenemos que:

Gráficamente representa una parábola. En general tendremos la siguiente aproximación polinomial.

POLINOMIO DE INTERPOLACIÓN DE NEWTON En esta oportunidad presentaremos los polinomios de llamados de Newton como previos al proceso recursivo, p0; p1; p2;....; pn,en donde cada pk se obtiene

Aproximación e Interpolacion Funcional Numérica 5

Page 6: Métodos Numéricos Aplicados a la Ingeniería MNAISECA  · Web view2013-11-25 · De manera análoga se aplica al segundo punto interior y obtenemos , Estas dos ecuaciones se resuelven

Métodos Numéricos Aplicados a la Ingeniería

simplemente añadiendo un término a pk-1 , y al final del proceso pn se encuentra formado por una suma de términos.

,

En otros términos.

,

Se considera

, siempre que m<0

Los primeros términos de la ecuación son

,

,

Estos serian los tres primeros polinomios de interpolación de Newton.

Cabe destacar que existe un método muy eficiente para evaluar pk(x) suponiendo conocidos los coeficientes c0, c1, c2,....ck llamado algoritmo de Horner.

2.2.2. POLINOMIO DE APROXIMACIÓN DE LAGRANGE

Comentarios:

El método anterior tiene su punto débil en la aproximación exacta, al realizar la interpolación, pues se tenía que solucionar un sistema de ecuaciones que su orden dependía de la exactitud de la aproximación, con la finalidad de salvar estos inconvenientes, surgen otros métodos de aproximación polinomial, que realicen cálculos directos sin desarrollar tales sistemas de ecuaciones que envuelven cierta dificultad en su solución. Entre estos métodos tendremos la aproximación polinomial de LaGrange. El método que consiste en:

Primero: Supongamos una función desconocida f (x) dada en forma tabular y se asume un polinomio de primer grado es decir una línea recta el cual se puede escribir de la siguiente manera:

Aproximación e Interpolacion Funcional Numérica 6

Page 7: Métodos Numéricos Aplicados a la Ingeniería MNAISECA  · Web view2013-11-25 · De manera análoga se aplica al segundo punto interior y obtenemos , Estas dos ecuaciones se resuelven

Métodos Numéricos Aplicados a la Ingeniería

1. Supongamos que la ecuación de un recta se escribe así:

En donde:

x0, x1: Son valores de la función en puntos conocidos [x0, f (x0)], [x1, f (x1)]

a0, a1: Coeficientes por determinar, y lo encontramos haciendo las consideraciones siguientes:

Determinando a0 para ello consideramos

:

Determinando a1 para ello hacemos:

Luego

2. Supongamos un polinomio de segundo grado

En donde:

x0, x1, x2 son los valores de los puntos conocidos [x0, f(x0)], [x1, f(x1)], [x2, f(x2)]

Si

Aproximación e Interpolacion Funcional Numérica 7

Page 8: Métodos Numéricos Aplicados a la Ingeniería MNAISECA  · Web view2013-11-25 · De manera análoga se aplica al segundo punto interior y obtenemos , Estas dos ecuaciones se resuelven

Métodos Numéricos Aplicados a la Ingeniería

Si

Si

Luego:

En donde:

3. Podemos suponer un polinomio de grado n:

En donde:

Que en general el polinomio se puede escribir:

, polinomio LaGrange

En donde:

,

La aproximación polinomial de LaGrange, es la combinación lineal de f(x i ) y de los coeficientes Li(X).

Ejemplo:

Supongamos que tenemos la función tabular

Aproximación e Interpolacion Funcional Numérica 8

Page 9: Métodos Numéricos Aplicados a la Ingeniería MNAISECA  · Web view2013-11-25 · De manera análoga se aplica al segundo punto interior y obtenemos , Estas dos ecuaciones se resuelven

Métodos Numéricos Aplicados a la Ingeniería

i 0 1 2 3

F(Xi) -3 0 5 7

Xi 0 1 3 6

a) Determinar la aproximación polinomial de LaGrange usando todos los puntos

b) Determinar el valor aproximado de f (x) para x = 1.8

Solución:

Debemos destacar que la tabla presenta cuatro puntos lo que induce la existencia de un polinomio de tercer orden

Operando tenemos:

El valor aproximado de la función cuando x = 1.8

2.2.3. DIFERENCIAS DIVIDIDAS

Así como podemos aproximar una función mediante la aproximación polinomial de LaGrange, también podemos aproximar la derivada y la integral de una función con diferencias divididas. La derivada y la integral respectivamente el polinomio de interpolación, que en realidad es el principio básico para la diferenciación e integración de los métodos numéricos.

Supongamos una función f (x) con derivada en el punto x0 analíticamente esta

dado por:

Aproximación e Interpolacion Funcional Numérica 9

Page 10: Métodos Numéricos Aplicados a la Ingeniería MNAISECA  · Web view2013-11-25 · De manera análoga se aplica al segundo punto interior y obtenemos , Estas dos ecuaciones se resuelven

Métodos Numéricos Aplicados a la Ingeniería

Pero cuando la función es dada de manera tabular, se tiene.

La derivada sólo puede obtenerse de manera aproximada, por ejemplo si se desea calcular la derivada de f(x) en el punto “x” tal que x0 < x < x1

Esto se determina así:

La expresión de la derecha se llama primera diferencia dividida de f (x) respecto a los valores de x0 y x1 y se denota generalmente f [x0, x1], esto es,

Observación:

1. Se debe destacar que la relación entre la primera diferencia dividida y la primera derivada esta dada por el teorema del valor medio.

Siempre que f (x) cumpla con las condiciones del teorema del valor medio.

2. Podemos generalizar para un orden más alto en donde el argumento es se llama diferencia dividida, de orden cero:

i.e.; orden cero:

Aproximación e Interpolacion Funcional Numérica 10

Page 11: Métodos Numéricos Aplicados a la Ingeniería MNAISECA  · Web view2013-11-25 · De manera análoga se aplica al segundo punto interior y obtenemos , Estas dos ecuaciones se resuelven

Métodos Numéricos Aplicados a la Ingeniería

Observación:

Para formar la expresión se requiere i + 1 puntos. El numerador es la recta de dos diferencias de orden i – 1. El denominador es la recta de los argumentos no comunes en el numerador.

Ejemplo:

Supongamos que tenemos la siguiente información

Obtenido del polinomio

La primer diferencia dividida en los puntos (0), (1) y (1), (2)

La segunda diferencia dividida para (0), (1) y (2)

Aproximación e Interpolacion Funcional Numérica 11

55

44

33

22

11

00

xfx

xfx

xfx

xfx

xfx

xfx

45

4554

34

3443

23

2332

12

1221

01

0110

,

,

,

,

,

xxxfxf

xxf

xxxfxf

xxf

xxxfxf

xxf

xxxfxf

xxf

xxxfxf

xxf

35

4354543

24

3243432

13

2123321

02

1021210

,,,,

,,,,

,,,,

,,,,

xxxxfxxfxxxf

xxxxfxxfxxxf

xxxxfxxfxxxf

xxxxfxxfxxxf

25

4325435432

14

3214324321

03

2103213210

,,,,,,,

,,,,,,,

,,,,,,,

xxxxxfxxxfxxxxf

xxxxxfxxxfxxxxf

xxxxxfxxxfxxxxf

TerceroSegundoPrimero

Page 12: Métodos Numéricos Aplicados a la Ingeniería MNAISECA  · Web view2013-11-25 · De manera análoga se aplica al segundo punto interior y obtenemos , Estas dos ecuaciones se resuelven

Métodos Numéricos Aplicados a la Ingeniería

De esta manera construimos la tabla de diferencias divididas

Puntos X f(x) 1º orden 2º orden 3º 0rden 4º orden

0 -2 -18

13

1 -1 -5 -5

3 1

2 0 -2 -1 0

0 1

3 2 -2 3 0

9 1

4 2 7 9

45

5 6 142

Observemos que:

Todas las diferencias divididas de tercer orden tienen el mismo valor independiente del valor de las x que se usen para calcularse.

Las diferencias de cuarto orden todos tienen el valor de cero, lo que tiene afinidad con el criterio que la derivada de tercer orden es una constante y la de cuarto orden es cero, para cualquier valor de x.

El razonamiento anterior nos induce a decir que si al construir una tabla de diferencias divididas en alguna columna el valor es constante y la siguiente

Aproximación e Interpolacion Funcional Numérica 12

Page 13: Métodos Numéricos Aplicados a la Ingeniería MNAISECA  · Web view2013-11-25 · De manera análoga se aplica al segundo punto interior y obtenemos , Estas dos ecuaciones se resuelven

Métodos Numéricos Aplicados a la Ingeniería

columna es cero la información proviene de un polinomio de grado igual al orden de las diferencias que tengan valores constantes.

El razonamiento anterior nos induce afirmar que nuestro polinomio es de grado 3 es decir mi polinomio será:

En nuestro ejemplo se tiene:

2.2.4. APROXIMACIÓN POLINOMIAL DE NEWTON

Supongamos que tenemos una función tabular y que queremos aproximar mediante un polinomio de primer grado:

1. Aproximación por un Polinomio de Primer Grado

En donde:

x0 : Es la abscisa del punto “0”

a0, a1 : Constantes por determinar

Si:

Consecuentemente tendremos:

Pero:

Luego:

Aproximación e Interpolacion Funcional Numérica 13

Page 14: Métodos Numéricos Aplicados a la Ingeniería MNAISECA  · Web view2013-11-25 · De manera análoga se aplica al segundo punto interior y obtenemos , Estas dos ecuaciones se resuelven

Métodos Numéricos Aplicados a la Ingeniería

Es un polinomio de primer grado en términos de diferencias derivadas

2. Aproximación por un Polinomio de Segundo Grado

En donde:

x0, x1 : Son las abscisas de los puntos “0” y “1”

a0, a1, a2 : Constantes que debemos encontrar

Si:

Luego tenemos:

3. GENERALIZACIÓN

En donde:

: Son las abscisas de los puntos 0, 1, 2, …, n

: Son coeficientes por determinar y están dados por:

Esto es tendremos la siguiente aproximación polinomial

Aproximación e Interpolacion Funcional Numérica 14

Page 15: Métodos Numéricos Aplicados a la Ingeniería MNAISECA  · Web view2013-11-25 · De manera análoga se aplica al segundo punto interior y obtenemos , Estas dos ecuaciones se resuelven

Métodos Numéricos Aplicados a la Ingeniería

Polinomio de aproximación de Newton

Ejemplo:

Determinar la aproximación polinomial de Newton para la información tabular e interpolar para x = 2

DIFERENCIAS DIVIDIDAS

Diferencias divididas

Puntos X f[x] 1º dividida 2º dividida 3º dividida

0 1 56

14.2

1 5 113 -0.31

4.5 0.019

2 20 181 0.081

1.68

3 40 214

Observación:

Aproximación e Interpolacion Funcional Numérica 15

Page 16: Métodos Numéricos Aplicados a la Ingeniería MNAISECA  · Web view2013-11-25 · De manera análoga se aplica al segundo punto interior y obtenemos , Estas dos ecuaciones se resuelven

Métodos Numéricos Aplicados a la Ingeniería

Pero:

Si: x = 2

Ejemplo 1. Calcular la tabla de diferencias divididas finitas con los siguientes datos:

    Y utilizar la información de dicha tabla, para construir el polinomio de interpolación de Newton.

 Solución.

Procedemos como sigue:

  Aproximación e Interpolacion Funcional Numérica 16

Page 17: Métodos Numéricos Aplicados a la Ingeniería MNAISECA  · Web view2013-11-25 · De manera análoga se aplica al segundo punto interior y obtenemos , Estas dos ecuaciones se resuelven

Métodos Numéricos Aplicados a la Ingeniería

 Por lo tanto el polinomio de interpolación de Newton es :

 

 Ejemplo 2. Calcular la tabla de diferencias divididas finitas con los siguientes datos:

 

   Y usar la información en la tabla, para construir el polinomio de interpolación de Newton.

Solución. Procedemos como sigue:

 

Por lo tanto el polinomio de interpolación de Newton nos queda :

 

2.2.5. POLINOMIO DE APROXIMACIÓN DE NEWTON EN DIFERENCIAS FINITAS: HACIA DELANTE – HACIA ATRÁS

Supongamos que la distancia entre dos argumentos (abscisas) consecutivas cualquiera es igual, en toda la función tabular y sea “h”.

El polinomio de aproximación de Newton se puede escribir de manera más simple, para nuestro propósito, consideremos otro punto S; definido por:

x: Es el valor que se quiere interpolar

Pero:

Aproximación e Interpolacion Funcional Numérica 17

Page 18: Métodos Numéricos Aplicados a la Ingeniería MNAISECA  · Web view2013-11-25 · De manera análoga se aplica al segundo punto interior y obtenemos , Estas dos ecuaciones se resuelven

Métodos Numéricos Aplicados a la Ingeniería

Que ocurre si restamos xi en ambos miembros

Si consideramos el desarrollo general del polinomio de Newton, i.e.:

ó:

Observemos que la última relación de aproximación se puede simplificar si hacemos ingresar los operadores lineales y, conocidos como:

: Operador lineal en diferencias hacia delante

: Operador lineal en diferencias hacia atrás

En donde:

Primera Diferencia

La segunda diferencia:

La tercera diferencia:

En general:

Aproximación e Interpolacion Funcional Numérica 18

1

Page 19: Métodos Numéricos Aplicados a la Ingeniería MNAISECA  · Web view2013-11-25 · De manera análoga se aplica al segundo punto interior y obtenemos , Estas dos ecuaciones se resuelven

Métodos Numéricos Aplicados a la Ingeniería

De manera análoga para el operador lineal de diferencia hacia atrás

Primera Diferencia:

Segunda Diferencia:

En general:

Que ocurre si aplicamos al primer valor funcional f [x0] de una tabla proporcionada.

En general:

De manera análoga para el operador de diferencias hacia atrás

Consecuentemente al sustituir en

Es conocido como el polinomio de Newton en diferencia finita hacia delante.

Aproximación e Interpolacion Funcional Numérica 19

1

Page 20: Métodos Numéricos Aplicados a la Ingeniería MNAISECA  · Web view2013-11-25 · De manera análoga se aplica al segundo punto interior y obtenemos , Estas dos ecuaciones se resuelven

Métodos Numéricos Aplicados a la Ingeniería

Ejemplo:

Supongamos que tienen las siguientes tabulaciones:

Aproximar la función tabulada usando el polinomio de Newton en diferencias finitas hacia delante e interpole para 64

Solución

En este conjunto de datos tenemos que h = 10, el valor por interpolares 64

El valor de

PARA UN POLINOMIO DE PRIMER ORDEN

Para n = 1

;

en donde

Es preciso destacar que en realidad se esta extrapolando, pues el valor de x queda fuera del intervalo de los puntos que se usan para formar el polinomio de aproximación. Debemos observar que el polinomio de aproximación descrita en fue estructurado considerando x0 como pivote y luego si queremos aplicar para los puntos (1) y (2) debemos modificar así:

Aproximación e Interpolacion Funcional Numérica 20

03.0

01.0

06.009.008.0

194.085.077.0

73.873.779.594.517.5

30.59100557.5090484.4280305.3670211.3060194.24500

14

04

23

13

03

32

22

12

02

4

3

2

1

0

432

xfxf

xfxfxf

xfxfxfxf

xfxfxfxfxf

xfxfxfxfxfxPunto iiiiii

2

1

1

Page 21: Métodos Numéricos Aplicados a la Ingeniería MNAISECA  · Web view2013-11-25 · De manera análoga se aplica al segundo punto interior y obtenemos , Estas dos ecuaciones se resuelven

Métodos Numéricos Aplicados a la Ingeniería

en donde:

Luego tenemos:

Debemos resaltar que si deseamos aproximar con un polinomio de segundo grado se requieren tres puntos, tendríamos dos alternativas, tomar como puntos (0), (1) y (2) ó (1), (2) y (3), en este caso tomaría la primera serie por que el valor a interpolar está más al centro, luego tendríamos:

2.2.6. ESTRUCTURA DEL POLINOMIO DE NEWTON EN DIFERENCIAS DIVIDIDAS HACIA ATRÁS DE GRADO n EN xn

Supongamos n = 2 y asumamos que el polinomio sea de 2º grado:

En donde:

: Son abscisas de los puntos “n” y “n – 1"

: Son las constantes por determinar

Si:

Luego tendremos que:

Generalizar

En donde:

Aproximación e Interpolacion Funcional Numérica 21

Page 22: Métodos Numéricos Aplicados a la Ingeniería MNAISECA  · Web view2013-11-25 · De manera análoga se aplica al segundo punto interior y obtenemos , Estas dos ecuaciones se resuelven

Métodos Numéricos Aplicados a la Ingeniería

Considerando la diferencia de las abscisas consecutivas igual a h e introducimos una variable paramétrica “s” definida como:

; x: el valor a interpolar

Luego tenemos:

Ecuación de Newton en diferencias hacia atrás

Ejemplo:

En el ejemplo realice la interpolación para x = 98 usando el polinomio de Newton

Si usamos un polinomio de primer grado tenemos

Si usamos un polinomio de segundo grado tenemos

Aproximación e Interpolacion Funcional Numérica 22

03.0

01.0

06.009.008.0

194.085.077.0

73.873.779.594.517.5

30.59100557.5090484.4280305.3670211.3060194.24500

14

04

23

13

03

32

22

12

02

4

3

2

1

0

432

xfxf

xfxfxf

xfxfxfxf

xfxfxfxfxf

xfxfxfxfxfxPunto iiiiii

Page 23: Métodos Numéricos Aplicados a la Ingeniería MNAISECA  · Web view2013-11-25 · De manera análoga se aplica al segundo punto interior y obtenemos , Estas dos ecuaciones se resuelven

Métodos Numéricos Aplicados a la Ingeniería

2.2.7. APROXIMACIÓN POLINOMIAL SEGMENTARIA

En los ítems anteriores para interpolar entre n+1 puntos se usaron polinomios de grado n, para decir para un conjunto de 8 puntos se puede obtener un polinomio de grado 7, parecerá que se llevaba todo correctamente pero sin embargo se tenían resultados erróneos como errores de redondeo y los puntos lejanos.

Una alternativa para mitigar estos errores fue pensar considerar polinomios de grado inferior en subconjunto de datos y a tales polinomios se llamaran funciones segmentarias.

Por ejemplo, las curvas de tercer grado usadas para unir cada par de puntos se llaman segmentarias cubicas. Tales funciones d se pueden construir de tal manera que las conexiones entre las ecuaciones cubicas adyacentes sean suaves, pareciera que las aproximaciones de tercer grado de las segmentarias serian inferior a la aproximación de séptimo grado. Veamos algunos gráficos que ilustran mejor la idea.

Caso (a) Caso (b)

Aproximación e Interpolacion Funcional Numérica 23

x

f(x)

x

f(x)

x

f(x)

x

f(x)

Page 24: Métodos Numéricos Aplicados a la Ingeniería MNAISECA  · Web view2013-11-25 · De manera análoga se aplica al segundo punto interior y obtenemos , Estas dos ecuaciones se resuelven

Métodos Numéricos Aplicados a la Ingeniería

Caso ( c ) Caso (d) En definitiva las figuras plasman mejor la idea de la aproximación segmentaria, las figuras de a hasta c representan las oscilaciones de una función suave .Debemos destacar que esta aproximación también se le llama aproximación spline, en ingles para dibujar curvas suaves a través de un conjunto de puntos.

2.2.7.1. INTERPOLACIÓN SEGMENTARIA LINEAL

La unión mas simple entre dos puntos es una recta, las segmentarias de primer grado para un grupo de datos ordenados se define como un conjunto de funciones lineales.

,

,

:,

De donde la pendiente mi de la línea recta que une los puntos.

,

Esta relación se usa para evaluar la función de cualquier punto entre x0 y x1,

Ejemplo

Dado el siguiente conjunto de datos,

x 3 4.5 7 9f(x) 2. 1 2.5 0.5

Ajuste con segmentaras de primer orden y evalué la función en x=5

Solución Primero. Usar los datos para determinar las pendientes entre los puntos

Aproximación e Interpolacion Funcional Numérica 24

Page 25: Métodos Numéricos Aplicados a la Ingeniería MNAISECA  · Web view2013-11-25 · De manera análoga se aplica al segundo punto interior y obtenemos , Estas dos ecuaciones se resuelven

Métodos Numéricos Aplicados a la Ingeniería

Para decir en el intervalo [4.5 ,7] la pendiente calculamos usando el modelo planteado.

,

,

,

El valor en x=5 es 1.3 .

2.2.7.2. INTERPOLACIÓN SEGMENTARIA CUADRÁTICA

En esta oportunidad el objetivo de las segmentarias cuadrática es obtener un polinomio de segundo grado para cada intervalo en el conjunto de datos, en General el polinomio en cada intervalo se representa así,

,

Aproximación e Interpolacion Funcional Numérica 25

x

f(x)

Segmentaria de primer orden

x

f(x)

Segmentaria de Segundo orden

x

f(x)

Segmentaria de Tercer orden

Interpolacion cubica

Page 26: Métodos Numéricos Aplicados a la Ingeniería MNAISECA  · Web view2013-11-25 · De manera análoga se aplica al segundo punto interior y obtenemos , Estas dos ecuaciones se resuelven

Métodos Numéricos Aplicados a la Ingeniería

En donde a, b y c son tres constantes desconocidas y se requieren tres ecuaciones, en el caso que se tengan n+1 datos existen n intervalos y por cada intervalo se requieren tres ecuaciones es decir 3n, se deben tener en consideración los siguientes criterios.

1. Los valores de la función de polinomios adyacentes deben de ser guales en los nodos interiores esta condición lo representamos de la siguiente manera.

,

,,

Para i=2 a n como solo se emplean dos nodos interiores cada ecuación proporciona n-1 condiciones en total 2n-2 .

2. La primera y la ultima función deben de pasar a través de los puntos extremos esto agrega dos ecuaciones mas,

,

,

3. Las primeras derivadas en los nodos interiores deben de ser iguales es decir,

,

En consecuencia en general tenemos,

, para i=2 a n, esto proporciona otras n-1

condiciones.

4. Suponga que en el primer punto de la derivada es cero, esta condición se representa así,

a1=0. Esto quiere decir que los dos primeros puntos se unirán con una línea recta.

Ejemplo.

Considerando el conjunto de datos

x 3 4.5 7 9f(x) 2. 1 2.5 0.5

Ajuste usando segmentarias de segundo grado y estime el valor de x=5

Aproximación e Interpolacion Funcional Numérica 26

Page 27: Métodos Numéricos Aplicados a la Ingeniería MNAISECA  · Web view2013-11-25 · De manera análoga se aplica al segundo punto interior y obtenemos , Estas dos ecuaciones se resuelven

Métodos Numéricos Aplicados a la Ingeniería

SoluciónEn este problema tenemos cuatro datos y n=3 intervalos por lo tanto 3(3)=9 incógnitas que deben de determinarse, consideran las dos condiciones del primer criterio es decir 2(3)-2=4 condiciones

,

,

,

,

Evaluando las dos condiciones del segundo criterio se tienen 2 ecuaciones

,

,A seguir consideramos la continuidad de las derivadas la cual crea 3-1=2 ecuaciones esto del tercer criterio.

,

,

Por ultimo consideramos el cuarto criterio que determina que a1=0, como esta relación nos dice de manera exacta que a1 tiene como valor cero entonces se reduce a determinar ocho ecuaciones simultaneas.

,

Este sistema se puede resolver usando cualquier técnica analizado y tenemos:

Aproximación e Interpolacion Funcional Numérica 27

Page 28: Métodos Numéricos Aplicados a la Ingeniería MNAISECA  · Web view2013-11-25 · De manera análoga se aplica al segundo punto interior y obtenemos , Estas dos ecuaciones se resuelven

Métodos Numéricos Aplicados a la Ingeniería

a1 =0 b1=-1 c1=5.5a2=0.64 b2=-6.76 c2=18.465a3=-1.6 b3=24.6 c3=-91.3

Consecuentemente tenemos las siguientes relaciones para cada intervalo.

,

,

,

Como x=5 usamos f2 para determinar su aproximación

,

2.2.7.3. INTERPOLACIÓN POR SEGMENTARÍAS CUBICAS

En esta oportunidad tenemos como objetivo de encontrar un polinomio de interpolación de tercer grado para cada intervalo entre los nodos.

,

Para n+1 datos existen n intervalos en consecuencia 4n incógnitas que debemos evaluar requiriéndose 4n condiciones para evaluar. Las cuales se obtienen de las siguientes consideraciones:

1. Los valores de la función deben de ser iguales en los nodos interiores (2n-2 condiciones)

2. La primera y la ultima función deben pasar a través de los puntos extremos (2 condiciones)

3. Las primeras derivadas en los puntos interiores deben de ser guales (n-1 condiciones)

4. Las segundas derivadas en los nodos interiores deben de ser iguales (n-1 condiciones)

5. Las segundas derivadas en los nodos extremos son ceros (2 condiciones ) esta condición dice que la función en los extremos se vuelve en una línea recta, lo que induce a que se le llame segmentara natural o lineal.

Las cinco condiciones anteriores permiten obtener 4n ecuaciones requeridas para obtener los 4n coeficientes.

Aproximación e Interpolacion Funcional Numérica 28

Page 29: Métodos Numéricos Aplicados a la Ingeniería MNAISECA  · Web view2013-11-25 · De manera análoga se aplica al segundo punto interior y obtenemos , Estas dos ecuaciones se resuelven

Métodos Numéricos Aplicados a la Ingeniería

Para determinar las ecuaciones de la segmentaria cubica tenemos la siguiente relación valida para cada intervalo.

, &

Esta ecuación solo contiene dos incógnitas las segundas derivadas en los extremos de cada intervalo.

Las incógnitas se evalúan usando la siguiente relación.

, @

Si escribimos esta relación para todos los nodos interiores resultan n-1 ecuaciones simultáneas con n-1 incógnitas. No debemos olvidar que las segundas derivadas en los puntos extremos son ceros.

Ejemplo.

Considerando el conjunto de datos

x 3 4.5 7 9f(x) 2. 1 2.5 0.5

Ajuste usando segmentarias de tercer grado y estime el valor de x=5Solución Primero: Usaremos la ultima relación llamado @ con la finalidad de obtener un conjunto de ecuaciones para las segundas derivadas en los nodos.

X0=3 , f(x0) =2.5, x1=4.5 , f(x1) =1 x2=7 , f(x2) =2.5 valores que serán sustituidas en

l relación @

, pero como por ser segmentaria natural

Aproximación e Interpolacion Funcional Numérica 29

Page 30: Métodos Numéricos Aplicados a la Ingeniería MNAISECA  · Web view2013-11-25 · De manera análoga se aplica al segundo punto interior y obtenemos , Estas dos ecuaciones se resuelven

Métodos Numéricos Aplicados a la Ingeniería

,

De manera análoga se aplica al segundo punto interior y obtenemos

,

Estas dos ecuaciones se resuelven simultáneamente y tenemos

,

,

Valores que serán sustituidos en & junto con los valores de las x y las f(x),

,

0

, Esta ecuación es la segmentaria cubica para el primer intervalo de igual manera se obtienen para el segundo y tercer intervalo.

,

Y

,,

Las tres ecuaciones se pueden usar para calcular valores dentro de cada intervalo. Por ejemplo x=5 se encuentra dentro del segundo intervalo se calcula como sigue

,2.2.8. EJERCICIOS Y APLICACIONES SOBRE INTERPOLACIÓN Y

APROXIMACIÓN FUNCIONAL I. Determine el polinomio que interpolan los siguientes conjuntos de datos: Primer grado, segundo grado, tercer grado, y cuarto grado.a)

I 0 1 2 3 4 Aproximación e Interpolacion Funcional Numérica 30

Page 31: Métodos Numéricos Aplicados a la Ingeniería MNAISECA  · Web view2013-11-25 · De manera análoga se aplica al segundo punto interior y obtenemos , Estas dos ecuaciones se resuelven

Métodos Numéricos Aplicados a la Ingeniería

f(xi) 40 45 50 55 60

xi 2 3 5 6 8

b)

I 0 1 2 3 4

f(xi) 10 15 20 25 30

xi 0 1 2 3 4

c)

I 0 1 2 3 4

f(xi) 140 245 450 655 960

xi 1 5 10 15 20

d)

I 0 1 2 3 4

f(xi) 1 -3 2 4 10

xi 3 1 2 6 9

e)

I 0 1

f(xi) 3 7

xi 5 -1

f)

I 0 1 2

f(xi) 146 2 1

xi 7 1 2

g)

I 0 1 2 3

f(xi) 10 146 2 1

xi 3 7 1 1

h)

I 0 1 2 3

Aproximación e Interpolacion Funcional Numérica 31

Page 32: Métodos Numéricos Aplicados a la Ingeniería MNAISECA  · Web view2013-11-25 · De manera análoga se aplica al segundo punto interior y obtenemos , Estas dos ecuaciones se resuelven

Métodos Numéricos Aplicados a la Ingeniería

f(xi) 12 20 50 55

xi 3 7 1 2

NOTA: CUANDO SEA NECESARIO, REDONDEA A CINCO DECIMALES.

I.1. Calcula el polinomio de interpolación de Newton para los siguientes datos:

i)                   

ii)

Soluciones:

 2. Calcula el polinomio de Lagrange para los siguientes datos:

 i)

 

ii)   

 Soluciones:

 

  

Aproximación e Interpolacion Funcional Numérica 32

Page 33: Métodos Numéricos Aplicados a la Ingeniería MNAISECA  · Web view2013-11-25 · De manera análoga se aplica al segundo punto interior y obtenemos , Estas dos ecuaciones se resuelven

Métodos Numéricos Aplicados a la Ingeniería

II Encuentre un polinomio de Interpolación de Lagrange, Diferencias Divididas y Newton

a)

I 0 1 2 3

f(xi) 3 2 -4 5

xi 1 2 0 3

b)

I 0 1 2

f(xi) 11 7 28

xi 2 0 3

c)

I 0 1 2

f(xi) 1 -1 0

xi 0 1 -2

d)

I 0 1 2

f(xi) 10 5 20

xi 2 1 2

III Determinar la interpolación en los puntos dados usando los dos polinomios :

a) Para el caso (a)X= -1; X =1.5; X = 2.01: X= 0.5; X= 4 b) Para el caso (b)X= -1; X =1.5; X = 2.01: X= 0.5; X= 4 c) Para el caso (c)X= -1; X =1.5; X = 2.01: X= 0.5; X= 3IV: Solucionar las siguientes problemáticas

1.- Se conoce que la densidad del carbonato neutro de potasio en solución acuosa varia en temperatura y en su concentración de acuerdo a la siguiente investigación:

T(ºC)

c(%)

0 40 80 100

Aproximación e Interpolacion Funcional Numérica 33

Page 34: Métodos Numéricos Aplicados a la Ingeniería MNAISECA  · Web view2013-11-25 · De manera análoga se aplica al segundo punto interior y obtenemos , Estas dos ecuaciones se resuelven

Métodos Numéricos Aplicados a la Ingeniería

4 1.0381 1.0276 1.0063 0.9931

12 1.1160 1.1013 1.0786 1.0663

20 1.1977 1.1801 1.1570 1.1451

28 1.2846 1.2652 1.2418 1.2301

a) Calcular la densidad a 40ºC y 15% de concentración

b) Calcular la densidad a 50º Cy 28% de concentración

c) Calcular la concentración que tiene una solución de densidad 1.129 a una temperatura 60ºC

2.- Supongamos que se tiene un conjunto de datos, donde e representa los voltios y p los kilowatios en una curva de pérdida en el núcleo para un motor eléctrico:

a) Construir una tabla de diferencias divididas

b) Usando el polinomio de Newton de segundo grado aproxime el valor correspondiente a e = 90 voltios

I 0 1 2 3 4 5 6

E 40 60 80 100 120 140 160

P 0.63 1.36 2.18 3.00 3.93 6.22 8.59

3.- Se tiene los siguientes datos tabulados:

Puntos 0 1 2 3

a = l/r 140 180 220 240

y = p/a 12,800 7,500 5,000 3,800

Donde y = p/a es la carga en lb/pul2 que causa la ruptura de una columna de hierro dulce con extremos redondeados y a es la razón de la longitud de la columna al mínimo radio de giro en su sección transversal a = l/r

Determinar el polinomio de tercer grado que pasa por estos puntos en sus distintas formas

a) Aproximación polinomial simple

b) Formula de Lagrange

c) Aproximación de Newton y Diferencias Divididas.w

Aproximación e Interpolacion Funcional Numérica 34

Page 35: Métodos Numéricos Aplicados a la Ingeniería MNAISECA  · Web view2013-11-25 · De manera análoga se aplica al segundo punto interior y obtenemos , Estas dos ecuaciones se resuelven

Métodos Numéricos Aplicados a la Ingeniería MNAISECA 2010