metabolism iv: vi. anaerobic respiration vii. chemolithotrophy viii. anabolism

38
1 olism IV: . Anaerobic respiration I. Chemolithotrophy II. Anabolism

Upload: stacie

Post on 04-Jan-2016

37 views

Category:

Documents


4 download

DESCRIPTION

Metabolism IV: VI. Anaerobic respiration VII. Chemolithotrophy VIII. Anabolism. VI. Anaerobic respiration. Reoxidation of reduced electron carriers by a process analogous to aerobic respiration, but using a terminal electron acceptor other than O 2. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Metabolism IV: VI.  Anaerobic respiration VII. Chemolithotrophy VIII. Anabolism

1Metabolism IV:

VI. Anaerobic respirationVII. ChemolithotrophyVIII. Anabolism

Page 2: Metabolism IV: VI.  Anaerobic respiration VII. Chemolithotrophy VIII. Anabolism

2

Reoxidation of reduced electron carriers by a process analogous to aerobic respiration, but using a terminal electron acceptor other than O2.

VI. Anaerobic respiration

PMF is formed and ATP is synthesized by electron transport phosphorylation.

Used by microbes capable of anaerobic respiration when O2 is not available.

TB

Page 3: Metabolism IV: VI.  Anaerobic respiration VII. Chemolithotrophy VIII. Anabolism

3A. Anaerobic respiration

external terminal electron acceptoris not O2

eg. NO3- (nitrate), Fe3

+, SO4-,

CO2, CO32-, fumarate or

another organic molecule

O2

Page 4: Metabolism IV: VI.  Anaerobic respiration VII. Chemolithotrophy VIII. Anabolism

4

Growth substrates

Oxidized products

Oxidized electron carriers

Reduced electron carriers

fumarateNO3

-

SO42-

CO2

succinateNO2

-, N2

H2SCH4 PMF

various electrontransport chains

Page 5: Metabolism IV: VI.  Anaerobic respiration VII. Chemolithotrophy VIII. Anabolism

51. Nitrate reduction

NO3- NO2

-

• a form of anaerobic respiration in which NO3

- is the terminal electron acceptor

nitrate reductase

• used by Escherichia coli and some other microorganisms when O2 is absent

Page 6: Metabolism IV: VI.  Anaerobic respiration VII. Chemolithotrophy VIII. Anabolism

6

NO3-

denitrification

2. Denitrification reduction of nitrate all the way to N2 through anaerobic respiration

Important in agriculture and sewage treatment

N2gas

Page 7: Metabolism IV: VI.  Anaerobic respiration VII. Chemolithotrophy VIII. Anabolism

73. Respiration with sulfur or sulfate

SO42- H2S

• elemental sulfur or SO42- is the

terminal electron acceptor

S0 H2Sreduction

smelly gases

Page 8: Metabolism IV: VI.  Anaerobic respiration VII. Chemolithotrophy VIII. Anabolism

8B. Less free energy is released in anaerobic respiration than in aerobic respirationOxidized form / Reduced form Reduction potential

Eo' (Volts)

CO2 / glucose (C6H12O2) (- 0.43)2 H+ / H2 (- 0.42)NAD+ / NADH (- 0.32)SO4

2- / H2S (- 0.22)pyruvate / lactate (- 0.19)

O2 / H2O (+ 0.82)

fumarate / succinate (+ 0.03)NO3- / NO2- (+ 0.42)

Page 9: Metabolism IV: VI.  Anaerobic respiration VII. Chemolithotrophy VIII. Anabolism

9VII. ChemolithotrophyUse of inorganic compounds as the energy source (primary electron donor)

Many chemolithotrophs use O2 as the terminal electron acceptor

H2 + 1/2 O2 H2O

Page 10: Metabolism IV: VI.  Anaerobic respiration VII. Chemolithotrophy VIII. Anabolism

10A. Examples of chemolithotrophs

H2 hydrogen-oxidizing bacteriaH2S sulfide-oxidizing bacteria

Fe2+iron-oxidizing bacteriaNH3 ammonia-oxidizing bacteria

(NH3 NO2

- )

NO2- nitrite-oxidizing bacteria

(NO2- NO3

- )

Page 11: Metabolism IV: VI.  Anaerobic respiration VII. Chemolithotrophy VIII. Anabolism

111. Example of chemolithotrophy: aerobic sulfide (H2S) oxidation

H2S + 2 O2

inorganic electron donor

Boiling sulfur pot, Yellowstone National Park

SO42- + 2H+

Page 12: Metabolism IV: VI.  Anaerobic respiration VII. Chemolithotrophy VIII. Anabolism

12

Ammonia oxidizer NH3 NO2

-

Nitrite oxidizerNO2

- NO3-

2. Examples of chemolithotrophy: ammonia oxidation and nitrite oxidation

Page 13: Metabolism IV: VI.  Anaerobic respiration VII. Chemolithotrophy VIII. Anabolism

13B. Possible metabolic strategies for generating energy on early earth

anaerobic chemolithotrophyfermentationanaerobic respirationanoxygenic photosynthesis

Page 14: Metabolism IV: VI.  Anaerobic respiration VII. Chemolithotrophy VIII. Anabolism

14

H2

ADP + Pi

ATP

Cytoplasmic membrane

In

Out

A hypothetical primitive energy- generating system on early earth

primitive ATPase

primitivehydrogenase

Proton motive force (PMF)

2 H+

2 e-

inorganic electron acceptor (not O2)

Page 15: Metabolism IV: VI.  Anaerobic respiration VII. Chemolithotrophy VIII. Anabolism

15VIII. Anabolism (Biosynthesis)

Nutrients

Nutrients

Macromolecules and other cell components

Anabolism Energy

Energy source(eg. sugar or H2)

Waste

Catabolism

Energy

Page 16: Metabolism IV: VI.  Anaerobic respiration VII. Chemolithotrophy VIII. Anabolism

16Cells are made of molecules.

Nucleic acids

ProteinsPolysaccharides

Lipids

small molecules

Page 17: Metabolism IV: VI.  Anaerobic respiration VII. Chemolithotrophy VIII. Anabolism

17A. Building cell components requires

energy (ATP) reductant (NADPH)

C H O N P S

a source of carbona source of nitrogensome P and other nutrients

Page 18: Metabolism IV: VI.  Anaerobic respiration VII. Chemolithotrophy VIII. Anabolism

18

carbon source

(organic carbon)heterotroph autotroph

(CO2)

energy source

chemoorganotroph (organic chemical) chemolithotroph

(inorganic chemical

e.g. H2S, H2, NH3)

phototroph (light)

B. Classification of organisms according to

Page 19: Metabolism IV: VI.  Anaerobic respiration VII. Chemolithotrophy VIII. Anabolism

19C. Cell carbon

sugarsacetyl CoA organic acids

CO2

autotrophs

NH3

aminoacids protein

fattyacidslipid

nucleotidesnucleicacids

P, NH3

Cell carbon:

organic carbon source (e.g. glucose)

glycolysis, TCA heterotrophs

Page 20: Metabolism IV: VI.  Anaerobic respiration VII. Chemolithotrophy VIII. Anabolism

20D. Sugar / polysaccharide metabolismSugars are needed for

polysaccharides (cell wall, glycogen)nucleic acids (DNA, RNA)

O O

hexoses pentoses

small molecules (ATP, NAD(P)+

cAMP, coenzymes, etc.)

Page 21: Metabolism IV: VI.  Anaerobic respiration VII. Chemolithotrophy VIII. Anabolism

211. UDP-glucose is a precursor to polysaccharides and peptidoglycan.

O — P-O- O -

O O= P-O O -

HOCH2O

CH2

OH OH

O N

ONH

O

(don't memorize structure)

UDP = uridine

diphosphate

Page 22: Metabolism IV: VI.  Anaerobic respiration VII. Chemolithotrophy VIII. Anabolism

222. Gluconeogenesis

A pathway for making glucose-6-P from noncarbohydrate sources (e.g. acids from TCA).

Page 23: Metabolism IV: VI.  Anaerobic respiration VII. Chemolithotrophy VIII. Anabolism

233. Gluconeogenesis is the reversal of glycolysis starting with PEP, but with a few different enzymes.

glucose-6-P

PEP CO2

pyruvate

TCA

OAA

succinate

gluconeogenesis

Page 24: Metabolism IV: VI.  Anaerobic respiration VII. Chemolithotrophy VIII. Anabolism

244. Pentose phosphate pathway

a. makes pentoses (ribulose-5-P) from the decarboxylation of glucose-6-P

b. also makes NADPH for biosynthetic reactions

Page 25: Metabolism IV: VI.  Anaerobic respiration VII. Chemolithotrophy VIII. Anabolism

255. Deoxyribonucleotides for DNA are made from the reduction of the 2'- hydroxyl of ribonucleotides.

OCH2

HOH

O N

NH2

N

N

N

OP PPOCH2

OHOH

O N

NH2

N

N

N

OP PP

NADPH NADP+

ATPdeoxy-ATP

Page 26: Metabolism IV: VI.  Anaerobic respiration VII. Chemolithotrophy VIII. Anabolism

26

ribose-5-P

ribonucleotides RNA

deoxyribo-nucleotides DNA

glucose

glucose-6-P

glucose-1-P

UDP-glucose(uridine diphosphoglucose)

ribulose-5-P

Sugar summary Gluconeogenesis TCA

PEP OAAglycolysis

UTP

polysaccharides peptidoglycan, cell walls

pentose phosphate pathway

NADPHNADP+

pyruvate

Page 27: Metabolism IV: VI.  Anaerobic respiration VII. Chemolithotrophy VIII. Anabolism

27E. Amino acid biosynthesis

1. Requires an acid (carbon skeleton) and an amino group

O C – OH

H2N – C – H R

carboxylic acidaminogroup

Page 28: Metabolism IV: VI.  Anaerobic respiration VII. Chemolithotrophy VIII. Anabolism

282. Some carbon skeletons are made in glycolysis and the TCA cycle

5 main amino acid precursorsa. -ketoglutarate (5C)b. oxaloacetate (4C)c. pyruvate (3C)d. phosphoglycerate (3C)e. PEP (3C), (erythrose-4-P)

Page 29: Metabolism IV: VI.  Anaerobic respiration VII. Chemolithotrophy VIII. Anabolism

29Carbon skeletons for amino acids

PEP CO2pyruvate

TCA

OAA

(glucose)

(acCoA)

-KG

phosphoglycerate

Page 30: Metabolism IV: VI.  Anaerobic respiration VII. Chemolithotrophy VIII. Anabolism

30

O C - O-

O = C CH2

CH2

COO-

-ketoglutarate

O C - O-

H3N - C - H CH2

CH2

COO-

glutamate

+NH3

NADPH NADP+

3. The amino group for glutamate can come directly from ammonia.

Page 31: Metabolism IV: VI.  Anaerobic respiration VII. Chemolithotrophy VIII. Anabolism

31

O C - O-

O = C CH2

COO-

-ketoglutarateglutamate

4. The amino group for most other amino acids comes from glutamate through transamination (amino transfer).

oxaloacetate (OAA) aspartate

O C - O-

H3N - C - H CH2

COO-

+

Page 32: Metabolism IV: VI.  Anaerobic respiration VII. Chemolithotrophy VIII. Anabolism

32F. Purine and pyrimidine biosynthesis is very complex.

1. The carbons and nitrogens come from amino acids, NH3, CO2, and formyl (HCOO-) groups.

N

N

N

N

CC

from formyl attached to folic acid

**

Page 33: Metabolism IV: VI.  Anaerobic respiration VII. Chemolithotrophy VIII. Anabolism

332. Folic acid carries the formyl groups in purine biosynthesis.

3. Sulfanilamide is a "growth factor analog" that inhibits purine biosynthesis by inhibiting the production of folic acid.

Page 34: Metabolism IV: VI.  Anaerobic respiration VII. Chemolithotrophy VIII. Anabolism

34D. Fatty acids1. In general, saturated fatty acids are built two carbons at a time from acetyl CoA.

CH 3

C~SCoAO(8)

ATP, NADPHCOO-

palmitic acid

Page 35: Metabolism IV: VI.  Anaerobic respiration VII. Chemolithotrophy VIII. Anabolism

352. Unsaturated fatty acids • have 1 or more cis-double bonds • increase fluidity of membranes

COO-

Page 36: Metabolism IV: VI.  Anaerobic respiration VII. Chemolithotrophy VIII. Anabolism

363. Acetyl CoA and succinyl CoA and play important roles in anabolism.

acetyl CoA fatty acid biosynthesissuccinyl CoA heme biosynthesis

Page 37: Metabolism IV: VI.  Anaerobic respiration VII. Chemolithotrophy VIII. Anabolism

37Study objectives1. Understand anaerobic respiration and the examples presented in class. Define nitrate reduction, denitrification, sulfate reduction.2. Understand chemolithotrophy and the examples presented in class.3. Examples of integrative questions: Compare and contrast aerobic respiration, anaerobic respiration, chemolithotrophy, and fermentation. Given the description of a catabolic strategy, be prepared to identify the type of metabolism being used. Contrast sulfate reduction and sulfide oxidation. 4. Be able to classify microorganisms based on energy source and carbon source.5. Understand the roles of glycolysis and the TCA cycle in the synthesis of cellular macromolecules.6. What type of polymers are synthesized from UDP-glucose?7. What are the functions of gluconeogenesis and the pentose phosphate pathway?8. How are deoxyribonucleotides for DNA made from ribonucleotides?

Page 38: Metabolism IV: VI.  Anaerobic respiration VII. Chemolithotrophy VIII. Anabolism

3810. Know the sources of carbon and nitrogen for amino acid biosynthesis. How are amino groups transferred to acids to make amino acids?11. Understand the role of folic acid in nucleotide biosynthesis.12. How does sulfanilamide inhibit the growth of microorganisms? 13. Humans do not make their own folates. Why is the drug sulfanilamide toxic to certain microorganisms but not to humans? 14. Know the anabolic roles of acetyl CoA and succinyl CoA as described in class.