memoria de calculo alberca de olas

46
MEMORIA DE CÁLCULO ALBERCA DE OLAS PAV

Upload: ualu333

Post on 06-Nov-2015

57 views

Category:

Documents


1 download

DESCRIPTION

Memoria de cálculo alberca de olas

TRANSCRIPT

memoria de CLCULO

INDICE

1.- ALCANCE.22.- REGLAMENTOS PARA ANALISIS Y DISEO.23.- PARAMETROS DE DISEO.24.- MATERIALES35 .- ESTRUCTURACION46.- COMBINACIONES DE CARGA67.- CARGAS:78.- CARGAS PARA SISMO:88.2.- CARGAS DE OLEAJE138.3.- PRESION HIDROESTATICA.148.4.- EMPUJE DE TIERRA.159.- RESULTADOS DEL ANALISIS:169.1 DESPLAZAMIENTOS LATERALES DE LA ESTRUCTURA. (DISTORSONES)169.2 DEFLEXIONES EN VIGAS DEL CUARTO DE MAQUINAS1910.- DESEO:2110.1.- REVISION DE MUROS DE CONCRETO2110.2.- REVISION DE COLUMNAS CONCRETO2710.3.- REVISION DE VIGAS CONCRETO3410.3.- REVISION DE LOSA CONCRETO39

1.- ALCANCE.

Se tiene planeado construir una alberca de olas, la cual contara con un cuarto de mquinas.

2.- REGLAMENTOS PARA ANALISIS Y DISEO.

Manual de obras civiles, (CFE). ACI-08, American concrete institute. AC1-350-01 Code requiremens for environmenal engineering Concrete Structures. AISC-10 LRFD, American Institute Steel Construction, por factores de carga. Normas Tcnicas Complementarias 2004 sobre criterios y acciones para el diseo estructural de las edificaciones. (NTCCA-RCDF-2004)

Para el anlisis y diseo de la estructura se emple el software, Ram Elements 10.53.- PARAMETROS DE DISEO.

Localizacin: Carretera Vecinal, Playa Oriente, La Antigua, C.P. 91680, en el Estado de Vercruz.La localizacin geogrfica del sitio de estudio se estableci empleando un Sistema dePosicionamiento Global (GPS). Con ello se determin que las coordenadas UTM mediascoincidentes con la posicin del predio corresponden, a las 795005 y 2121888 del Huso14Q.El sitio destinado para el proyecto corresponde al Macrolote 11, con rea cercana a las 12hectreas, ubicado hacia el costado poniente de la zona denominada Centro Comercialdespus del Macrolote 12, as mismo se encuentra ubicado entre las dos vas de ferrocarril

Uso: Alberca de olas. Clasificacin de la estructura segn su importancia: Grupo B.

Factor de comportamiento ssmico: Qx=Qy= 2, en este sentido por ser una estructura irregular el factor de comportamiento ssmico se reduce un 20 % conforme lo estipula las Normas Tcnicas Complementarias para diseo de sismo. Quedando el comportamiento ssmico de la estructura en:Qx=Qy=1.6 Capacidad de carga del terreno: 20 tons/m2

Espectro de Diseo ssmico y Coeficiente ssmico

Espectro de Diseo Ssmico:

La meseta tiene un valor de 0.36

4.- MATERIALES

Concreto en zapatas: fc=250 kg/cm2

Concreto en plantilla: fc=100 kg/cm2

Fy para acero de refuerzo, 4,200 kg/cm2

5 .- ESTRUCTURACION

La estructura se resolvi por medio muros de concreto reforzado y losa de concreto reforzado.para el cuarto de mquinas, se estructur por medio de columnas de concreto muros de concretoy vigas de concreto reforzado.

6.- COMBINACIONES DE CARGA

Load dataGLOSSARY

Comb: Indicates if load condition is a load combination

Load conditions

ConditionDescriptionComb.CategoryCMCarga MuertaNoDLCVCarga VivaNoLLPLPeso del liquidoNoFLUIDOOleajeNoFLUID 2SxSismo en XNoEQSzSismo en ZNoEQEtEmpuje tierraNoEARTD11.4CMYesD21.4CM+1.7PLYesD31.2CM+1.6CVYesD41.2CM+1.6CV+1.7PLYesD51.2CM+SxYesD61.2CM+SzYesD71.2CM+EtYesD81.2CM+CV+SxYesD91.2CM+CV+SzYesD101.2CM+CV+EtYesD110.9CM+SxYesD120.9CM+SzYesD130.9CM+EtYesS1CMYesS2CM+PLYesS3CM+CVYesS4CM+CV+PLYesS5CM+0.75CVYesS6CM+0.75CV+PLYesS7CM+0.7SxYesS8CM+0.7SzYesS9CM+0.7EtYesS10CM+PL+0.7SxYesS11CM+PL+0.7SzYesS12CM+PL+0.7EtYesS13CM+0.525SxYesS14CM+0.525SzYesS15CM+0.525EtYesS16CM+PL+0.525SxYesS17CM+PL+0.525SzYesS18CM+PL+0.525EtYesS190.6CM+0.7SxYesS200.6CM+0.7SzYesS210.6CM+0.7EtYesS220.6CM+PL+0.7SxYesS230.6CM+PL+0.7SzYesS240.6CM+PL+0.7EtYesRS11.1CM+1.1CV+1.1Sx+0.33SzYesRS21.1CM+1.1CV+0.33Sx+1.1SzYesRS31.1CM+1.1CV-1.1Sx-0.33SzYesRS41.1CM+1.1CV-0.33Sx-1.1SzYes7.- CARGAS:

Carga muertaLa carga muerta se considera el peso propio de los elementos estructurales de concreto, Cabe mencionar que el programa automticamente genera el peso de los elementos estructurales.

Carga viva:

8.- CARGAS PARA SISMO:

Anlisis ssmico de un depsito de agua

ConceptoReferencia alSmboloUnidadesResult. de

Reglamentola frmula

Datos de los materiales:

Peso volumtrico del lquidoLton/m3

Peso volumtrico del concretoc" "

Resistencia del concreto a la compresinfckg/cm250.00

Resistencia del acerofy" "4200.00

Mdulo de elasticidad del concretoEcton/m22,371,708.25

Geometra del depsito

Longitud del depsitoLm25.00

Anchura del depsitoBm25.00

Longitud total de los murosL murosm101.20

Altura de la paredHwm2.70

Altura del lquidoHLm1.80

Espesor uniforme de la pared twm0.30

Peso de la cubierta Wrton0.00

Altura al c.g. de la cubiertahrm0.00

Base de soporte del depsito

Aleros perimetralesalerom0.40

Longitud + muros + alerosL'm26.40

Ancho + muros + alerosB'm26.40

rea de la base de soporteL' x B' m2696.96

Espesor de la basem0.40

Volumen de la base Vol.m3278.78

Peso total de la baseWbaseton669.08

Datos ssmicos del sitio

Factor de la zona ssmicaTabla 4(a)Zs/unidades0.30

Coeficiente del perfil del sitioTabla 4(b)Ss/unidades2.00

Factor de importanciaTabla 4Is/unidades1.25

Factor de modificacin de la respuestaTabla 4(d)Rwis/unidades2.75

Factor de modificacin de la respuestaTabla 4(d)Rwcs/unidades1.00

Anlisis ssmico de un depsito

ConceptoReferencia alSmboloUnidadesResult. de

Reglamentola frmula

Clculo de las componentes del peso

Peso total del lquido almacenadoWLton1200.00

Peso de las paredes del depsitoWwton476.52

Peso de una pared perp. a la direcc. de la fza. ssm.W'wton132.00

Masa impulsiva del lquido almacenadoEc. (9-1)Witon368.40

Masa convectiva del lquido almacenadoEc. (9-2)Wcton816.42

Peso de la cubierta del depsitoWrton0.00

Coeficiente de la masa efectivaEc. (9-34)s/unidades0.518

Masa dinmica efectiva de la pared del dep.WwWeton246.76

Suma de Ww + Wr + WiWton615.16

Peso de las paredes en la direccin largaW"ton70.24

masa por unidad de ancho de una pared R9.2.4mwton-seg2/m0.67

masa impulsiva por una de ancho del lquido contenidoR9.2.4miton-seg2/m0.94

masa total por unidad de ancho de una pared rect.Ec (9-10)mton-seg2/m1.61

Altura sobre la base de la pared al c.g. del dep.hwm2.50

Altura sobre la base de la pared al c.g. de la fza imp.Ec. (9-3), (9-4)him1.50

Altura sobre la base de la pared al c.g. de la fza convec.Ec. (9-5)hcm2.11

Centroide de las masas de la pared + cubierta + la impulsivaSecc R9.2.4hm2.56

Rigidez a flex. de un ancho unit. de la paredSecc. R9.2.4kton/m26241.05

aceleracin de la gravedadgm/seg9.80

Periodos

Frecuencia natural de oscilacin del dep.+ la comp. impEc. (9-9)irad/seg62.20

Periodo natural de oscilacin del dep.+ la comp. ImpulsivaEc (9-11)Tiseg0.101

coeficienteEc (9-13), fig. 9.5(m/seg^2)^0.54.613

frec. natural de la componente convectivaEc. (9-14)crad/seg1.191

Periodo natural de oscilacin del dep.+ la comp. convectivaEc. (9-14)Tcseg5.275

Coeficiente de amplificacin espectralEcs. (9-31), (9-32)Cis/unidades1.375

Coeficiente de amplificacin espectralEc. (9-33)Ccs/unidades0.216

Anlisis ssmico de un depsito rectangular

ConceptoReferencia alSmboloUnidadesResult. de

Reglamentola frmula

Fuerzas dinmica por unidad de ancho B

Fuerza lateral de inercia debida a Pwy/BSecc. R5.3.1pwyton/m0.256

Fuerza impulsiva lateral debida a Wi: Pi/B, fondoSecc. R5.3.1pi, fondoton/m1.511

Fuerza impulsiva lateral debida a Wi: Pi/B, superficieSecc. R5.3.1pi, superficieton/m0.216

Fuerza convectiva lateral debida a Wc: Pi/B, fondoSecc. R5.3.1pc, fondoton/m0.688

Fuerza convectiva lateral debida a Wc: Pc/B, superf.Secc. R5.3.1pc, superficieton/m1.007

en blanco

en blanco

en blanco

en blanco

en blanco

Altura sobre la base de la pared al centro de gravedad de las fuerzas impulsivas y convectivas

Altura del cg de la fza. ImpulsivaEc (9-6), (9-7)him6.01

Altura del cg de la fza. ConvectivaEc (9-8)hcm7.18

Momentos en la base(Secc. 4.1.3)

Momento debido a la inercia de las paredesEc. (4-6)Mwton-m231.34

Momento de la cubiertaEc. (4-7)Mrton-m0.00

Momento de las fuerzas impulsivas (EBP)Ec. (4-8)Miton-m207.23

Momento de las fuerzas convectivas(EBP)Ec (4-9)Mcton-m278.66

Momento flexionanteEc. (4-10)Mbton-m519.60

Momento de volteo en la base del tanque incluyendo el fondo de ste y la estructura de soporte

Momento debido a la inercia de las paredesEc. (4-6)Mwton-m231.34

Momento de la cubiertaEc.(4.7)Mrton-m0.00

Momento de las fuerzas impulsivas (IBP)Ec. (4-11)Miton-m830.92

Momento de las fuerzas convectivas (IBP)Ec. (4-12)Mcton-m947.80

Momento de volteo Ec. (4.1.3)Mvolteoton-m1423.63

Oscilacin mxima del aguaSecc R7.1dmxm1.21

Anlisis ssmico de un depsito

ConceptoReferencia alSmboloUnidadesResult. de

Reglamentola frmula

Verificacin de la estabilidad

Peso de las paredesRengln 45Wwton476.52

Peso de la losa de cimentacinRengln 32Wbaseton355.31

Peso del lquido almacenadoRengln 44WLton1,200.00

peso totalton2,031.83

Coeficiente de friccin entre el concreto y el terrenos/unidades0.70

cortante en la baseRengln 83ton265.80

Factor de seguridad al deslizamientos/unidades5.35

Volteo

Momento resistenteton-m17,168.93

Factor de seguridad al volteo: Mom. resistente/Mom. volteos/unidades12.06

Presin del terreno

Brazo de palanca [(Mom. Resitent - Mom Volteo)/peso total)]m7.75

Excentricidad (L'/2- brazo de palanca)em0.70

Esfuerzo mximo (frmula de la escuadra )mxton/m26.86

Esfuerzo mnimo (frmula de la escuadra )mnton/m24.12

En este sentido tenemos que la resistencia en el terreno es del orden de 20 tons/m2, que son menores a las 6.86 tons/m2 actuando en el terreno.

No se consideraron cargas por flotacin en la alberca, toda vez, que segn el estudio de mecnica de suelos LABORATORIO DE MATERIALES, GEOTECNIA Y CONTROL DE CALIDAD ING. JORGE EUSEBIO CRUZ TORRES CED. PROF. 1615821 CALLE DIEGO LEO No. 51 DESP. 201, CENTRO HISTORICO; C.P. 91000 XALAPA, VERACRUZ. CEL: 044 (229) 1 48 07 04, E-mail: [email protected]

Realizado en Agosto 2014, no indica la presencia de nivel fretico.

8.1.- CARGAS DE VIENTO.

8.2.- CARGAS DE OLEAJE

CALCULO DE FUERZAS DE LA OLA

DATOS PARA EL CALCULO DE FUERZAS DE LA OLA

H = Altura de la ola =2.00m.

L = Longitud de la ola =50.00m.

T = Periodo de la ola =6.00seg.

d = Profundidad del lecho marino =1.80m.

fD = Fuerza de arrastre

fI = Fuerza de inercia

f = presion total que ejerceria la ola

CD = Factor de arrastre =0.70

CI = Factor de inercia =1.30

g = Aceleracion de la gravedad =9.81m/seg.

= Peso volumetrico del agua de mar =1.03ton/m

D = Ancho del objeto =0.80m.

u = Velocidad de las particulas del agua en el punto de estudio

= Aceleracion del agua en el punto de anlisis

Z = Altura del punto uestudio sobre el fondo

X = Distancia del punto de analisis desde la cresta de la ola

Ubicacon de la defensa con respecto al nivel de aguas tranquilas:

Desde:2.00m.hasta0.00m.

TABLAS DE CALCULO DE FUERZAS DE LA OLA

Para X =0.0m.ZufDfIfF

m/segm/segT/mTon

1.84.710.000.650.000.650.69

3.85.120.000.770.000.770.73

FT =1.42

Para X =5.0m.ZufDfIfF

m/segm/segT/mTon

1.83.812.900.430.200.630.66

3.84.153.150.510.220.720.69

FT =1.35

Para X =10.0m.ZufDfIfF

m/segm/segT/mTon

1.81.454.690.060.320.380.40

3.81.585.100.070.350.420.41

FT =0.81

8.3.- PRESION HIDROESTATICA.

Altura/2 por densidad del agua.

8.4.- EMPUJE DE TIERRA.

Se considera 1.5 tons /m2.

9.- RESULTADOS DEL ANALISIS:

Analysis result

9.1 DESPLAZAMIENTOS LATERALES DE LA ESTRUCTURA. (DISTORSONES)

Story drift nodes

Amplification factor::2.00

In XIn ZNodeHTXTXDriftRatioTZTZDriftRatio[m][cm][cm][cm][cm][cm][cm]D1 = 1.4CM374-1.000.000000.000000.000000.000000.000000.000000.000000.000006973.00-0.00001-0.00001-0.000020.000000.002390.002390.004770.00002D2 = 1.4CM + 1.7PL374-1.000.000000.000000.000000.000000.000000.000000.000000.000006973.00-0.00025-0.00025-0.000500.000000.002400.002400.004800.00002D3 = 1.2CM + 1.6CV374-1.000.000000.000000.000000.000000.000000.000000.000000.000006973.00-0.00002-0.00002-0.000040.000000.002770.002770.005530.00002D4 = 1.2CM + 1.6CV + 1.7PL374-1.000.000000.000000.000000.000000.000000.000000.000000.000006973.00-0.00026-0.00026-0.000510.000000.002780.002780.005560.00002D5 = 1.2CM + Sx374-1.000.000000.000000.000000.000000.000000.000000.000000.000006973.000.001090.001090.002170.000010.003610.003610.007220.00002D6 = 1.2CM + Sz374-1.000.000000.000000.000000.000000.000000.000000.000000.000006973.000.000020.000020.000040.000000.006300.006300.012600.00004D7 = 1.2CM + Et374-1.000.000000.000000.000000.000000.000000.000000.000000.000006973.00-0.00001-0.00001-0.000020.000000.003400.003400.006800.00002D8 = 1.2CM + CV + Sx374-1.000.000000.000000.000000.000000.000000.000000.000000.000006973.000.001080.001080.002160.000010.004060.004060.008120.00003D9 = 1.2CM + CV + Sz374-1.000.000000.000000.000000.000000.000000.000000.000000.000006973.000.000010.000010.000030.000000.006750.006750.013500.00005D10 = 1.2CM + CV + Et374-1.000.000000.000000.000000.000000.000000.000000.000000.000006973.00-0.00001-0.00001-0.000030.000000.003850.003850.007700.00003D11 = 0.9CM + Sx374-1.000.000000.000000.000000.000000.000000.000000.000000.000006973.000.001090.001090.002180.000010.003100.003100.006190.00002D12 = 0.9CM + Sz374-1.000.000000.000000.000000.000000.000000.000000.000000.000006973.000.000020.000020.000040.000000.005790.005790.011580.00004D13 = 0.9CM + Et374-1.000.000000.000000.000000.000000.000000.000000.000000.000006973.00-0.00001-0.00001-0.000010.000000.002890.002890.005780.00002S1 = CM374-1.000.000000.000000.000000.000000.000000.000000.000000.000006973.00-0.00001-0.00001-0.000020.000000.001700.001700.003410.00001S2 = CM + PL374-1.000.000000.000000.000000.000000.000000.000000.000000.000006973.00-0.00015-0.00015-0.000300.000000.001710.001710.003430.00001S3 = CM + CV374-1.000.000000.000000.000000.000000.000000.000000.000000.000006973.00-0.00001-0.00001-0.000030.000000.002150.002150.004310.00001S4 = CM + CV + PL374-1.000.000000.000000.000000.000000.000000.000000.000000.000006973.00-0.00015-0.00015-0.000310.000000.002160.002160.004330.00001S5 = CM + 0.75CV374-1.000.000000.000000.000000.000000.000000.000000.000000.000006973.00-0.00001-0.00001-0.000020.000000.002040.002040.004080.00001S6 = CM + 0.75CV + PL374-1.000.000000.000000.000000.000000.000000.000000.000000.000006973.00-0.00015-0.00015-0.000300.000000.002050.002050.004100.00001S7 = CM + 0.7Sx374-1.000.000000.000000.000000.000000.000000.000000.000000.000006973.000.000760.000760.001520.000010.002800.002800.005600.00002S8 = CM + 0.7Sz374-1.000.000000.000000.000000.000000.000000.000000.000000.000006973.000.000010.000010.000020.000000.004680.004680.009370.00003S9 = CM + 0.7Et374-1.000.000000.000000.000000.000000.000000.000000.000000.000006973.00-0.00001-0.00001-0.000010.000000.002650.002650.005310.00002S10 = CM + PL + 0.7Sx374-1.000.000000.000000.000000.000000.000000.000000.000000.000006973.000.000620.000620.001240.000000.002810.002810.005610.00002S11 = CM + PL + 0.7Sz374-1.000.000000.000000.000000.000000.000000.000000.000000.000006973.00-0.00013-0.00013-0.000250.000000.004690.004690.009380.00003S12 = CM + PL + 0.7Et374-1.000.000000.000000.000000.000000.000000.000000.000000.000006973.00-0.00015-0.00015-0.000290.000000.002660.002660.005320.00002S13 = CM + 0.525Sx374-1.000.000000.000000.000000.000000.000000.000000.000000.000006973.000.000570.000570.001140.000000.002520.002520.005050.00002S14 = CM + 0.525Sz374-1.000.000000.000000.000000.000000.000000.000000.000000.000006973.000.000010.000010.000010.000000.003940.003940.007880.00003S15 = CM + 0.525Et374-1.000.000000.000000.000000.000000.000000.000000.000000.000006973.00-0.00001-0.00001-0.000010.000000.002420.002420.004830.00002S16 = CM + PL + 0.525Sx374-1.000.000000.000000.000000.000000.000000.000000.000000.000006973.000.000430.000430.000860.000000.002530.002530.005070.00002S17 = CM + PL + 0.525Sz374-1.000.000000.000000.000000.000000.000000.000000.000000.000006973.00-0.00013-0.00013-0.000260.000000.003950.003950.007900.00003S18 = CM + PL + 0.525Et374-1.000.000000.000000.000000.000000.000000.000000.000000.000006973.00-0.00015-0.00015-0.000290.000000.002430.002430.004850.00002S19 = 0.6CM + 0.7Sx374-1.000.000000.000000.000000.000000.000000.000000.000000.000006973.000.000760.000760.001530.000010.002120.002120.004230.00001S20 = 0.6CM + 0.7Sz374-1.000.000000.000000.000000.000000.000000.000000.000000.000006973.000.000020.000020.000030.000000.004000.004000.008000.00003S21 = 0.6CM + 0.7Et374-1.000.000000.000000.000000.000000.000000.000000.000000.000006973.000.000000.00000-0.000010.000000.001970.001970.003940.00001S22 = 0.6CM + PL + 0.7Sx374-1.000.000000.000000.000000.000000.000000.000000.000000.000006973.000.000620.000620.001250.000000.002130.002130.004250.00001S23 = 0.6CM + PL + 0.7Sz374-1.000.000000.000000.000000.000000.000000.000000.000000.000006973.00-0.00012-0.00012-0.000250.000000.004010.004010.008020.00003S24 = 0.6CM + PL + 0.7Et374-1.000.000000.000000.000000.000000.000000.000000.000000.000006973.00-0.00014-0.00014-0.000290.000000.001980.001980.003960.00001RS1 = 1.1CM + 1.1CV + 1.1Sx + 0.33Sz374-1.000.000000.000000.000000.000000.000000.000000.000000.000006973.000.001200.001200.002400.000010.005490.005490.010990.00004RS2 = 1.1CM + 1.1CV + 0.33Sx + 1.1Sz374-1.000.000000.000000.000000.000000.000000.000000.000000.000006973.000.000380.000380.000760.000000.007570.007570.015140.00005RS3 = 1.1CM + 1.1CV - 1.1Sx - 0.33Sz374-1.000.000000.000000.000000.000000.000000.000000.000000.000006973.00-0.00123-0.00123-0.00246-0.00001-0.00075-0.00075-0.00151-0.00001RS4 = 1.1CM + 1.1CV - 0.33Sx - 1.1Sz374-1.000.000000.000000.000000.000000.000000.000000.000000.000006973.00-0.00041-0.00041-0.000820.00000-0.00283-0.00283-0.00565-0.00002

Distorsin de entrepiso permitida 0.006, tenemos 0.001 status OK.

9.2 DEFLEXIONES EN VIGAS DEL CUARTO DE MAQUINAS

Current Date: 10/21/2014 9:15 AMUnits system: MetricFile name: C:\Users\baviles\Desktop\PAV\ALBERCA DE OLAS-def.etz\

Analysis result

Maximum relative deflectionsRemark.- Magnitude of deflections in absolute value.

CONDITION S3=CM+CVMemberDefl. (2) [cm]@(%)Defl. (3) [cm]@(%)10.02790(< L/10000)50.000000.07244(< L/10000)50.0000020.46177(L/1353)50.000000.00000(< L/10000)12.50000120.17166(L/3641)50.000000.00000(< L/10000)12.50000130.30438(L/2053)50.000000.00000(< L/10000)12.50000140.39547(L/1580)50.000000.00000(< L/10000)12.50000510.32845(L/1827)50.000000.00000(< L/10000)12.50000530.38930(L/1541)50.000000.00000(< L/10000)12.50000540.38524(L/1557)50.000000.00000(< L/10000)12.50000550.38354(L/1564)50.000000.00002(< L/10000)87.50000560.38566(L/1556)50.000000.00000(< L/10000)12.50000570.38933(L/1541)50.000000.00000(< L/10000)12.50000580.32846(L/1827)50.000000.00000(< L/10000)12.50000621.02587(L/626)50.000000.00000(< L/10000)12.50000661.06116(L/605)50.000000.00000(< L/10000)12.50000701.02888(L/624)50.000000.00000(< L/10000)12.50000710.60416(L/1034)50.000000.00000(< L/10000)12.50000720.47637(L/1312)50.000000.00000(< L/10000)50.00000730.47398(L/1319)50.000000.00000(< L/10000)12.50000770.38598(L/1619)50.000000.00000(< L/10000)12.50000780.39866(L/1568)50.000000.00000(< L/10000)12.50000790.34896(L/1791)50.000000.00000(< L/10000)12.50000800.29918(L/2089)50.000000.00000(< L/10000)12.50000810.23076(L/2708)50.000000.00000(< L/10000)12.50000820.21630(L/2889)50.000000.00000(< L/10000)12.50000830.17004(L/3676)50.000000.00000(< L/10000)12.50000840.10597(L/5898)50.000000.00000(< L/10000)12.50000850.10329(L/6051)50.000000.00000(< L/10000)12.50000

la deflexin permisible es L/240, tenemos L/626, status OK

10.- DISEO:

10.1.- REVISION DE MUROS DE CONCRETO

La revisin se hiso con el mdulo de muros de concreto del programa Ram Elements 10.5

Current Date: 10/21/2014 9:23 AMUnits system: Metric

Design Results

Concrete Wall

GENERAL INFORMATION:

Global status:OK

Design code:ACI 318-05

Geometry:Total height:3.00 [m]Total length:24.00 [m]Base support type:ContinuousWall bottom restraint:PinnedColumn bottom restraint:PinnedRigidity elements:None

Materials:Material:f'c=250Steel tension strength (Fy):4.2 [Ton/cm2]Concrete compressive strength (fc):0.25 [Ton/cm2]Steel elasticity modulus (Es):2038.89 [Ton/cm2]Concrete modulus of elasticity (E):219.357 [Ton/cm2]Concrete unit weight:2.39984 [Ton/m3]

Number of stories:1

StoryStory heightWall thickness[m][cm]13.0030.00

Load conditions:

IDComb.CategoryDescriptionCMNoDLCarga MuertaCVNoLLCarga VivaPLNoFLUIDPeso del liquidoSxNoEQSismo en XSzNoEQSismo en ZEtNoEQEmpuje tierraD1Yes1.4CMD2Yes1.4CM+1.7PLD3Yes1.2CM+1.6CVD4Yes1.2CM+1.6CV+1.7PLD5Yes1.2CM+SxD6Yes1.2CM+SzD7Yes1.2CM+EtD8Yes1.2CM+CV+SxD9Yes1.2CM+CV+SzD10Yes1.2CM+CV+EtD11Yes0.9CM+SxD12Yes0.9CM+SzD13Yes0.9CM+EtS1YesCMS2YesCM+PLS3YesCM+CVS4YesCM+CV+PLS5YesCM+0.75CVS6YesCM+0.75CV+PLS7YesCM+0.7SxS8YesCM+0.7SzS9YesCM+0.7EtS10YesCM+PL+0.7SxS11YesCM+PL+0.7SzS12YesCM+PL+0.7EtS13YesCM+0.525SxS14YesCM+0.525SzS15YesCM+0.525EtS16YesCM+PL+0.525SxS17YesCM+PL+0.525SzS18YesCM+PL+0.525EtS19Yes0.6CM+0.7SxS20Yes0.6CM+0.7SzS21Yes0.6CM+0.7EtS22Yes0.6CM+PL+0.7SxS23Yes0.6CM+PL+0.7SzS24Yes0.6CM+PL+0.7EtRS1Yes1.1CM+1.1CV+1.1Sx+0.33SzRS2Yes1.1CM+1.1CV+0.33Sx+1.1SzRS3Yes1.1CM+1.1CV-1.1Sx-0.33SzRS4Yes1.1CM+1.1CV-0.33Sx-1.1Sz

BEARING WALL DESIGN:

Status:OK

Geometry:

SegmentX CoordinateY CoordinateWidthHeight[m][m][m][m]10.000.0024.003.00

Vertical reinforcement:

Reinforcement layers:2

SegmentBarsSpacingLd[cm][cm]196-#425.0050.89

Intermediate results for axial-bending

SegmentConditioncd[cm][cm]1RS3 (Bottom)2.2826.10

Combined axial flexure

SegmentConditionPuMu*MnMu/*Mn[Ton][Ton*m][Ton*m]1RS3 (Bottom)45.52-125.66134.730.93

Interaction diagrams, P vs. M:

Axial compression

SegmentConditionPu*PnPu/*Pn[Ton][Ton]1D1 (Bottom)68.847928.620.01

Axial tension

SegmentConditionPu*PnPu/*Pn[Ton][Ton]1D1 (Top)0.00936.460.00

Shear

SegmentConditionVu*VnVu/*Vn[Ton][Ton]1RS3 (Max)88.834393.8470.23

SHEAR WALL DESIGN:

Status:OK

Geometry:

SegmentX CoordinateY CoordinateWidthHeight[m][m][m][m]10.000.0024.003.00

Reinforcement:

Reinforcement layers:2

Vertical reinforcementHorizontal reinforcementSegmentBarsSpacingLdBarsSpacingLd[cm][cm][cm][cm]196-#425.0050.8912-#425.0066.16

Intermediate results for axial-bending

SegmentConditioncd[cm][cm]1RS1 (Top)173.921920.00

Combined axial flexure

SegmentConditionPuMu*MnMu/*Mn[Ton][Ton*m][Ton*m]1RS1 (Top)3.08-110.4710497.460.01

Interaction diagrams, P vs. M:

Axial compression

SegmentConditionPu*PnPu/*Pn[Ton][Ton]1D1 (Bottom)68.847928.620.01

Axial tension

SegmentConditionPu*PnPu/*Pn[Ton][Ton]1D1 (Top)0.00936.460.00

Shear

SegmentConditionVu*VnVu/*Vn[Ton][Ton]1RS1 (Bottom)30.6391231.8120.02

Notes:

* Pu = Axial load* Pn = Nominal axial load* Mu = Section moment* Mn = Maximum nominal moment* Vu = Design shear force* Vn = Nominal shear force* ld = Embedment length* As = Effective cross sectional area of reinforcement

10.3.- REVISION DE VIGAS CONCRETO

Design Results

Reinforced concrete beams

GENERAL INFORMATION:

Design Code:ACI 318-2008

Load conditions included in the design:D1=1.4CMD2=1.4CM+1.7PLD3=1.2CM+1.6CVD4=1.2CM+1.6CV+1.7PLD5=1.2CM+SxD6=1.2CM+SzD7=1.2CM+EtD8=1.2CM+CV+SxD9=1.2CM+CV+SzD10=1.2CM+CV+EtD11=0.9CM+SxD12=0.9CM+SzD13=0.9CM+EtRS1=1.1CM+1.1CV+1.1Sx+0.33SzRS2=1.1CM+1.1CV+0.33Sx+1.1SzRS3=1.1CM+1.1CV-1.1Sx-0.33SzRS4=1.1CM+1.1CV-0.33Sx-1.1Sz

Moment frame:Intermediate

MaterialsConcrete, f'c:0.25 [Ton/cm2]Longitudinal reinforcement, fy:4.20 [Ton/cm2]Concrete type:NormalTransversal reinforcement, fyt:4.20 [Ton/cm2]Concrete elasticity modulus:219.36 [Ton/cm2]Steel elasticity modulus:2038.89 [Ton/cm2]Unit weight:2.40 [Ton/m3]Epoxy coated:No

DATA AND RESULTS

Status:OK

Geometry

AxisCol positionBottom widthTop widthDist x[cm][cm][m]1Center40.000.000.002Center40.000.006.42

SpanDist between axesMember NoSectionbhbwhf[m][cm][cm][cm][cm]1-26.426220.3240.64----

Rebar

Free cover:2.00 [cm]

Longitudinal reinforcementGroupQuantityDiameterPosRef. Axis 1Dist1Ref. Axis 2Dist2Hook1Hook2[m][m]12#6Bottom1-0.1820.18YesYes22#6Top1-0.1820.18YesYes31#6Bottom1-0.1820.18NoNo42#6Top1-0.1812.20YesNo53#6Top2-2.2020.18NoYes

Development and splice lengths

GroupDiameterLdLdhSplice L.Total L[cm][cm][cm][m]1#678.0028.00100.007.302#6100.0028.00130.007.303#678.0028.00100.006.784#6100.0028.00130.002.645#6100.0028.00130.002.64

Transverse reinforcement

SpanDiameterQuantity@LegsClosed[cm]1-2#3178.002Yes1-2#31918.002Yes1-2#3168.002Yes

Initial spacing of stirrups:

SpanInitial SSin lim[cm][cm]0-12.005.08

FLEXURE

Span: 1-2Member No: 62

Percentage of moment redistributionSupport A = 0.00%Support B = 0.00%Code specified max Rho:maxtop = 2.54%maxbot= 1.84%Limit spacing between bars for cracking control:sb lim = 30.61 [cm]

Positive bending moments

Stationd[cm]Mu[Ton*m]*Mn[Ton*m]Asreq [cm2]Asprov [cm2](%)sb [cm]Mu/(*Mn)No.Dist10%36.733.388.922.527.090.953.400.85210%36.733.3810.492.528.521.143.400.32320%36.735.8110.494.458.521.143.400.55430%36.739.2210.497.368.521.143.400.88540%36.7310.2310.498.288.521.143.400.98650%36.7310.1010.498.158.521.143.400.96760%36.737.7110.496.038.521.143.400.73870%36.734.9210.493.738.521.143.400.47980%36.733.3810.492.528.521.233.400.321090%36.733.3810.492.528.521.233.400.5811100%36.733.388.922.527.091.023.400.95C44%36.7310.2410.498.288.521.143.400.98

Negative bending moments

Stationd[cm]Mu[Ton*m]*Mn[Ton*m]Asreq [cm2]Asprov [cm2](%)sb [cm]Mu/(*Mn)No.Dist10%34.51-10.57-12.449.3311.351.628.700.85210%34.51-2.93-12.442.3511.351.628.700.32320%34.51-2.93-12.442.3511.351.628.700.55430%34.51-2.93-8.362.357.121.028.700.88540%36.73-2.93-7.292.505.680.768.700.98650%36.73-2.93-7.292.505.680.768.700.96760%36.73-2.93-7.292.505.680.768.700.73870%34.07-2.93-8.962.357.841.138.700.47980%34.07-3.09-15.472.4914.192.058.700.321090%34.07-8.96-15.477.8414.192.058.700.5811100%34.07-14.64-15.4113.9214.192.058.700.95C44%36.73-2.93-7.292.505.680.768.700.98

SHEAR AND TORSION

Span: 1-2Member No: 62

Mpr1(+)=12.00 Ton*mMpr2(+)=12.00 Ton*mVe(+)=13.35 TonMpr1(-)=-19.72 Ton*mMpr2(-)=-15.34 Ton*mVe(-)=-16.64 Ton

StationStirrupsSpc provSpc limTu*TnAlVuVsVc*VnVu/(*Vn)No.DistDiamVCT[cm][cm][Ton*m][Ton*m][cm2][Ton][Ton][Ton][Ton]10%#3V8.008.630.020.950.0016.6423.525.8822.050.75210%#3V8.008.850.021.010.0016.6424.136.0322.620.74320%#3V8.0018.370.011.490.007.7425.046.2623.470.33430%#318.0018.370.011.160.002.1512.176.2613.820.16540%#318.0018.370.001.160.000.5412.176.2613.820.04650%#3V18.0018.370.011.160.003.7112.176.2613.820.27760%#3V18.0018.370.011.160.003.8712.176.2613.820.28870%#3V18.0018.370.011.000.005.9012.176.2613.820.43980%#3V8.0018.370.011.450.009.0125.046.2623.470.381090%#3V8.008.520.010.920.0016.6423.225.8021.770.7611100%#3VC8.008.520.010.920.0016.6423.225.8021.770.76C89%#3V8.008.520.010.920.0016.6423.225.8021.770.76

Notes* Only the design bending forces (Mu), shear forces (Vu) and torsion moments (Tu) are considered in the design.* Values shown in red are not in compliance with a provision of the code* The positive and negative flexural reinforcement includes the longitudinal reinforcement required to resist torsion. Refer to the note below on the VCT column to determine when torsion and compression bars are provided. The longitudinal reinforcement area considers the minimum area required by Code (10.5).* When the moments diagram increases in the same direction of the development length of the bars, the bars will not contribute to the member strength for a Code specified distance equal to max(12*db,d).* If the section at which member flexural strength is being calculated is within the development length of a group of bars, the bars will contribute to the bending capacity an amount proportional to their actual length / their full development length.* The transverse reinforcement is ordered from left to right.* The program does not consider ACI318-08 section 12.11.3 whereby the bar diameter is limited according to the location of the bar cut-off.* Asprov is the provided reinforcement, considering the reduction due to the development length as described previously.* "C" shows the span critical station.* Ld,Ldh = Development length of each bar. If the bar ends with a hook, it considers the Ldh length.* Splice lengths shown are not reduced by the factor Asreq/Asprov.* sb = Free distance between top or bottom bars corresponding to the layer closest to the extreme face of the beam (layer1). It is not calculated when there is only one bar.* Stirrups VCT = Flag that determines if stirrups are required to resist shear forces (V), torsion (T) or to confine the the longitudinal compression bars from buckling (C).* Closed = Flag that indicates if the stirrups are closed (yes) or open (no).* Mu/(*Mn) = Critical strength ratio for the station. If the value is in red, it is larger than 1.0* Al = Total additional longitudinal reinforcement required by torsion.* Spa = stirrup spacing provided by the user.* Mpr1, Mpr2 = Probable flexural moment strength at both ends of the member.* Ve = Design shear force that is based on the probable flexural moment strength at both ends of the member. In the case of special moment frames design Vu = max(Ve, Vu from the analysis) (21.3.3.1a)* Spa lim = spacing limits due to geometry. (11.4.5.1, 11.4.5.3, 21.3.4.2, 21.5.3.2)

10.3.- REVISION DE LOSA CONCRETO

El prorama realiza un anlisis de elemento finite.Analysis result

Plate reinforced concrete design in local axesDesign code: ACI 318-2008Notes:- Membrane forces are ignored in the design- "Bot" is the bottom edge of the plate (-t/2)- "Top" is the top edge of the plate (+t/2)- "ec" is the controlling load condition- Face +t/2 is in compression if bending moments are positive- Large rebar areas (in the order of 1E300) indicate an error in the design due to insufficient thickness of the shell or insufficient strength of the material

Load conditions to be included in design:D1=1.4CMD2=1.4CM+1.7PL D3=1.2CM+1.6CVD4=1.2CM+1.6CV+1.7PLD5=1.2CM+SxD6=1.2CM+SzD7=1.2CM+EtD8=1.2CM+CV+SxD9=1.2CM+CV+SzD10=1.2CM+CV+EtD11=0.9CM+SxD12=0.9CM+SzD13=0.9CM+EtS1=CMS2=CM+PLS3=CM+CVS4=CM+CV+PLS5=CM+0.75CVS6=CM+0.75CV+PLS7=CM+0.7SxS8=CM+0.7SzS9=CM+0.7EtS10=CM+PL+0.7SxS11=CM+PL+0.7SzS12=CM+PL+0.7EtS13=CM+0.525SxS14=CM+0.525SzS15=CM+0.525EtS16=CM+PL+0.525SxS17=CM+PL+0.525SzS18=CM+PL+0.525EtS19=0.6CM+0.7SxS20=0.6CM+0.7SzS21=0.6CM+0.7EtS22=0.6CM+PL+0.7SxS23=0.6CM+PL+0.7SzS24=0.6CM+PL+0.7EtRS1=1.1CM+1.1CV+1.1Sx+0.33SzRS2=1.1CM+1.1CV+0.33Sx+1.1SzRS3=1.1CM+1.1CV-1.1Sx-0.33SzRS4=1.1CM+1.1CV-0.33Sx-1.1Sz

SHELL 29Thickness = 25.00 [cm]Mechanical cover = 3.00 [cm]As parallel to 3'As parallel to 1'M11'lcAs3'M33'lcAs1'Node[Ton*m/m][cm2/m][Ton*m/m][cm2/m]119Min.0.00S21Top0.000.00S19Top0.00Max.0.05D4Bot0.060.05D4Bot0.06FEM: 1059Min.-2.00D4Top2.44-0.40D4Top0.48Max.-0.17S19Bot0.00-0.03S19Bot0.00FEM: 1138Min.0.06S21Top0.000.06S21Top0.00Max.0.69D4Bot0.830.71D4Bot0.85FEM: 1117Min.-0.44D4Top0.53-2.18D4Top2.65Max.-0.04S21Bot0.00-0.18S21Bot0.00FEM: 1139Min.0.09S19Top0.000.09S21Top0.00Max.1.05D4Bot1.271.14D4Bot1.38FEM: 1118Min.-0.77D4Top0.93-3.63D4Top4.46Max.-0.06S21Bot0.00-0.30S21Bot0.00FEM: 1140Min.0.06S19Top0.000.06S19Top0.00Max.0.69D4Bot0.830.71D4Bot0.85FEM: 1119Min.-0.44D4Top0.53-2.18D4Top2.65Max.-0.04S21Bot0.00-0.18S21Bot0.00FEM: 1137Min.-2.00D4Top2.44-0.40D4Top0.48Max.-0.17S21Bot0.00-0.03S21Bot0.00126Min.0.00S19Top0.000.00S21Top0.00Max.0.05D4Bot0.060.05D4Bot0.06FEM: 1058Min.-3.37D4Top4.13-0.71D4Top0.86Max.-0.28S19Bot0.00-0.06S19Bot0.00FEM: 1141Min.0.10S21Top0.000.10S21Top0.00Max.1.15D4Bot1.391.19D4Bot1.44FEM: 1142Min.0.15S19Top0.000.16S21Top0.00Max.1.80D4Bot2.191.98D4Bot2.41FEM: 1143Min.0.10S19Top0.000.10S21Top0.00Max.1.15D4Bot1.391.19D4Bot1.44FEM: 1136Min.-3.37D4Top4.13-0.71D4Top0.86Max.-0.28S21Bot0.00-0.06S21Bot0.00FEM: 1057Min.-1.96D4Top2.38-0.39D4Top0.47Max.-0.17S19Bot0.00-0.03S19Bot0.00FEM: 1144Min.0.06S21Top0.000.06S21Top0.00Max.0.67D4Bot0.810.68D4Bot0.82FEM: 1145Min.0.09S19Top0.000.09S19Top0.00Max.1.02D4Bot1.241.10D4Bot1.33FEM: 1146Min.0.06S19Top0.000.06S19Top0.00Max.0.67D4Bot0.810.68D4Bot0.82FEM: 1135Min.-1.96D4Top2.38-0.39D4Top0.47Max.-0.17S19Bot0.00-0.03S19Bot0.00120Min.0.00S19Top0.000.00S19Top0.00Max.0.05D4Bot0.060.05D4Bot0.06FEM: 1132Min.-0.45D4Top0.55-2.27D4Top2.77Max.-0.04S21Bot0.00-0.18S21Bot0.00FEM: 1133Min.-0.80D4Top0.97-3.80D4Top4.67Max.-0.06S21Bot0.00-0.30S21Bot0.00FEM: 1134Min.-0.46D4Top0.55-2.28D4Top2.77Max.-0.04S21Bot0.00-0.18S21Bot0.00127Min.0.00S21Top0.000.00S21Top0.00Max.0.05D4Bot0.060.05D4Bot0.06

Requerimos 4.13 cm2, de rea de acero considerando una separacin de 20 cm tenemos 5 espacios por los que Requerimos varillas de 4.13/5=0.826 cm2, la varilla de 3 tiene un rea de 0.71, la varilla del 4 tiene un rea de 1.27 mayor a 0.826 Por lo que usaremos varillas del # 4 @ 20 cm ambos sentidos amos lechos.

Page 20 | 35