Measurement uncertainty in environmental analysis

Download Measurement uncertainty in environmental analysis

Post on 16-May-2015

1.172 views

Category:

Education

7 download

Embed Size (px)

TRANSCRIPT

<ul><li> 1. Measurement Uncertainty in Environmental Analysis Todd R. Crawford, BA Center for Toxicology andEnvironmental Health, LLC</li></ul> <p> 2. Standard Procedures </p> <ul><li>ISO 1993 Guide to the Expression of Uncertainty in Measurement </li></ul> <ul><li>NIST 1994 Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results </li></ul> <p> 3. Uncertainty Statements </p> <ul><li>Inform the reader of how sure the writer is that the answer lies within that range. </li></ul> <p> 4. Uncertainty Statement? </p> <ul><li>if by any chance our value is shown to be in error by more than 1 part in 1,000, we are prepared to eat the apparatus and drink the ammonia. </li></ul> <ul><li>Attrib. Dr. C.H. Meyers </li></ul> <p> 5. Error </p> <ul><li>Error is a single value an idealized concept, error cannot be known exactly. </li></ul> <ul><li>Error is the difference between the true value and the result of the measurement. </li></ul> <p> 6. Uncertainty </p> <ul><li>Uncertainty is the state of knowledge about the unknown error. </li></ul> <ul><li>Uncertainty is given as the range in which the error is to be expected. </li></ul> <p> 7. Accuracy </p> <ul><li>Accuracy is the closeness of a measurement to the true value. </li></ul> <ul><li>Accuracy is expressed as the percent recovery. </li></ul> <p> 8. Precision </p> <ul><li>Precision is the closeness of agreement between repeated measurements. </li></ul> <ul><li>Precision is expressed as the relative standard deviation (RSD). </li></ul> <p> 9. Measurement Uncertainty in Environmental Analysis </p> <ul><li>The true value cannot be known. </li></ul> <ul><li>The reported value is a consensus value. </li></ul> <p> 10. Reporting Uncertainty (ISO) </p> <ul><li>Reporting is required when: </li></ul> <ul><li><ul><li>The information is relevant to the application of the results, </li></ul></li></ul> <ul><li><ul><li>When the client requires it, </li></ul></li></ul> <ul><li><ul><li>When the Uncertainty affects compliance with a specification limit. </li></ul></li></ul> <p> 11. Evaluating Uncertainty (ISO) </p> <ul><li>Evaluating is required for calibrations. </li></ul> <ul><li>Procedures for estimating uncertainty are needed and need to be applied. </li></ul> <p> 12. Data Quality </p> <ul><li>The Uncertainty of a result is a quantitative indication of its quality. </li></ul> <ul><li>Quantitative Uncertainty allows comparison of the results. </li></ul> <ul><li>Measurement Uncertainty needs to be taken into account when interpreting the data. </li></ul> <p> 13. TPH in Soil </p> <ul><li>Bioremediation of a former petroleum terminal to residential clean-up standards. </li></ul> <ul><li>Approximately 500,000 cy of soil treated. </li></ul> <ul><li>Approximately 15,000 samples analyzed on-site over five years. </li></ul> <ul><li>On-site data demonstrated compliance with the remedial criteria. </li></ul> <p> 14. Interlaboratory Study </p> <ul><li>Measure the Accuracy and Precision of Five Labs Analyzing TPH in Soil by GC-FID. </li></ul> <ul><li>Homogenous soil containing biodegraded diesel fuel with 10% moisture. </li></ul> <ul><li>Soil submitted in blind triplicates to each lab. </li></ul> <ul><li>Each lab is certified for this analysis. </li></ul> <p> 15. Summary Results (n=15) </p> <ul><li>Control Lab </li></ul> <ul><li><ul><li>TPH = 921 ppm </li></ul></li></ul> <ul><li><ul><li>RSD = 2.4% </li></ul></li></ul> <ul><li>Independent Labs </li></ul> <ul><li><ul><li>TPH = 755 ppm </li></ul></li></ul> <ul><li><ul><li>RSD = 35% </li></ul></li></ul> <p> 16. Assessing Measurement Uncertainty </p> <ul><li>Any set of numbers (n&gt;3) has a mean and standard deviation. </li></ul> <ul><li>Complex statistical tests are beyond the expertise of most data users. </li></ul> <ul><li>Most data sets are too small to assess with any confidence. </li></ul> <p> 17. Charting to Evaluate Uncertainty </p> <ul><li>Rank the data in order of concentration. </li></ul> <ul><li>Normalize the data against the maximum value. </li></ul> <ul><li>Chart the value against its rank, where rank equals 1/n. </li></ul> <ul><li>Determine the slope and correlation coefficient. </li></ul> <p> 18. 19. 20. 21. Conclusion </p> <ul><li>Forensic environmental investigations require evaluation of measurement uncertainty. </li></ul> <ul><li>Quantitative results are most useful when reported in the context of their measurement uncertainty. </li></ul> <p> 22. Conclusion </p> <ul><li>Measurement uncertainty is significantly improved with the familiarity of the laboratory to the analysis. </li></ul> <ul><li><ul><li>On-site is better than Off-site! </li></ul></li></ul> <ul><li>Measurement uncertainty can be evaluated (more effectively) by charting. </li></ul> <p> 23. Acknowledgements </p> <ul><li>John E. Ross, de maximis, Inc. (Charter International Oil Company) </li></ul> <ul><li>James S. Smith, Les Eng, Trillium, Inc. </li></ul> <ul><li>Willem Schre der, Principia Mathematica, Inc. </li></ul> <ul><li>Glenn Millner, Center for Toxicology and Environmental Health, LLC </li></ul>

Recommended

View more >