maxwell + tddft multiscale descriptions for interactions of...

38
Maxwell + TDDFT multiscale descriptions for interactions of intense pulsed light with dielectrics Kazuhiro YABANA Center for Computational Sciences, University of Tsukuba 7 th Time-Dependent Density Functional Theory Benasque, Spain September 20-23, 2016

Upload: others

Post on 18-Jun-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Maxwell + TDDFT multiscale descriptions for interactions of …benasque.org/2016tddft/talks_contr/201_yabana.pdf · 2016-09-30 · Maxwell + TDDFT multiscale descriptions for interactions

Maxwell + TDDFT multiscale descriptions for interactions of intense pulsed light with dielectrics

Kazuhiro YABANA  

Center for Computational Sciences, University of Tsukuba

7 th Time-Dependent Density Functional Theory Benasque, Spain

September 20-23, 2016

Page 2: Maxwell + TDDFT multiscale descriptions for interactions of …benasque.org/2016tddft/talks_contr/201_yabana.pdf · 2016-09-30 · Maxwell + TDDFT multiscale descriptions for interactions

2

Collaborators

Univ. Tsukuba Mitsuharu Uemoto Xiao-Min Tong Yuta Hirokawa Taisuke Boku QST(KPSI) Tomohito Otobe Univ. Tokyo Yasushi Shinohara Max-Planck Institute for Structure and Dynamics of Matter Shunsuke Sato Kyung-Min Lee

Univ. Washington George F. Bertsch Tech. Univ. Wien Georg Wachter Isabella Floss Joachim Burgdoerfer Max Planck Institute for Quantum Optics (Experiment) Annkatrin Sommer Martin Schultze Ferenc Krausz ETH (Experiment) Matteo Lucchini Ursula Keller

Page 3: Maxwell + TDDFT multiscale descriptions for interactions of …benasque.org/2016tddft/talks_contr/201_yabana.pdf · 2016-09-30 · Maxwell + TDDFT multiscale descriptions for interactions

10 µm SiO2 thin film

!ω =1.55eVλ=800nmI=7×1013W/cm2

Laser electric field, red (strong), blue (weak)

Expensive calculation: 80,000 cores, 20 hours at K-Computer, Japan

Maxwell + TDDFT multiscale simulation for intense and ultrashort laser pulse propagation in dielectrics

-  Why and when it is necessary? -  How it is done? -  How it works?

Page 4: Maxwell + TDDFT multiscale descriptions for interactions of …benasque.org/2016tddft/talks_contr/201_yabana.pdf · 2016-09-30 · Maxwell + TDDFT multiscale descriptions for interactions

4

CONTENTS

1.  Intense and ultrashort laser pulse

2.  Real-time TDDFT in a unit cell of crystalline solid

3.  Maxwell + TDDFT multiscale formalism

4.  Applications 4-1. Dynamical Franz-Keldysh effect 4-2. Ultrafast energy transfer from light to electrons in solids 4-3. Laser ablation

Page 5: Maxwell + TDDFT multiscale descriptions for interactions of …benasque.org/2016tddft/talks_contr/201_yabana.pdf · 2016-09-30 · Maxwell + TDDFT multiscale descriptions for interactions

5

CONTENTS

1.  Intense and ultrashort laser pulse

2.  Real-time TDDFT in a unit cell of crystalline solid

3.  Maxwell + TDDFT multiscale formalism

4.  Applications 4-1. Dynamical Franz-Keldysh effect 4-2. Ultrafast energy transfer from light to electrons in solids 4-3. Laser ablation

Page 6: Maxwell + TDDFT multiscale descriptions for interactions of …benasque.org/2016tddft/talks_contr/201_yabana.pdf · 2016-09-30 · Maxwell + TDDFT multiscale descriptions for interactions

6

Intense and ultrashort laser pulse prohibits separation but requires combination of two descriptions (EM and QM).

Ordinary theory and calculation for light-matter interactions

D !r, t( ) = dt 't∫ ε t − t '( )E

!r, t '( )

Macroscopic electromagnetism for light propagation in matter

Quantum mechanical calculation for dielectric function

Constitutive relation connects two descriptions

Page 7: Maxwell + TDDFT multiscale descriptions for interactions of …benasque.org/2016tddft/talks_contr/201_yabana.pdf · 2016-09-30 · Maxwell + TDDFT multiscale descriptions for interactions

Intense and Ultrashort Laser Pulse

Atomic unit: me = e = ! =1

Proton

Electron

1 a.u. of electric field

= field felt by electron in classical hydrogen model

Extremely nonlinear electron dynamics

Intense electric field Ultrafast motion

1(2π) a.u. of time

= Period of electron motion in classical hydrogen model

Attosecond science:

Page 8: Maxwell + TDDFT multiscale descriptions for interactions of …benasque.org/2016tddft/talks_contr/201_yabana.pdf · 2016-09-30 · Maxwell + TDDFT multiscale descriptions for interactions

Intense laser pulse on solids

21513 W/cm1010 −

Laser intensity

1023W/cm22 W/cm.13660Solar constant Strongest laser pulse

Vacuum breakdown

Laser Damage

( )ωε( )( ) ( )( )321

321

2 ,,,, ωωωχωωχ

Perturbative linear and nonlinear responses 1028W/cm2

Extreme Nonlinear response

1a.u. = 3.51×1016W/cm2

High Harmonics Generation

Nonthermal processing

Page 9: Maxwell + TDDFT multiscale descriptions for interactions of …benasque.org/2016tddft/talks_contr/201_yabana.pdf · 2016-09-30 · Maxwell + TDDFT multiscale descriptions for interactions

9

Ultrashort pulse : Snap shot of electron motion

s10 15− Time

Nucleon motion in nucleus

s10 18− s10 23−s10 12−

AttosecondFemtosecondPicosecond

Real-time observation of valence electron motion E. Goulielmakis et.al, Nature 466, 739 (2010).

Shortest laser pulse 67as

Period of electron orbital in Hydrogen, 150as

Period of Ti-sapphire laser pulse 1.55eV

Period of Optical phonon (Si, 64 fs)

1 a.u. = 0.0242 fs

Page 10: Maxwell + TDDFT multiscale descriptions for interactions of …benasque.org/2016tddft/talks_contr/201_yabana.pdf · 2016-09-30 · Maxwell + TDDFT multiscale descriptions for interactions

10

CONTENTS

1.  Intense and ultrafast laser pulse

2.  Real-time TDDFT in a unit cell of crystalline solid

3.  Maxwell + TDDFT multiscale formalism

4.  Applications 4-1. Dynamical Franz-Keldysh effect 4-2. Ultrafast energy transfer from light to electrons in solids 4-3. Laser ablation

Page 11: Maxwell + TDDFT multiscale descriptions for interactions of …benasque.org/2016tddft/talks_contr/201_yabana.pdf · 2016-09-30 · Maxwell + TDDFT multiscale descriptions for interactions

11

Real-time TDDFT for electron dynamics in a unit cell of crystalline solid

under spatially uniform, time-dependent electric field

Time-dependent Kohn-Sham equation for Bloch orbitals

( ) ( ) ( ) ( )[ ] ( )

( ) ( ) 2

22

,,

,,,''

'21,

=

⎥⎥⎦

⎢⎢⎣

⎡+

−+⎟

⎞⎜⎝

⎛ ++=∂

nkkn

knxckn

trutrn

trutrntrnrr

erdtAcekp

mtru

ti

!!

!!!!!

!!!!!"

!

!! µ

( ) ( )ttA

ctE

∂−=

!! 1

G.F. Bertsch, J-I. Iwata, A. Rubio, and K. Yabana, Phys. Rev. B 62, 7998 (2000) 43.

Atoms are fixed at equilibrium positions

Page 12: Maxwell + TDDFT multiscale descriptions for interactions of …benasque.org/2016tddft/talks_contr/201_yabana.pdf · 2016-09-30 · Maxwell + TDDFT multiscale descriptions for interactions

Elec

tric

Fiel

d (a

.u.)

403020100Time (fs)

Example: crystalline silicon under intense laser pulse

Electron density

i! ∂∂tun!k!r, t( ) = 1

2m!p+!k + e

c!A t( )

⎝⎜

⎠⎟2

+ d!r ' e2!r − !r '∫ n !r ', t( )+µxc n

!r, t( )⎡⎣ ⎤⎦⎡

⎣⎢⎢

⎦⎥⎥un!k!r, t( )

direct bandgap 2.4 eV in LDA( )E = 27.5 V/nm!ω =1.55 eVTFWHM =7 fs

Page 13: Maxwell + TDDFT multiscale descriptions for interactions of …benasque.org/2016tddft/talks_contr/201_yabana.pdf · 2016-09-30 · Maxwell + TDDFT multiscale descriptions for interactions

13

Physical quantities from real-time TDDFT calculation

direct bandgap 2.4 eV in LDA( )E =1.23 V/nm!ω =1.55 eVTFWHM =7 fs

Silicon

Two-photon absorption

Page 14: Maxwell + TDDFT multiscale descriptions for interactions of …benasque.org/2016tddft/talks_contr/201_yabana.pdf · 2016-09-30 · Maxwell + TDDFT multiscale descriptions for interactions

Linear response: Real-time TDDFT for dielectric function (Si, LDA)

14

( ) ( )tktJ σ=

( ) ( ) ( ) ( )ttAtktE θδ ∝= ,Impulsive electric field at t=0 Induced current = conductivity in time domain

( ) ( )tJedtk

ti∫= ωωσ1 ( ) ( )

ωωσπ

ωεi41+=

fs2≈τ

Time-frequency Fourier transformation

Page 15: Maxwell + TDDFT multiscale descriptions for interactions of …benasque.org/2016tddft/talks_contr/201_yabana.pdf · 2016-09-30 · Maxwell + TDDFT multiscale descriptions for interactions

Quality of the exchange-correlation potential may be assessed by dielectric function

Meta-GGA potential of Tran and Blaha (TBmBJ) reproduces band gap of insulators. PRL102, 226401 (2009)

Silicon GermaniumS.A. Sato et.al, JCP143, 224116 (2015)

(TBmBJ)

SiO2 (α-quartz)S.A. Sato et.al, PRB92, 205413 (2015)

Page 16: Maxwell + TDDFT multiscale descriptions for interactions of …benasque.org/2016tddft/talks_contr/201_yabana.pdf · 2016-09-30 · Maxwell + TDDFT multiscale descriptions for interactions

16

CONTENTS

1.  Intense and ultrafast laser pulse

2.  Real-time TDDFT in a unit cell of crystalline solid

3.  Maxwell + TDDFT multiscale formalism

4.  Applications 4-1. Dynamical Franz-Keldysh effect 4-2. Ultrafast energy transfer from light to electrons in solids 4-3. Laser ablation

Page 17: Maxwell + TDDFT multiscale descriptions for interactions of …benasque.org/2016tddft/talks_contr/201_yabana.pdf · 2016-09-30 · Maxwell + TDDFT multiscale descriptions for interactions

17

( ) ( )dttdA

ctE 1

−=

( ) ( ) ( ) ( )[ ] ( )

( ) ( ) 2

22

,,

,,,''

'21,

=

⎥⎥⎦

⎢⎢⎣

⎡+

−+⎟

⎞⎜⎝

⎛ −+=∂

nkkn

knxckn

trutrn

trutrntrnrr

erdtAcekp

mtru

ti

!!

!!!!!

!!!!!"

!

!! µ

Electron dynamics calculation as Numerical constitutive relation

For a given electric field

( ) ( ) ( ) ( )'',,1 tJdttPtrjrdtJt !!!!!!∫∫ −=

Ω=

Ω

( ) ∑ ⎟⎟⎠

⎞⎜⎜⎝

⎛−⎟

⎞⎜⎝

⎛ +=i

ii ccAcep

mtrj ..

21, * ψψ

!!""

provides electric current and polarization

Electron dynamics calculation in a unit cell of solid

!P!R, t( ) =

!P!E!R, t( )⎡

⎣⎤⎦

Page 18: Maxwell + TDDFT multiscale descriptions for interactions of …benasque.org/2016tddft/talks_contr/201_yabana.pdf · 2016-09-30 · Maxwell + TDDFT multiscale descriptions for interactions

At each macroscopic grid point, we solve real-time electron dynamics in parallel

Maxwell + TDDFT multiscale approach

Macroscopic grid for Maxwell equation

Microscopic grid for TDDFT electron dynamics

( ) ( ) ( )tJc

tAZ

tAtc ZZZ

π412

2

2

2

2 =∂

∂−

∂ i! ∂∂tuZ ,n!k

!r, t( ) = h!AZ t( ),nZ

!r, t( )⎡⎣ ⎤⎦uZ ,n!k!r, t( )

!JZ t( ) = 1

V!jZ

V∫ !r, t( )

K. Yabana et.al, Phys. Rev. B85, 045134 (2012).

µm scale

nm scale

Page 19: Maxwell + TDDFT multiscale descriptions for interactions of …benasque.org/2016tddft/talks_contr/201_yabana.pdf · 2016-09-30 · Maxwell + TDDFT multiscale descriptions for interactions

I=1010W/cm2

Z=0 [µm]

[µm]

Z=0.8 [µm] Z=1.6 [µm]

Propagation of weak pulse (transparent) (Linear response regime, ordinary linear optics applies)

Vacuum SiLaser frequency:1.55eV: lower than direct bandgap    2.4eV(LDA)

19

A/c

Page 20: Maxwell + TDDFT multiscale descriptions for interactions of …benasque.org/2016tddft/talks_contr/201_yabana.pdf · 2016-09-30 · Maxwell + TDDFT multiscale descriptions for interactions

20

I=1010W/cm2

[µm]

Vacuum SiLaser frequency:1.55eV: lower than direct bandgap    2.4eV(LDA)

Electron excitation energy per unit cell volume

A/c

Propagation of weak pulse (transparent) (Linear response regime, ordinary linear optics applies)

Page 21: Maxwell + TDDFT multiscale descriptions for interactions of …benasque.org/2016tddft/talks_contr/201_yabana.pdf · 2016-09-30 · Maxwell + TDDFT multiscale descriptions for interactions

Z=0 [µm]

[µm]

Z=0.8 [µm] Z=1.6 [µm]

I =5 x 1012W/cm2

Vacuum Si

More intense laser pulse (absorptive) Maxwell and TDKS equations no more separate.

21

Page 22: Maxwell + TDDFT multiscale descriptions for interactions of …benasque.org/2016tddft/talks_contr/201_yabana.pdf · 2016-09-30 · Maxwell + TDDFT multiscale descriptions for interactions

22

I = 5 x 1012W/cm2

More intense pulse (absorptive) (2-photon absorption dominates)

[µm]

Vacuum SiLaser frequency:1.55eV: lower than direct bandgap    2.4eV(LDA)

Electron excitation energy per unit cell volume

A/c

[µm]

Page 23: Maxwell + TDDFT multiscale descriptions for interactions of …benasque.org/2016tddft/talks_contr/201_yabana.pdf · 2016-09-30 · Maxwell + TDDFT multiscale descriptions for interactions

23

CONTENTS

1.  Intense and ultrafast laser pulse

2.  Real-time TDDFT in a unit cell of crystalline solid

3.  Maxwell + TDDFT multiscale formalism

4.  Applications 4-1. Dynamical Franz-Keldysh effect 4-2. Ultrafast energy transfer from light to electrons in solids 4-3. Laser ablation

Page 24: Maxwell + TDDFT multiscale descriptions for interactions of …benasque.org/2016tddft/talks_contr/201_yabana.pdf · 2016-09-30 · Maxwell + TDDFT multiscale descriptions for interactions

24

Application 1: Change of dielectric property of solid under intense field

Elec

tric

Fiel

d (a

.u.)

403020100Time (fs)

At each time T, how dielectric function changes?

ε ω,T( )

Page 25: Maxwell + TDDFT multiscale descriptions for interactions of …benasque.org/2016tddft/talks_contr/201_yabana.pdf · 2016-09-30 · Maxwell + TDDFT multiscale descriptions for interactions

Under a static electric field: Franz-Keldysh effect

w E-field w/o E-field

Energy [eV] Energy [eV]

Imε ω( ) Δ Imε ω( ) = ImεE ω( )− ImεE=0 ω( )

bandgap

( ) ( ) ( ){ }

energy icalElectroopt2

AiAi',Im

3/1222

222

2/1

⎟⎟⎠

⎞⎜⎜⎝

⎛=Θ

Θ

−=

−Θ

µ

ωξ

ξξξω

ωε

!

!

Fe

E

F

gap Airy function →Quantum tunneling

Analytic formula for a two-band model

W. Franz, Z. Naturforsch. 13, 484 (1958) L.V. Keldysh, Sov. Phys. JETP 34, 788 (1958)

Conduction band

Valence band

Page 26: Maxwell + TDDFT multiscale descriptions for interactions of …benasque.org/2016tddft/talks_contr/201_yabana.pdf · 2016-09-30 · Maxwell + TDDFT multiscale descriptions for interactions

26

Pump 1.55eV 6.5x1012W/cm2

Probe 〜42eV 250as

50nm diamond thin film

Spectral decomposition of probe pulse to see changes of absorption profile.

Probe strength (w/o film)

Probe strength (w film)

Experiment (ETH group) and Calculation (Maxwell + TDDFT) Pump-probe method for diamond thin film

-  Irradiate IR strong pump-pulse (1.55 eV) and XUV weak probe pulse (42eV) simultaneously. -  Examine change of probe abosorption as a function of time-delay.

Page 27: Maxwell + TDDFT multiscale descriptions for interactions of …benasque.org/2016tddft/talks_contr/201_yabana.pdf · 2016-09-30 · Maxwell + TDDFT multiscale descriptions for interactions

Pump electric field

Δabs(ω,T) Exp.

Δabs(ω,T) Maxwell-TDDFT

-  Absorption increase at 42eV when pump field exists. -  “Fish-bone” structure (time delay in response change)

- Calculation reproduce measured features. -  Supports interpretation by dynamical Franz-Keldysh effect

ResultsM. Lucchini et.al, Science 353, 916-919 (2016)

T

T

ω

ω

Page 28: Maxwell + TDDFT multiscale descriptions for interactions of …benasque.org/2016tddft/talks_contr/201_yabana.pdf · 2016-09-30 · Maxwell + TDDFT multiscale descriptions for interactions

28

CONTENTS

1.  Intense and ultrafast laser pulse

2.  Real-time TDDFT in a unit cell of crystalline solid

3.  Maxwell + TDDFT multiscale formalism

4.  Applications 4-1. Dynamical Franz-Keldysh effect 4-2. Ultrafast energy transfer from light to electrons in solids 4-3. Laser ablation

Page 29: Maxwell + TDDFT multiscale descriptions for interactions of …benasque.org/2016tddft/talks_contr/201_yabana.pdf · 2016-09-30 · Maxwell + TDDFT multiscale descriptions for interactions

29

Application 2: laser pulse propagation through SiO2 thin film

Thin film of SiO2 10µm

Compare pulses of different intensities

EXP: Attosecond streaking measurements by Max-Planck Inst. Quantum Optics

Energy deposition from laser pulse to dielectrics

Page 30: Maxwell + TDDFT multiscale descriptions for interactions of …benasque.org/2016tddft/talks_contr/201_yabana.pdf · 2016-09-30 · Maxwell + TDDFT multiscale descriptions for interactions

30

Maxwell + TDDFT multiscale simulation : 10 µm SiO2

!ω =1.55eVλ=800nmI=7×1013W/cm2

Laser electric field, red (strong), blue (weak)

Energy transfer from laser pulse to electrons [eV/atom]

80,000 cores, 20 hours at K-Computer, Kobe

Page 31: Maxwell + TDDFT multiscale descriptions for interactions of …benasque.org/2016tddft/talks_contr/201_yabana.pdf · 2016-09-30 · Maxwell + TDDFT multiscale descriptions for interactions

31

Comparison of pulse shape after passing through SiO2 thin film

Maxwell + TDDFT

I=1.28×1014W/cm2I=7×1013W/cm2

Experiment

- Although very close to damage threshold, pulse shape is dominated by 3rd order nonlinearity. - Pulse shape change, phase shift well described by Maxwell + TDDFT calculation.

weak

strong

Page 32: Maxwell + TDDFT multiscale descriptions for interactions of …benasque.org/2016tddft/talks_contr/201_yabana.pdf · 2016-09-30 · Maxwell + TDDFT multiscale descriptions for interactions

32

I=5×1013W/cm2

I=7×1013W/cm2

I=1×1014W/cm2

Energy deposited to electrons increases rapidly as the laser intensity increases.

0.1 eV/atom

0.1 eV/atom

0.1 eV/atom

0 10µm

Page 33: Maxwell + TDDFT multiscale descriptions for interactions of …benasque.org/2016tddft/talks_contr/201_yabana.pdf · 2016-09-30 · Maxwell + TDDFT multiscale descriptions for interactions

33

Energy deposition from laser pulse to SiO2 at mid point (5µm) can be evaluated experimentally from the transmitted pulse.

TheoryExperiment

A. Sommer et.al, Nature 534, 86 (2016). (EXP: Max Planck Institute for Quantum Optics)

Page 34: Maxwell + TDDFT multiscale descriptions for interactions of …benasque.org/2016tddft/talks_contr/201_yabana.pdf · 2016-09-30 · Maxwell + TDDFT multiscale descriptions for interactions

34

CONTENTS

1.  Intense and ultrafast laser pulse

2.  Real-time TDDFT in a unit cell of crystalline solid

3.  Maxwell + TDDFT multiscale formalism

4.  Applications 4-1. Dynamical Franz-Keldysh effect 4-2. Ultrafast energy transfer from light to electrons in solids 4-3. Laser ablation

Page 35: Maxwell + TDDFT multiscale descriptions for interactions of …benasque.org/2016tddft/talks_contr/201_yabana.pdf · 2016-09-30 · Maxwell + TDDFT multiscale descriptions for interactions

35

Application 3: Estimate laser-ablation threshold and depth

Single shot laser pulse create ‘crator’.

Femtosecond laser pulse expected for nonthermal laser processing.

Page 36: Maxwell + TDDFT multiscale descriptions for interactions of …benasque.org/2016tddft/talks_contr/201_yabana.pdf · 2016-09-30 · Maxwell + TDDFT multiscale descriptions for interactions

Ablation depth     100 – 150 nm Ablation threshold 2 x 1014W/cm2

eV6=cohesionE

!ω =1.55eV (λ = 800nm),TFWHM = 7fsEgap = 9.0eV

Energy transfer from pulsed electric field to electrons [eV/atom]

Maxwell + TDDFT multiscale calculation for α-quartz (SiO2)

S.A. Sato et.al, Phys Rev. B92, 205413 (2015)

Depth from surface

Page 37: Maxwell + TDDFT multiscale descriptions for interactions of …benasque.org/2016tddft/talks_contr/201_yabana.pdf · 2016-09-30 · Maxwell + TDDFT multiscale descriptions for interactions

37

Ablation: threshold and depth, comparison with measurements

Crater formation: measurement, B. Chimier et al, Phys. Rev. B84, 094104 (2011)

S.A. Sato et.al, Phys Rev. B92, 205413 (2015)

Threshold and depth reasonably estimated.

Page 38: Maxwell + TDDFT multiscale descriptions for interactions of …benasque.org/2016tddft/talks_contr/201_yabana.pdf · 2016-09-30 · Maxwell + TDDFT multiscale descriptions for interactions

Real-time TDDFT in crystalline solid is useful to describe nonlinear and nonperturbative electron dynamics induced by intense and ultrashort laser pulse. Maxwell + TDDFT multiscale simulation provides numerical experiment platform for optical science frontiers -  can describe propagation of intense laser pulse in the medium. -  can provide physical quantities which can be compared with cutting-edge optical measurements. -  will open first-principle investigation of nonthermal laser processing -  is computationally challenging requiring cutting-edge supercomputers Future problems -  collision (e-e, e-phonon), dephasing effects -  improved functional (excitons, …) -  2D, 3D light pulse propagation (self-focusing, filamentation, light vortex…)

Summary

38