mathematical expectation of continuous functions of random variables. smoothness and variance

6
9. M.A. KrasnosePskii etal., Integral Operators in Spaces of Summable Functions [in Russian], Nauka, Moscow (1966). 10. M.Z. Solomyak, "Anatyticity of semigroups generated by an elliptic operator in Lp spaces," Doki. Akad. Nauk SSSR, 127, No. 1, 37-39 (1959). 11. S.M. Nikol'skii, Approximation of Functions of Several Variables and Imbedding Theorems [in Russian], Nauka, Moscow (1969). 12. V.A. Solonnikov, "On general boundary problems for systems of differential equations of elliptic and parabolic type," in: Proceedings of the Joint Soviet-American Symposium on Partial Differential Equations, Novosibirsk [in Russian], Izd. Akad. Nauk SSSR, Moscow (1963), pp. 246-253. MATHEMATICAL EXPECTATION OF CONTINUOUS FUNCTIONS OF RANDOM VARIABLES. SMOOTHNESS AND VARIANCE L. 1. Strukov and A. F. Timan UDC 517.5 1. Let ~ be a random variable and E(g) and D(~) its expectation and variance, respectively. The linear functions f(x) = ax +/3 can be characterized as the functions continuous on the entire real line, far which Z:'[/(~) ] --i[E(~) 1, (1) whatever the random variable ~. If the function fix) is not linear, the difference E [f(~)] - f[E(~)] is nonzero and depends on the function f and the random variable ~. This paper is devoted to the problem of estimating this difference in generally accepted probabilistic and function-theoretic terms. It is established that the change in the value E [f($)] when the order of the opera- tions of E and f is changed is correctly described by a natural and general inequality, which has hitherto not been noticed in the literature, and which expresses the dependence of this change on the degree of approxima- tion of the function f(x) by linear functions and on the variance of the random variable ~. It is shown along with this that other results sharpening previously known estimates for approximation of a function by Bernstein polynomials are also valid in the case of a binomial distribution law, when we consider in the role of fix) cer- tain typical functions with singularities. 2. We first state the assertions to be established here. THEOREM 1. on the real line R for which For any random variable ~ with finite variance, if f(x) is any continuous function defined o)~([;t)== sup ](xl)--2][ zl--z2~ < we always have the inequality I E [] (~)] -- ] [E (~)11~ 3(o~ {]; U., F D (~)}. If the function f(x) is defined only on some closed interval I of the real axis 1~ and I ~--xd~2l Xl, X2~1 then for certain values of the constants a and/3, the difference f(x) - ax - f~ can always be extended to R in such a way that [1, p. 135] (2) (3) Translated from Sibirskii Mate maticheskii Zhurnal, Vol. 18, No. 3, pp. 658-664, May-June, 1977. Original article submitted February 6, 1975. This material is protected by copyright registered in the name of Plenum Publishing Corporation, 227 blest 17th Street New York N, Y. I001L No part I of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, ! [microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $ ZSO. j 469

Upload: l-i-strukov

Post on 09-Aug-2016

212 views

Category:

Documents


0 download

TRANSCRIPT

9. M . A . KrasnosePski i e t a l . , Integral Operators in Spaces of Summable Functions [in Russian], Nauka, Moscow (1966).

10. M . Z . Solomyak, "Anatyticity of semigroups generated by an elliptic opera tor in Lp spaces," Doki. Akad. Nauk SSSR, 127, No. 1, 37-39 (1959).

11. S . M . Nikol'skii, Approximation of Functions of Several Variables and Imbedding Theorems [in Russian], Nauka, Moscow (1969).

12. V . A . Solonnikov, "On general boundary problems for sys tems of differential equations of elliptic and parabolic type," in: Proceedings of the Joint S o v i e t - A m e r i c a n Symposium on Par t ia l Differential Equations, Novosibirsk [in Russian], Izd. Akad. Nauk SSSR, Moscow (1963), pp. 246-253.

M A T H E M A T I C A L E X P E C T A T I O N OF C O N T I N U O U S F U N C T I O N S

OF R A N D O M V A R I A B L E S . S M O O T H N E S S AND V A R I A N C E

L . 1. S t r u k o v a n d A. F . T i m a n UDC 517.5

1. Let ~ be a random variable and E(g) and D(~) its expectation and var iance, respect ively. The l inear functions f(x) = ax +/3 can be charac te r ized as the functions continuous on the entire real line, far which

Z:'[/(~) ] --i[E(~) 1, (1)

whatever the random variable ~. If the function fix) is not l inear, the difference E [f(~)] - f[E(~)] is nonzero and depends on the function f and the random variable ~.

This paper is devoted to the problem of est imating this difference in generally accepted probabilist ic and function-theoret ic t e rms . It is established that the change in the value E [f($)] when the order of the opera - tions of E and f is changed is co r rec t ly descr ibed by a natural and general inequality, which has hitherto not been noticed in the l i terature, and which expresses the dependence of this change on the degree of approxima- tion of the function f(x) by l inear functions and on the var iance of the random variable ~. It is shown along with this that other resul ts sharpening previously known es t imates for approximation of a function by Bernstein polynomials are also valid in the case of a binomial distribution law, when we consider in the role of fix) c e r - tain typical functions with s ingulari t ies .

2. We f i rs t state the asser t ions to be established here.

THEOREM 1. on the real line R for which

For any random variable ~ with finite var iance, if f(x) is any continuous function defined

o)~([;t)== s u p ](xl)--2][ zl--z2~ <

we always have the inequality

I E [] (~)] - - ] [E (~)11~ 3(o~ {]; U., F D (~)}.

If the function f(x) is defined only on some closed interval I of the real axis 1~ and

I ~--xd~2l Xl, X2~1

then for cer ta in values of the constants a and/3, the difference f(x) - ax - f~ can always be extended to R in such a way that [1, p. 135]

(2)

(3)

Trans la ted from Sibirskii Mate maticheskii Zhurnal, Vol. 18, No. 3, pp. 658-664, May-June, 1977. Original ar t ic le submitted Februa ry 6, 1975.

This material is protected by copyright registered in the name of Plenum Publishing Corporation, 227 blest 17th Street New York N, Y. I001L No part I of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, !

[ microfilming, recording or otherwise, without written permission o f the publisher. A copy of this article is available from the publisher for $ ZSO. j

469

In a l t such c a s e s , Eq. (3) l eads to the e s t i m a t e

IE l/(~)] -- ] [E (~)11 ~ t5r [1; (4)

for the extended function. This estimate improves a recent result of [2].

In concrete situations, the general inequality (4) contains corresponding estimates for approximations of functions f(x) on I which take into account the location of x~I. Among these, we remark, e.g., the estimate

- [o l ] I ] (x) 1 ~< ~a~e' {/; ~I,: Vx ( i - x)} (5)

f o r the va lues of If(x) l a t the points x ~ [ 0 , 1] unde r the condi t ion f(1) = f(0) = 0, which s h a r p e n s one of the r e - su l t s of Whitney [3]. We r e m a r k a l so the inequal i ty

I i (x) - -B~ (1; x ) [ ~ i5(,)~~ (]; 110]/ :~ (l --~)1 _ . _~ f (6)

contained in (4) for the approximations by Bernstein polynomials on the interval [0, 1] [4], which corresponds to the frequency } = }n of some event for n independent tests in a Bernoulli scheme; we also remark the esti- mate

X h .

i (z) - e --~ ~ ! (k) ~ ~ 15 ~o~,~ (L '/~. VT) (7) h=0

on the semiaxis 0 - x < ~o if ~ has a Poisson distribution. For random variables ~ with uniform or normal distribution, probabilities (3) lead to estimates of approximations by Steklov polynomials and singular Weierstrass integrals, in these two cases, the right-hand side of (3) does not depend onx~R and is always weakly equivalent to a corresponding uniform approximation of the function f(x) under study in the metric of the space C on (_0% ~) (cf. [5; 6, p. 501]). The situation is different for Eqs. (5)-(7), where the right-hand side as well as the left already depends onx, if we compare both sides of these equations, taking into account the location of the point x~I. In the general case, the order of the estimates just mentioned cannot be im- proved. At the same time, a consideration of the function xlnx shows at once that for random variables cor- responding to (5)-(7), weak equivalence between the two sides of these equations can fail even on some subse- quence of points tending to an endpoint of I. Such a situation is obtained for random variables in a Bernoulli scheme for all values of n. In this sense, a more precise estimate for the approximation of the function xlnx by Bernstein polynomials is given by the following assertion.

THEOREM 2. For any value of the positive integer n, if

B~(x) B ~ ( I ; x ) = = T k x ~ ( t -

i s the dev ia t ion of the funct ion x l n x f r o m i ts a p p r o x i m a t i n g B e r n s t e i n po lynomia l s , we have the inequal i ty

O ~ x in x-l--B,~(x) ~ n - ' [ l--q)~ (x) --%, ( l - -x ) J (8)

holding e v e r y w h e r e on the i n t e r v a l 0 -< x -< 1, w h e r e

t n

0

(9)

F o r each f ixed va lue of a, the r i g h t - h a n d side of (8) when x -* 0 has o r d e r of decay to z e r o coincid ing with the t rue o r d e r of decay of the dev ia t ion in the above t h e o r e m , and hence the r i gh t -hand side of (8) g ives an e s t i m a t e unob ta inab le f r o m the g e n e r a l inequal i ty (6). We r e m a r k a l so the inequal i ty

max l x lnx- l - -Bn(x) I ~ 1 / n (10) 0</x~<l

r e s u l t i n g f r o m (8), which i m p r o v e s s o m e w h a t a r e s u l t r e c e n t l y obta ined in [4]. Us ing the me thod of p roof of T h e o r e m 2, o t h e r e s t i m a t e s m o r e p r e c i s e than (4) can be ob ta ined fo r a p p r o x i m a t i o n by B e r n s t e i n po lynomia l s of a funct ion f(x) having s i n g u l a r i t i e s a t the end -po in t s of the i n t e rva l [0, 1]. Thus , e . g . , we have the next

t h e o r e m .

T H E O R E M 3. T h e p r e c i s e o r d e r r e l a t i on

max Ix~--B.(x) l x l/n: ( n f l ) (11) 0~x~<l

470

h o l d s fo r the d e v i a t i o n of the func t ion f(x) = x a (0 < (~ < 1) f r o m i t s B e r n s t e i n p o l y n o m i a l s .

Kac [7] has s t u d i e d the u n i f o r m a p p r o x i m a t i o n of the func t ion I x , 1/2 I s (0 < o~ < 1) b y B e r n s t e i n po'Ly- n o m i a l s and h a s shown tha t in th is c a s e the o r d e r of a p p r o x i m a t i o n n - a /2 is exac t . T h i s f ac t t o g e t h e r wi th (11) r e f l e c t s the in f luence tha t the d i s t r i b u t i o n of s i n g u l a r i t i e s of a func t ion h a s on the o r d e r of i t s a p p r o x i m a t i o n b y B e r n s t e i n p o l y n o m i a l s . A s is a l s o t r u e fo r b e s t u n i f o r m a p p r o x i m a t i o n s , in the c a s e of a p p r o x i m a t i o n by B e r n s t e i n p o l y n o m i a l s of i nd iv idua l func t ions hav ing s i n g u l a r i t i e s , the u n i f o r m a p p r o x i m a t i o n e s t i m a t e depends not only on t h e d e g r e e of s m o o t h n e s s of the func t ion , but a l s o on the d i s t r i b u t i o n of i t s s i n g u l a r i t i e s . Thus , e . g . , we can show by c o n s i d e r i n g the func t ion f(x) = Ix - cl (0 < c < !) tha t

m ~ l I x - ~ I - ~ . ( ~ ) l = o [ V ~ l - ~)~], (~ 2) O ~ x ~ i

w h e r e 0(1) is a quan t i t y u n i f o r m l y bounded fo r a l l c (0 < c < 1) and n.

In connec t ion with e s t i m a t e (11) showing tha t the o r d e r of u n i f o r m a p p r o x i m a t i o n on [O, 1 ] of fl~e func t ion x ~ fo r 0 < ot < t i m p r o v e s a s a i n c r e a s e s , i t is of i n t e r e s t to o b s e r v e the fo l lowing r e s u l t of a d i f f e r e n t n a t u r e r e l a t i n g to the s a m e func t ion fo r i < a < 2.

T H E O R E M 4. F o r e v e r y a (1 < o~ < 2) and p o s i t i v e i n t e g e r n, the i nequa l i t y

O ~ B , ~ ( x ) - - x ~ [ ( a - - l ) in] [ l - - q ~ (x) --(p~ ( i - - x ) ]

!s va l id fo r the d e v i a t i o n of the func t ion x ~ f r o m i t s B e r n s t e i n p o l y n o m i a l s e v e r y w h e r e on the i n t e r v a l 0 <- x -< 1, w h e r e the func t ions (Pn(X) a r e de f ined by (9).

We r e m a r k tha t by the w e l l - k n o w n l i m i t t h e o r e m of V o r o n o v s k a y a , and in the c a s e when 0 < c~ < 1, the o r d e r of a p p r o x i m a t i o n of the funct ion x c~ by the p o l y n o m i a l s Bn(x) is equa l to 1 /n at each f ixed point of the i n t e r v a l (0, 1). H o w e v e r , th is o r d e r d i f f e r s e s s e n t i a l l y f r o m the o r d e r of i t s u n i f o r m a p p r o x i m a t i o n which is equa l to 1 /n% If ce >_ 2, then the e s t i m a t e

max [x=--B, ,(x)}=O(t/n) 0 ~ < x < ~ l

f o r the u n i f o r m a p p r o x i m a t i o n is a s i m p l e c o n s e q u e n c e of the w e l l - k n o w n inequa l i t y

t j (x ) - -B , , ( / ; x) I~< max ] ] " ( t ) I x ( i - - x ) / 2 n , O ~ < t ~ i

and, t h e r e f o r e , fo r such v a l u e s of a i t is of a t r i v i a l c h a r a c t e r . The s i t u a t i o n is d i f f e r e n t in the c a s e when 1 < a < 2. Now, a s in the c a s e 0 < a < 1, the s e c o n d d e r i v a t i v e of x c~ b e c o m e s unbounded on the i n t e r v a l (0, 1). The above c o n s i d e r a t i o n s f o r ob t a in ing u n i f o r m a p p r o x i m a t i o n e s t i m a t e s equa l to O(1/n) and con t a ined in T h e o - r e m 4, a r e no l o n g e r a p p l i c a b l e , and the g e n e r a l t h e o r e m s on a p p r o x i m a t i o n by B e r n s t e i n p o l y n o m i a l s of type (6) i m p l y on ly the e s t i m a t e O(n-Ce/~). Since the u n i f o r m a p p r o x i m a t i o n by p o l y n o m i a l s Brl(x) of the func t ion x ce fo r a ~ 1 and a ~ 0 cannot have o r d e r o (1 /n ) , T h e o r e m 4 shows tha t the o r d e r of u n i f o r m a p p r o x i m a t i o n of th is func t ion c e a s e s to i m p r o v e a s c~ i n c r e a s e s , and s t a r t i n g not with c~ = 2, bu t s i g n i f i c a n t l y e a r l i e r , v im, when

b e c o m e s l a r g e r than one .

3. In ob t a in ing Eq. (3), we app ly a w e l l - k n o w n m e t h o d in a p p r o x i m a t i o n t h e o r y which c o n s i s t s in r e p l a c - ing the func t ions f(x) u n d e r c o n d i e r a t i o n by t h e i r S tek lov m e a n s . The me thod of p r o o f of T h e o r e m s 2-.4 r e f e r - r i n g to the B e r n s t e i n p o l y n o m i a l s d i f f e r s f r o m tha t u s u a l l y e m p l o y e d in c o n s t r u c t i v e func t ion t h e o r y . I n s t ead of a d i r e c t s tudy of the d i f f e r e n c e b e t w e e n the c o n c r e t e func t ions c o n s i d e r e d and t h e i r ]3e rns t e in p o l y n o m i a l s , which i nvo lves o v e r c o m i n g a n a l y t i c d i f f i cu l t i e s tha t a r i s e and does not p e r m i t us to d i s c o v e r the e s t i m a t e s which hold , we h e r e ob ta in the n e c e s s a r y e s t i m a t e s b y r e d u c i n g the p r o b l e m to the o s c i l l a t i o n s Bk(X) - Bk_l(x ) of a sequer~ce of B e r n s t e i n p o l y n o m i a l s and to the a p p l i c a t i o n of s o m e r a t h e r s i m p l e i n e q u a l i t i e s .

P r o o f of T h e o r e m 1. C o n s i d e r the s econd S tek lov func t ion fhh(X) (cf. [8]). It is obvious that

I E[/(~) ] - - / [ E (~) ] ! = I ~ [/(~) --fi~ (~) 1 - - {/[E(~) ] --/,.,, [E(~) ] } -~E[/h~.(~)]--fi,,[E(~)]]<~-- 2sup I/(x)--],.(x)J~IE[j,,~,(~)]--I,,~[E(~)] ] .

- ~ < z <

But by T a y l o r ' s f o r m u l a

f E [f:,h (~)] - - ]~,h [E (~)]] .~ ~/z sup If~,(x) t . D(~).

Consequer~tly,

! E I I ( ~ ) ] - - f I E ( ~ ) ] I ~ 2 sup i / ( x ) - - f~ ,~ (x ) j -~U. , sup I]~,~(x) l , D ( ~ ) . - - c~ .4 X < cr - - e ~ < : X < ~,

471

M a k i n g u s e now of w e l l - k n o w n e s t i m a t e s [8] f o r If(x) - fhh(X) I and I f~h(X) I we ge t t h a t f o r any h > 0

IE [ / ( ~ ) I - - f lE(~)] I~<0>~(/; h) + ~ . T ~ . o)2n (1; h) �9 D(~).

In o r d e r to o b t a i n (3), i t r e m a i n s o n l y to pu t h = 1/2 ~ ' D - ~ .

p r o o f o f T h e o r e m 2. T h e l e f t i n e q u a l i t y in (8) h o l d s b e c a u s e of a w e l l - k n o w n p r o p e r t y of the p o l y n o m i a l s Bn( f ; x) a c c o r d i n g to w h i c h Bn(f ; x) -< f(x) w h e n e v e r f"(x) -< 0 on [0, 1]. F o r the p r o o f of the r i g h t i n e q u a l i t y of (8), c o n s i d e r the s e q u e n c e of d i f f e r e n c e s B k - l ( x ) - Bk(x ) . I t f o l l o w s a t o n c e f r o m the d e f i n i t i o n of the p o l y - nomiaLs Bn(x) t h a t

B~_, (~) - ~ (x) = ~ , t--~-~ ! - . ~ s \v~-i- Uf - (~3)

F o r f(x) = x l n x -1, we h a v e

, f ~, v [v-1'~ k \ k - 1 l

__~ t ~ l n ~ _ . 7 _ l n v _ A _ _ i lnZ, 1 v - -1 v - : ] = . - - Ink-- ~

-- k (k _---T) ( k - - l ) In - - ( v - - l ) I n v - - _ l j .

T h i s m e a n s t h a t f o r o u r f u n c t i o n h - - !

~' - ( v - 1 ) l ~ 7 = - i j " i v ) x " ( l - x ) ' . . . . . Bh--I (x) --BI~(x) = k(~,_ t) .%~_L v ( k - - 1) lny-L- i

B u t w h e n 1 -< u -< k - 1, we h a v e the i n e q u a l i t y (k - 1) l n k / ( k - 1) <- u l n u / ( u - 1). T h e r e f o r e , f o r s u c h v a l u e s

of u we a l w a y s h a v e

ui (k - - t ) ln k l (k - -1 ) - - (a - - l ) ln u l ( u - - t ) } ~< ( k - - t ) l n k l ( k - - t ) ,

i . e . , t he m a x i m u m of the f u n c t i o n u{(k - 1) l n k / ( k - 1) - (u - 1) l n u / ( u - 1)} on the i n t e r v a l 1 _< u -< k - 1 i s

a t t a i n e d f o r u = 1. H e n c e

', ~ i [k\ ~ ; , - v I - - ~ - - t~ - - ~/< ( 1 4 ) o <~ B~ (.~') - - B.~_, (~) < ~ (~< - - 'U ~, [ , ' } x" ( l - ~, - - ~< o< - u

I nequa l i t y (14) leads to the es t ima te

<' l - ~ - ( ~ - W~ = _ L l l _ ~ (z) _ %,(! _ ~)], z l n - : - - - B , ( x ) < ~ ,, k (k - - 1) n

h=n~, t

w h e r e ~ (x) = nk= - �9 k ( s 1)" I t r e m a i n s to t a k e in to a c c o u n t t h a t

P r o o f of T h e o r e m 3. T h e o r e m 2. t h a t

x x

~ xr~ f tn--[ i ~u n ZL k ( k - - - - - t ) = n ( x - - t ) ~ d t = ( ' l - - x ) ( ~ d t .

In o b t a i n i n g e s t i m a t e (11), we h e r e u s e the s a m e m e t h o d a s t h a t u s e d in p r o v i n g C o n s i d e r t h e s e q u e n c e of d i f f e r e n c e s Bk_ i (x ) - Bk(X). W e h a v e f o r t h e f u n c t i o n f(x) = x a (0 < a < 1)

1 v~r f I k r I ~ ' k ' - ~ ( k - - i T - - - " ' - ~ ( " - - ~ ? " - ~ . ( k ~)------~'~ { ~ t - C - ) - - ~ : ~ , J J '

w h e r e (p(x) = [i - (1 - x ) O q / x .

T h e r e f o r e ,

B , _ ~ ( z ) - - B k ( z ) - (§ ~ 4" '((~ ~ - 6 - ) - - c; x " (5 - - z ) ~ . . . . . k(k - - i) ",.,=1

L e t u s s h o w t h a t w h e n I -< v -< k - 1, t h e i n e q u a l i t y

,-~ {~( t / , , ) -~ (ifk)} <~ 1 -~ ( t t k )

472

i s v a l i d .

o r

I n d e e d , to do th i s i t i s s u f f i c i e n t f o r u s to e s t a b l i s h tha t i f 0 <- t _~ u < 1, t h e n ~2(u) - q~(t) _< uC~[1 - ~ ( t ) ] ,

[ i - ~ (~) ]1[ l - ~ ~ ]~> ~ - ~ (t).

W e o b s e r v e tha t 1 - ~0(t) d e c r e a s e s on [0, 1] and ~p(0) = ~. H e n c e , the i n e q u a l i t y we n e e d w i l l ho ld if we d e m o n s t r a t e tha t ,1 - q)(u) >- (1 - ~ ) ( 1 - u a) f o r 0 - u -< 1, o r ~0(u) -< c~ + (1 - ( ~ ) u a , i . e . , 1 - (1 - u) e2 _<

a u + (1 - a ) u l + a , i ' w h e r e 0 < a < 1. L e t us s h o w tha t in f a c t we h a v e the s t r o n g e r i n e q u a l i t y

l--(t--u)"<~.au-}-('J.--o~)u ~- (0~<u-<.t , 0 < ~ < t ) .

W r i t i n g v = 1 - u, s u c h an i n e q u a l i t y t a k e s the f o r m 1 - v ~ _< ~(1 - v) + (1 - e~)(1 - 2v + v 2) o r , a f t e r s o m e

t r a n s f o r m a t i o n , (2 - ~ ) v l-c~ - (1 - (~)v 2-(~ -< 1 (0 -< v _<_< 1). B u t t h i s i n e q u a l i t y f o l l o w s f r o m t h e f a c t t h a t the d e r i v a t i v e o f t he f u n c t i o n (2 - ~ ) v ~-(~ - (1 - ~ ) v ~-c~ i s e q u a i t o ( 2 - c~) (1- c~ )v -c~ (1 - v ) a n d i s n o n n e g a t i v e on

the i n t e r v a l 0 < v -< 1. T h u s ,

0 <~B~ (x) --B~-~ (x) ~< [ (,V - ~ ' - (~;-- l ) '-~) 1~:] { i - - x " - - (,~--x) ~}.

I t f o l l o w s f r o m th i s t ha t

o ~<B~(x) - ~ _ ~ (z) ~< [ ( . i -~)/~;(~;-~ ) -] { f - ~ ~ - (- l- ,~)3,

w h e r e 0 < oz < 1. T h e l a s t i n e q u a l i t y l e a d s to t he e s t i m a t e

x vc (~

O,~x B, . (x)= ~ IBu(x)--B~_~(x)!<~(1--~) ~ --k(l~--.t) ~- ' h ~ n --I Cirri-=[

(15)

f r o m w h i c h i t f o l l o w s tha t

- ~ z - -B,~(~ ) --O((1--~), , 'n ~) (16)

u n i f o r m l y irl x on [0, 1] and f o r a l l a in t h e i n t e r v a l 0 < a 0 <_ a -< 1. W e now s h o w tha t the e s t i m a t e e s t a b l i s h e d by (16) g i v i n g an u p p e r b o u n d f o r the o r d e r of d e c r e a s e of the q u a n t i t y 0 max [x:--B,(z)] , w h e r e 0 < c~ < 1, i s

~ x ~ < t p r e c i s e . In f a c t , s i n c e

we h a v e

k - - I

But the f u n c t i o n (p(t) i n c r e a s e s on [0, 1] f o r O < ~ < 1. T h e r e f o r e ,

x ~ - B~ (~) = ~ IB~ (~) -- B,,_~ (x)l ~> x ~ (~ - ~ i - - ~ h=n+l t~ .=n

Consequent ly , put t ing Xn = l / n , we have

~ax i x ~ - - ~ (~)]>~ x~ - - B,, (-,~) >~

If we a l s o t a k e a c c o u n t of t he f a c t tha t

lira [l--q)(t/n)] { ( l - - x , , ) ' - - (t--x~,) 2''} = ( l - - a ) (e-'--s-S), r t ~ o O

w e o b t a i n f r o m th i s t h a t

max [x~--B.(x)]~c(t--~z)/n ~ 0 ~ x ~ t

(2n -- t )~

.1 - ~ ( 1 / , ) [ ( 1 - ~r, , )" - - ( t - - z ~ ) 2 " } . ( 2 n - - t ) ct

h o l d s f o r any p o s i t i v e a < 1, w h e r e c > 0 i s s o m e c o n s t a n t not d e p e n d i n g on n and a . T h i s c o n c l u d e s the p r o o f o f T h e o r e m 3. T h e p r o o f o f T h e o r e m 4 p r o c e e d s in t he s a m e way , e x c e p t tha t we u s e t he i n e q u a l i t y v(~0(1/k - (p(1/v)} -< a - 1 (1 _< v --< k - 1, 1 < a -< 2), w h i c h is e s t a b l i s h e d a n a l o g o u s l y .

1 .

2.

L I T E R A T U R E C I T E D

A. F . T i m a n , A p p r o x i m a t i o n T h e o r y of F u n c t i o n s o f a R e a l V a r i a b l e [in R u s s i a n ] , F i z m a t g i z , M o s c o w (1960).

D. D. S t a n c u , " U s e of p r o b a b i l i s t i c m e t h o d s in t he t h e o r y of u n i f o r m a p p r o x i m a t i o n of c o n t i n u o u s f u n c - t i o n s , " k e y . R o u m a i n e Math . P u r e s A p p l . , 1._44, No. 5, 673-691 (1969).

473

3 .

4.

5.

6.

7. 8.

H. Whitney, "On functions with bounded n-th differences," g. Math. Pures Appl., 36, No. 9, 67-95 (1957). H. Berens and G. Lorentz , "Inverse theorems for Bernste in polynomials," Indiana Univ. Math. J., 2_1.1, No. 3, 693-708 (1972). H. Shapiro, "Some Tauber ian theorems with applications to approximation theory, ' Bull. Am. Math. S.c . , 74, No. 3, 500-504 (1968). P. L. Butzer and R. I. Nessel, Four i e r Analysis and Approx}mation, Vol. 1, Academic P re s s , New York (1971). '~ M. Kac, "Une remarque sur les polyn6mes de M. S. Bernstein," Stud. Math., 7, 49-51 (1938). N. I. Akhiezer, Theory of Approximation, Ungar (1956).

A S Y M P T O T I C E X P A N S I O N F O R P R O B A B I L I T Y OF C O N T I N U A T I O N

OF C R I T I C A L B E L L M A N -- H A R R I S P R O C E S S E S

V. A. T o p c h i i UDC 519.21

1. I n t r o d u c t i o n

In this paper branching processes ~(t), t -> 0, in which part icle lifetime depends on their age (Be l lman- Har r i s processes) , will be considered.

Random variables ~(t) assume integer values which we interpret as population size at moment of time t. We descr ibe ~(t) in te rms of development of the population.

Population development begins at the zero moment of time with a single part icle. The remainder con- tinues ei ther by itself or by offspring. Each part icle has a random lifetime ~ with distribution function F(t) = I~{V _< t} (n -> 0and, perhaps, F(0) ~ 0). A particleVs length of life does not depend on the behavior of the other

par t ic les . At its moment of death, each part icle leaves k descendants with probability hi, ( _ h~ = I indepen-

dently of the other par t ic les and of its own age. We denote the corresponding random variable by ~. The possibil i ty of death of a part icle and the generation of new ones at the moment of generation (this corresponds to the ease F(0) e 0) introduces the charac te r i s t i c feature of the definition of ~(t). For such processes , any part icle , with positive probability, has an a rb i t r a r i ly long branch of descendants with zero duration of life. Since par t ic les with zero l ifetimes die at the moment of generation and generate new part icles , it is then natural not to include them in the population count. Therefore , we shall set g(t) equal to the number of par - t i t l es which exist at moment of time t but do not die at this moment of time. We remark that if, for some

to, ~(t 0) = 0 then, for any t -> t 0, ~(t) = 0.

A more detailed descript ion of the given model can be found in [1, 2] (model 3).

The basic goal of this paper is to obtain asymptotic expansions for the probability of continuation of a c r i t ica l (M~ = 1) process ~(t) in the d iscre te case, i .e . , when 77 is integer-valued (this means that ~(t) = ~([t]) and that the p rocess can be considered as ~(n), n = 0, ~). The method used in our paper allows us to give a simple proof of the resul t of Goldstein [3], formulated below (as Theorem 1). The asser t ion of Theorem 1, but with more constrained assumptions, was f i rs t obtained by Sevast 'yanov [4].

THEOREM1. L e t t 2 ( 1 - F ( t ) ) ~ 0 a s t - - - o o , t e t M ~ = l , t e t D ~ < ~ , b u t l e t D ~ ~0 . Then, i f w e u s e t h e

notation p = M~/ and B = ~ k(k-- l ) h~, the following equation holds: k=0

lim tP(~(t) > 0 ) ~-2p/B. (1) t ~

Trans la ted f rom Sibirskii Matematicheskii Zhurnal, Vol. 18, No. 3, pp. 665-674, May-June, 1977. Original ar t ic le submitted June 25, 1975.

This material is protected by copyright registered in the name o f Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part o f this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission o f the publisher. A copy o f this article is available from th e publisher for $ Z 50.

474