matematika kalkulus ( limit )

9
1 Group : 1 ( Page 1-8 Kalkulus ) Name : 1. Azhari Rahman 2. Muhammad Pachroni Suryana 3.Yudiansyah Class : 1EA Exercise 1.1 Compute the value of f(x) when x has the indicated values given in (a) and (b). For (c), make an observation based on your results in (a) and (b). 1.f(x)= x+ 2 x5 a.x= 3.001 Solutions : f(3.001)= x+ 2 x5 f(x) = 3.001+ 2 3.0015 = 5.001 1.999 = - 2.501 b.x= 2.99 Solutions : f(2.99)= x+ 2 x5 f(x)= 2.99+2 2.995 = 4.99 2.01 = - 2.482 c.Observation? It appears than when x is close to 3 in value, then f(x) is close to -2.5 in value.

Upload: fdjouhana

Post on 15-Aug-2015

58 views

Category:

Education


1 download

TRANSCRIPT

Page 1: Matematika Kalkulus ( Limit )

1

Group : 1 ( Page 1-8 Kalkulus )

Name :

1. Azhari Rahman2. Muhammad Pachroni Suryana3. Yudiansyah

Class : 1EA

Exercise 1.1

Compute the value of f(x) when x has the indicated values given in (a) and (b). For (c), make an observation based on your results in (a) and (b).

1. f(x)= x+2x−5

a. x= 3.001Solutions :

f(3.001)= x+2x−5

f(x) = 3.001+23.001−5 =

−5.0011.999 = - 2.501

b. x= 2.99Solutions :

f(2.99)= x+2x−5

f(x)= 2.99+22.99−5 =

−4.992.01 = - 2.482

c. Observation?It appears than when x is close to 3 in value, then f(x) is close to -2.5 in value.

2. f(x)= x−54 x

a. x= 1.002

f(1.002)= x−54 x

Page 2: Matematika Kalkulus ( Limit )

2

f(x)= 1.002−54 (1.002) =

−3.9984.008 = - 0.997

b. x= .993

f(.993)= x−54 x

f(x)= .993−54 (.993) =

−4.0073.972 = - 1.008

c. Observation?It appears than when x is close to 1 in value, then f(x) is close to -1 in value.

3. f(x)= 3xx

2

a. x= .001

f(.001)= 3xx

2

f(x)= 3(.001).001

2

=0.000003.001 = 0.003

b. x= -.001

f(-.001)= 3xx

2

f(x)= 3(−.001)−.001

2

=−0.000003.001 = - 0.003

c. Observation?It appears than when x is close to 0 in value, f(x) is not close to any fixed number in value.

Exercise 1.2

Find the following limits or indicate nonexistence.

1. limx→3

x2−4x+1

Solutions : limx→3

x2−4x+1

= limx→3

x2−4

limx→3

x+1

Page 3: Matematika Kalkulus ( Limit )

3

= 54

2. limx→2

x2−9x−2

Solutions : limx→2

x2−9x−2

= −50 =

3. limx→1

√x3+7

Solutions : limx→1

√x3+7 = √8

= 2√2

4. limx→π¿

Solutions : limx→π¿ = 5 π2+9

5. limx→0

5−3 xx+11

Solutions : limx→0

5−3 xx+11 =

limx→0

5−3 x

limx→0

x+11

= 511

6. limx→0

9+3x2

x3+11

Solutions : limx→0

9+3x2

x3+11= limx→0

9+3x2

limx→0

x3+11

= 911

7. limx→1

x2−2 x+1x2−1

Page 4: Matematika Kalkulus ( Limit )

4

Solutions: limx→1

x2−2 x+1x2−1

= limx→1

(x−1)(x−1)( x−1 )(x+1)

= limx→1

x−1x+1

= 02

= 0

8. limx→ 4

6−3 xx2−16

Solutions : limx→ 4

6−3 xx2−16

= limx→4

6−3 x(x−4 )(x+4)

= −60

=

9. limx→−2

√4 x3+11

Solutions : limx→−2

√4 x3+11= √−32+11

= √21

10. limx→−6

8−3 xx−6

Solutions : limx→−6

8−3 xx−6 =

limx→−6

8−3 x

limx→−6

x−6

= −2612

= −136

Page 5: Matematika Kalkulus ( Limit )

5

Exercise 2.1

Evalute the following limits.

1. limx→3

x−3x2+x−12

Solutions : limx→3

x−3x2+x−12

= limx→3

x−3( x−3 )(x+4)

= limx→3

1(x+4)

= 17

2. limh→ 0

(x+h)2−x2

h

Solutions : limh→0

(x+h)2−x2

h = lim

h→ 0

x2+2hx+h2−x2

h

= limh→0

2hx+h2

h

= limh→0

h (2x+h)h

= limh→ 02x+h

= 2x

3. limx→4

x3−64x2−16

Solutions : limx→4

x3−64x2−16

= limx→4

x3−64x2−16

= limx→4

(x−4 )(x¿¿2+4 x+16)( x−4 )(x+4)

¿

= limx→ 4

x2+4 x+16x+4

= 488

Page 6: Matematika Kalkulus ( Limit )

6

= 6

4. If f(x) = 5x+8, find limh→0

f (x+h )−f (x)h

Solutions : limh→0

f (x+h )−f (x)h

= limh→0

(5 ( x+h )+8)−(5 x+8)h

= limh→0

(5 x+5h+8)−(5 x+8)h

= limh→0

5hh

=

5. limx→−3

5 x+7x2−3

Solutions : limx→−3

5 x+7x2−3

= limx→35 x+7

limx→3

x2−3

= −86

= - 43

6. limx→25

√ x−5x−25

Solutions : limx→25

√ x−5x−25 = lim

x→25

(√x−5)( x−25)

(√ x+5)(√ x+5)

= limx→25

x−25x √x+5 x−25√ x−125

= 00

=

7. If g(x) =x2 , find limx→2

g ( x )−g(2)x−2

Solutions : limx→2

g ( x )−g(2)x−2

= limx→2

x2−4x−2

Page 7: Matematika Kalkulus ( Limit )

7

= limx→2

(x+2)(x−2)x−2

= limx→2x+2

= 4

8. limx→0

2 x2−4 xx

Solutions : limx→0

2 x2−4 xx

= limx→0

(2x−4) xx

= limx→0

(2x−4 )

= -4

9. limr→0

√ x+r−√xr

Solutions : limr→0

√ x+r−√xr

= limr→0¿¿¿ ¿¿

= limr→ 0

x+r−xr (√x+r+√x )

= 00

=

10.limx→ 4

x3+6x−4

Solutions : limx→ 4

x3+6x−4

= limx→ 4

x3+6x−4

x+4x+4

= x4+4 x3+6 x+24(x−4 )(x+4)

= 700

=

==== the end ====