masa articulo bob bob bob

Upload: montes-bocanegra-eliseo

Post on 02-Jun-2018

240 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 Masa Articulo Bob Bob Bob

    1/10

    International Journal of Greenhouse GasControl 19 (2013) 312

    Contents lists available at ScienceDirect

    InternationalJournal ofGreenhouse Gas Control

    j ournal homepage: www.elsevier .com/ locate / i jggc

    Analysis and predictive correlation ofmass transfer coefficient KGavofblended MDEA-MEA for use in post-combustion CO2capture

    Abdulaziz Naamia,b, Teerawat Semaa, Mohamed Edalib, Zhiwu Lianga,,Raphael Idema,b, Paitoon Tontiwachwuthikula,b

    aJoint International Center for CO2 Capture andStorage (iCCS), College of Chemistry andChemical Engineering, Hunan University, Changsha 410082, PR

    Chinab International Test Centre for CO2 Capture (ITC), Faculty of Engineering andApplied Science, University of Regina, Regina,Saskatchewan S4S0A2, Canada

    a r t i c l e i n f o

    Article history:

    Received 22March2013

    Received in revised form 7 August 2013

    Accepted12 August 2013

    Available online 18 September 2013

    Keywords:

    CO2 absorption

    Packed column

    Structuredpacking

    Mass transfer coefficient

    Cyclic capacity

    a b s t r a c t

    The mass transfer performance ofthe absorption ofCO2 in aqueous blended MDEA-MEA solutions was

    evaluatedexperimentally in a lab-scaleabsorber packedwith high efficiencyDX structured packing over

    MDEA-MEA concentrations of 27/3, 25/5, and 23/7%wt under atmospheric pressure using a premixed

    feed gas containing 15% CO2 balanced with N2. The absorption performance was presented in terms

    of overall mass transfer coefficient (KGav) and CO2 concentration profile. The results showed that themass transfer performance increased as ratio ofMEA in the blended solution, temperature, and liquid

    flow rate increased but decreased as CO2 loading increased. In addition, it was found that the cyclic

    capacity and relative solvent regeneration ability decreased as the ratio ofMEA in the blended solution

    increased. Based onmass transfer performance, cyclic capacity, and relative solvent regeneration ability,

    23/7%wtMDEA-MEAwas found to be the most effective blend ratio among the three ratios investigated

    in the present work. Also, the correlation for predicting KGavfor CO2 absorption into aqueous blendedMDEA-MEAwas successfully developedwith an AAD of21.8%.

    2013 Elsevier Ltd. All rights reserved.

    1. Introduction

    One of the options for reducing carbon dioxide (CO2) emis-

    sions is absorption of CO2 from gas streams using reactive amine

    solvents, which has recently been considered as one of the

    most mature and reliable CO2 reduction technologies (Kohl and

    Nielsen, 1997; Rao and Rubin, 2002; Liang et al., 2011). The

    use of an effective solvent is considered to be one of the key

    parameters of this technology. Charkravarty et al. (1985) firstly

    introduced blended solvent systems by mixing primary (or sec-

    ondary) amines with tertiary amines in order to capitalize on

    the advantages of each amine and counter the disadvantages

    of one amine with another amine. Presently, several blendedconventional amines have been introduced for absorbing CO2suchasblendedmonoethanolamine(MEA)-methyldiethanolamine

    (MDEA), diethanolamine (DEA)-MEA, triethanolamine (TEA)-MEA,

    MEA-2-amino-2-methyl-1-propanol (AMP), AMP-MDEA, AMP-

    piperazine (PZ), and MDEA-PZ (Horng and Li, 2002; Mandal et al.,

    2003; Aroonwilas and Veawab, 2004; Ramachandran et al., 2006;

    Setameteekul et al., 2008; Huang et al., 2011; Samanta and

    Corresponding author. Tel.: +8613618481627; fax: +8673188573033.

    E-mail address: [email protected](Z. Liang).

    Bandyopadhyay, 2011). Blended MDEA-MEA solutions have been

    widely investigated for several years. This is because, firstly, both

    the single amine solvents ofMEA andMDEAare mature since they

    have been used for decades in fossil fuel-fired power generation,

    natural gasprocessing, and chemical production industries. Exam-

    ples of thecommercial facilities that have employed these solvents

    are the Warrior Run Power Plant in Maryland, USA, Shady Point

    PowerPlant inOklahoma,USA, PlatteRiverPowerAuthorityin Col-

    orado, USA, Searles Valley Minerals Soda Ash Plant in California,

    USA, Schwarze Pumpe Pilot Plant in Germany, Salah Natural Gas

    Production Facility in Algeria, Sumitomo Chemicals Plant in Japan,

    andProsint Methanol Production Unit in Brazil (Barchas andDavis,

    1992; Dooley et al., 2009; Eswaran et al., 2010). Secondly, blendedMDEA-MEA canbe easily used in commercial absorbers since both

    MEA and MDEA have generally been used at the industrial scale.

    Blended MDEA-MEA has been commercially used in large-scale

    processes at Yokosuka Power Plant in Japan and, Tokyo Electric

    Power Corporation in Japan (Eswaran et al., 2010). This blended

    amine system capitalizes on the advantages of high absorption

    capacity, high solvent stability, low corrosiveness, and low energy

    requirement for regenerationofMDEA andfast reaction kinetics of

    MEA.

    Even though blended MDEA-MEA was introduced in 1985,

    most of the investigations have focusing on the reaction kinetics

    1750-5836/$ seefrontmatter 2013 Elsevier Ltd. All rightsreserved.

    http://dx.doi.org/10.1016/j.ijggc.2013.08.008

    http://localhost/var/www/apps/conversion/tmp/scratch_7/dx.doi.org/10.1016/j.ijggc.2013.08.008http://www.sciencedirect.com/science/journal/17505836http://www.elsevier.com/locate/ijggcmailto:[email protected]://localhost/var/www/apps/conversion/tmp/scratch_7/dx.doi.org/10.1016/j.ijggc.2013.08.008http://localhost/var/www/apps/conversion/tmp/scratch_7/dx.doi.org/10.1016/j.ijggc.2013.08.008mailto:[email protected]://crossmark.crossref.org/dialog/?doi=10.1016/j.ijggc.2013.08.008&domain=pdfhttp://www.elsevier.com/locate/ijggchttp://www.sciencedirect.com/science/journal/17505836http://localhost/var/www/apps/conversion/tmp/scratch_7/dx.doi.org/10.1016/j.ijggc.2013.08.008
  • 8/10/2019 Masa Articulo Bob Bob Bob

    2/10

    4 A. Naami et al. / International Journal of Greenhouse Gas Control 19 (2013) 312

    Nomenclature

    AAD absolute average deviation

    AMP 2-amino-2-methyl-1-propanol

    Cs concentration for amine in the solution, kmol/m3

    CO2 carbon dioxide

    DEA diethanolamine

    GI inert gas flow rate, kmol/m2 h

    kL liquid phase mass transfer coefficient in the case ofchemical reaction,m/h

    KG overall interfacial areagasphasemasstransfercoef-

    ficient, kmol/m2 hkPa

    KGav overall volumetric mass transfer coefficients,kmol/m3 hkPa

    L1 liquid flow rate, m3/m2 h

    MDEA methyldiethanolamine

    MEA monoethanolamine

    N2 nitrogen

    P total pressure of the system, kPa

    PZ piperazine

    T absolute temperature, K

    TEA triethanolamine

    xCO2 mole fraction of CO2yA

    mole fraction of solute A at interface

    yA,G mol fraction of solute A at bulk gas phase

    YA,G mole ratio of soluteA in gas phase

    Z height of the absorption column, m

    Greek letters

    CO2 loading,mol CO2/mol amine

    (Critchfield and Rochelle, 1987; Versteeg et al., 1990; Glasscock

    etal., 1991;Rangwalaet al., 1992;Hagewiescheetal., 1995;Mandal

    etal.,2001; Liao andLi,2002;Ramachandranet al., 2006;Edaliet al.,

    2009), solubility (Shen and Li, 1992; Li and Shen, 1993; Dawodu

    and Meisen, 1994; Li and Mather, 1994; Kaewsichan et al., 2001;Mamun et al., 2005), physiochemical and thermodynamics prop-

    erties (Austgen et al., 1991; Li and Shen, 1992; Jou et al., 1994;

    Li and Lai, 1995; Hsu and Li, 1997; Weiland et al., 1998; Bensetiti

    et al., 1999; Mandal et al., 2005; Vrachnos et al., 2006), and sol-

    vent degradation (Lawal et al., 2005; Lawal and Idem, 2005, 2006;

    Dawodu and Meisen, 2009). Only a few studies have investigated

    the mass transfer of CO2 absorption into blends of MDEA-MEA in

    packed columns.

    Aroonwilas andVeawab (2004)investigatedmass transfer per-

    formance forCO2 absorption intoblendedMDEA-MEA,MDEA-DEA,

    and AMP-MEA in structured DX packing using 10% CO2 balanced

    with nitrogen (N2) as feed gas. The mass transfer performance

    was reported in terms of the overall mass transfer coefficient,

    removal efficiency, and relative columnheight requirement.How-ever, the experiments for the blended amines were conducted at

    only 1/1 mole ratio (with total amine concentration of 3M). Itwas

    found that the mass transfer performance of blended AMP-MEA

    is higher than those of MDEA-MEA and MDEA-DEA, respectively.

    Since the reaction kinetics of CO2 absorption can be ranked as:

    AMP>DEA>MDEA, (i) themass transfer performanceofAMP-MEA

    then exceeds that of MDEA-MEA and (ii) that of MDEA-MEA then

    exceeds that of MDEA-DEA. However, reboiler heat duty should

    also be taken into consideration since it contributes about 70% of

    the operating cost of the CO2 capture process (Kohl and Nielsen,

    1997). Sakwattanapong et al. (2005) investigated the reboiler heat

    duty for CO2 capture with blends of AMP-MEA, MDEA-MEA, and

    MDEA-DEA. They reported that the reboiler heat duty of MDEA-

    DEAis lower than thoseofMDEA-MEAandAMP-MEA, respectively.

    By taking into consideration both mass transfer performance and

    heat duty requirement for solvent regeneration, blended MDEA-

    MEA seems to be the best solvent combination among the three

    because it provides good performance in both mass transfer and

    reboiler heat duty requirement.

    Later, Setameteekul et al. (2008) studied themass transfer per-

    formance of blended MDEA-MEA at various MDEA-MEA blending

    ratios of 1/3, 1/1, and 3/1 molar. They concluded that (i) the blend-

    ing ratio of the blended MDEA-MEA has a significant effect on

    themass transfer performance, (ii) themass transfer performance

    increases asmolar ratio ofMEA increases, and (iii) theMDEA-MEA

    of 1/3molar ratio provided the best mass transfer performance.

    Additionally, the CO2 absorption not only depends on using

    an effective solvent, but the contact between gas and liquid

    solvent also plays an important role in the CO2 absorption per-

    formance in a packed column. It has been over forty years since

    the tray columns have been replaced by the more effective packed

    columns (Aroonwilas and Tontiwachwuthikul, 1998; Aroonwilas

    and Veawab, 2004). In the packed columns, the packing cre-

    ates a gasliquid contact area by generating liquid droplets. The

    most promising packing should provide large surface area per

    volume ratio, low pressure drop across the column, and uniform

    gasliquid distribution throughout the column. Aroonwilas and

    Tontiwachwuthikul (1998)and deMontignyet al. (2001)compared

    the CO2 absorption performance using randomly (IMTP#15, 0.63,

    3 in. Pall Ring, 0.5in. Berl Saddles) and structured (Gempack 4A,

    Sulzer EX) packings. They concluded that the structured pack-

    ing provide higher mass transfer performance than the random

    packing, which is in good agreement with the results observed by

    Fernandes et al. (2009).

    Even though CO2 absorption technology has been industrially

    used for over half a century, themost promising solvents have still

    to be discovered. Recently, a number of novel solvents (e.g., 2-N-

    methylamino-2-methyl-1-propanol,2-N-ethylamino-2-methyl-1-

    propanol, 2-(isopropylamino)ethanol, 2-(isobutylamino)ethanol,

    2-(secondarybutyamino)ethanol, 2-(isopropyl)diethanolamine, 1-

    methyl-2-piperidineethanol, 4-diethylamino-2-butanol, RITE-A

    and RITE-B) has been introduced (Chowdhury et al., 2011; Gotoet al., 2011; Sema et al., 2013). The CO2absorption performance of

    these novel amines was found to exceed the conventional MEA,

    AMP, DEA, and MDEA. However, the major drawbacks of these

    novel solvents are (i) expense, (ii) difficult synthesis, (iii) difficult

    mass production, (iv) phase separation or turning into solidsunder

    certain conditions, and (v) undiscovered disadvantages.

    Another approach for improving the CO2 absorption perfor-

    mance rather than working with novel solvents is to enhance and

    optimize the performance of conventional solvents. In order to

    achieve this, the conventional solvents have to be comprehen-

    sively investigated. Even though blended MDEA-MEA has been

    widely investigated, the predictive correlation for overall mass

    transfer performance of CO2 absorption into aqueous solutions of

    blended MDEA-MEA has not yet been established. In the presentwork, the blended MDEA-MEA ratio was selected at 27/3, 25/5,

    and 23/7%wt (equivalent to MDEA-MEA molar ratio of 2.3/0.5,

    2.1/0.8, and 1.95/1.16, respectively). These blend concentrations

    were selected in order to capitalize on the great advantages of

    both MDEA and MEA in that MDEA requires low energy for sol-

    vent regeneration and has high absorption capacity while MEA

    provides fast CO2 absorption rate. Since the heat requirement for

    solvent regeneration contributes about 70% of the cost of captur-

    ing CO2 (Kohl and Nielsen, 1997), MDEA was, therefore, selected

    as the major component of the blended solutions in order tomin-

    imize the heat requirement for solvent regeneration. The addition

    ofMEA,which has fast reactionkinetics,can then enhance the CO2absorption rate of the blended solutions. However, the total con-

    centration of the blended solution cannot be high because MDEA

  • 8/10/2019 Masa Articulo Bob Bob Bob

    3/10

    A. Naami et al. / International Journal of Greenhouse Gas Control 19 (2013) 312 5

    itself is considered to be a slightly viscous solvent already. Thus,

    the total concentration of the blended MDEA-MEA used in the

    present work was then limited at 30% wt. In addition, the CO2absorption experiments were done over ranges of temperatures

    (298, 303, and 318K), CO2loadings at the absorber top (0.05, 0.17,

    and 0.25mol CO2/mol amine), and liquid flow rates (2.8, 3.8, and

    5m3/m2 h). Theexperimentswere performedin a laboratory-scale

    absorption column with DX structured packing (27.5mm ID from

    Sulzer Chemtech Canada, Inc.) at atmospheric pressure. The over-

    allvolumetricmass transfer coefficients(KGav) atvarious operating

    conditions were then used to establish thepredictive correlation.

    The data obtained from the present workwill be very crucial to

    further pilot plant-scale test at ITCs technology pilot plant (diam-

    eter of 12 incheswith capture capacity of 1 ton of CO2/day). Itwas

    mentioned by Idem et al. (2006,2011a) that only one molar ratio

    of 1/4 of blended MDEA-MEA was previously tested in the pilot

    plant so the results from the present work will be very useful to

    (i) determine the scope of the pilot plants operating conditions

    with blendedMDEA-MEAand(ii) expandthe pilotplant-scale test-

    ing to test various blended ratios other than 1/4 molar ratio of

    blended MDEA-MEA. In addition, the results obtained from this

    study can also lead to improvement of CO2 absorption perfor-

    mance of blended MDEA-MEA by addition of a third component

    into the system. Up to the present, several promising amines

    (e.g., AMP, PZ, 1-methyl-2-piperidineethanol, 4-diethylamino-2-

    butanol)have beenintroducedfor capturingCO2 (Chowdhuryet al.,

    2011; Goto et al., 2011; Sema et al., 2013). These solvents can

    potentially enhance the performance of the well-known blended

    MDEA-MEA. In order to effectively achieve this goal, a complete

    understanding of blended MDEA-MEA over the range of relevant

    operatingconditionsis required.Additionally,the thirdcomponent

    canalso be ionic liquids, physical solvents, or even solid/liquidcat-

    alyst that canreducethe heat requirement forsolvent regeneration

    andimprovethe performanceofCO2removal as suggestedby Idem

    et al. (2011b) and Shannon andBara (2012).

    2. Determination of theoverall mass transfer coefficient

    It hasbeen widelyunderstood that oneof theprimary concerns

    in removing CO2 using absorption processes is the concentration

    of CO2 in the gas phase. Also, it is easier and more convenient

    to measure the concentration of CO2 in gas phase than in liq-

    uid phase. Thus, for the CO2 absorption process, the gas phase

    mass transfer coefficient is generally accepted to be more suit-

    able than the liquid phase coefficient. However, it is very difficult

    to measure the gasliquid interfacial area in an absorption col-

    umn. Therefore, the mass transfer coefficient in a packed column

    is generally represented by overall volumetric gas phase mass

    transfer coefficient (KGav; kmol/m3 hkPa) instead of that based

    on interfacial area (KG; kmol/m2 hkPa) (Astarita et al., 1983; Kohl

    and Nielsen, 1997; Aroonwilas and Tontiwachwuthikul, 1998;

    deMontigny et al., 2001; Aroonwilas and Veawab, 2004; Fu et al.,

    2012). The overall volumetric gas phase mass transfer coefficient

    KGavcan be calculated as follow:

    KGav=

    GI

    P(yA,G yA)

    dYA,GdZ

    (1)

    whereGIis inert gasflow rate (kmol/m2 h), Pis totalpressureof the

    system (kPa), Zis height of the absorption column (m),yA,Gis mol

    fractionof soluteA atbulkgas phase,yAis mole fractionof soluteA

    at interface,YA,Gis the concentration (in terms ofmole ratio) in gas

    phaseofsoluteA,which isCO2 inthepresentwork,and(dYA,G/dZ) is

    thesolutemoleratio concentrationgradient,whichcanbeobtained

    by taking a slope ofYA,Gversus Zplot.

    3. Experimental

    3.1. Chemicals

    MDEAand MEA were purchased from Fisher Scientific, Canada,

    with purities of99%. The premixed 15% CO2 (balanced with N2)

    wassuppliedby Praxair Inc.,Canada.Allmaterialsin thisstudywere

    used as receivedwithout further purification.Aqueous solutionsof

    blendedMDEA-MEA of desired concentrationswere prepared by a

    known amount of deionizedwater andpredetermined amounts of

    MDEA and MEA.

    3.2. CO2absorption in packed column

    ThemasstransferinapackedcolumnoccurswhenCO2 inthegas

    phasetransfersacrossthegasliquidinterface intothe liquidphase.

    In thepresent work, themass transfer performancewasevaluated

    in termsof theoverall volumetricmass transfercoefficientKGavandthe CO2 concentration profile along the height of the column. The

    KGavcan be calculated using Eq. (1), in which several parameterscan be obtained from the experiment. Generally, the experiments

    were done at atmospheric pressureP. The inert gas flow rateGIcan

    bedetermined from thegas flowratemeasurementusingelectron-ics Aalborg GFM-17mass flow meter (ranging from 5 to 50L/min

    with a 0.15%/C accuracy). The mole fraction of CO2 in the gas

    phase yA,G can be determined from an infrared CO2 gas analyzer

    (model 301D, Nova Analytical System Inc., Hamilton, ON,Canada),

    which is capable of measuring CO2 concentration up to 20% with

    0.5% accuracy. Themeasurement of CO2concentration was done

    along the height of the column through the sampling ports, which

    are connected to the CO2gas analyzer. The mole fraction of CO2at

    interface (yA) canbe calculated using theHenrys law relationship.

    TheHenrys lawconstant of blendedMDEA-MEA canbe calculated

    bythecorrelationestablishedbyWangetal.(1992). Themoleratios

    ofCO2 inthegasphase(YA,G) atvariousheights of thecolumncanbe

    obtained from the CO2analyze, and the, plotted against theheight

    of the column to get dYA,G/dZ.The glass laboratory absorption column (diameter of

    27.5102m and height of 2.15m) was packed with 37 ele-

    ments of stainless steel Sulzer DX structured packing (with

    900m2/m3 packing surface area). The schematic diagram of the

    experimental setup of CO2 absorption in the packed column is

    presented in Fig. 1. The operational procedure of the absorption

    columncan be found in our previousworks (Fu et al., 2012; Naami

    et al., 2012). Inorder to validate the absorption columnused in the

    present work, 2M MEA solution was tested and compared with

    the results from deMontigny (2004). It was found that the results

    obtained in the present work are in good agreement with those

    obtained in deMontigny (2004) as shown inFig. 2.

    4. Results and discussion

    Themass transfer performance of CO2 absorption into aqueous

    solutions of blended MDEA-MEA was experimentally determined

    in the laboratory-scale absorption column packed with DX struc-

    turedpacking andreportedin termsofKGavandCO2concentrationprofile along the height of the column. The values ofKGavare pro-

    portional to the mass transfer performance in that the higher the

    KGav, the higher mass transfer performance. For the CO2 concen-tration profile, a lower CO2 concentration profile indicates a larger

    amountof CO2 thathasbeenremovedfromthegasstreamresulting

    in highermass transfer performance.

    The experiments were done at various MDEA-MEA con-

    centrations of 27/3, 25/5, and 23/7%wt (which are equivalent

    to MDEA-MEA molar ratios of 2.3/0.5, 2.1/0.8, and 1.95/1.16,

  • 8/10/2019 Masa Articulo Bob Bob Bob

    4/10

    6 A. Naami et al. / International Journal of Greenhouse Gas Control 19 (2013) 312

    Fig. 1. Schematicdiagram of theexperimental setup of CO2 absorption in packed column.

    respectively) over a range of temperatures (298, 303, and 318K),

    CO2 loadings at the absorber top (0.05, 0.17, and 0.25molCO2/mol

    amine), and liquid flow rates (2.8, 3.8, and 5m3/m2 h). A mass

    balance error,which canbecalculated using Eq. (2), was taken into

    consideration in order to confirm the validity of each absorption

    experimental run. The mass balance error compares the amount

    of CO2 removed from the gas phase (which can be measured via

    an infrared CO2 gas analyzer) with that added into liquid phase

    (which can be measured by titration with standard 1.0M HCl

    until methyl orange end point as mentioned in Association of

    Official Analytical Chemists (AOAC) methods by Horwitz (1975)).

    Theoretically, these twovalues shouldbe equal.However, because

    of (i) experimental errors from the CO2 gas analyzer and CO2

    loading measurement apparatus and (ii) an elongated liquid trap

    in the packed column, the average mass balance error obtained

    from the present work was found to be 4%, which is considered

    to be in an acceptable range of less than 10%. Therefore, it can

    be inferred from this observation that the experimental results

    obtained from the present work are correct and reliable.

    Mass balance error=

    absorbed CO2 removed CO2absorbed CO2

    100% (2)The total experimental data points obtained from the present

    work are 600 from30 experimental runs, which include 300 mea-

    sured points of CO2 concentration and another 300 points of

    temperature. From these data, the effects of MDEA-MEA blended

  • 8/10/2019 Masa Articulo Bob Bob Bob

    5/10

    A. Naami et al. / International Journal of Greenhouse Gas Control 19 (2013) 312 7

    Fig. 2. Validation of packed column using 2.0M MEAat temperatureof 294K, CO2loading at absorber topof 0.2molCO2/molamine,liquidflowrate of5 m

    3/m2, inert

    gas flow rate of 17.85kmol/m2 h, and YCO2 of 0.09.

    ratio, temperature, CO2 loading at the absorber top, and liquid

    flow rate onmass transfer performance (in terms ofKGavand CO2concentration profile along the height of the column) were then

    examined.

    4.1. Effect ofMDEA-MEA blended ratio onmass transfer

    performance

    In order to examine the effect of MDEA-MEA blended ratio

    on the mass transfer performance, three blended ratios of 27/3,

    25/5, and 23/7%wt were tested in the packed column. The results

    showed that the mass transfer performance in terms ofKGavandCO2 concentration profile increased as the weight ratio of MEA in

    theblended solutions increasedas presented in Figs. 3 and 4. It can

    bereasoned thatMEAhasfaster reactionkinetics ofCO2absorption

    thanMDEA (Kohl and Nielsen, 1997; Semaet al., 2012). Thehigherthe ratio of MEA in the blended solutions, the higher amounts of

    the more reactive MEA molecules that can absorb CO2; thus, a

    highermass transfer performance was observed. Therefore, it can

    be seen from Figs. 3 and 4 that 23/7%wt MDEA-MEA (molar ratio

    of 1.95/1.16) provides the best mass transfer performance among

    the three investigated ratios. However, by increasing the ratio of

    MEA, theratio ofMDEA in theblended solutionswouldbereduced,

    Fig. 3. Effect of MDEA-MEA blended ratio on CO2 concentration profile at temper-

    ature of 294K, CO2 loading at absorber topof 0.25mol CO2/mol amine, liquidflow

    rate of 5m3

    /m2

    , and inert gas flow rate of 15.99kmol/m2

    h.

    Fig. 4. Effect of MDEA-MEA blended ratio on KGav at temperature of 294K, CO2loading at absorber top of 0.25mol CO2/mol amine, liquid flow rate of 5m

    3/m2,

    inert gas flowrate of 15.99kmol/m2 h, and YCO2 of 0.09.

    which can lead to (i) a reduction of CO2 absorption capacity and

    (ii) an increment of heat requirement of solvent regeneration. This

    is because MDEA has higher CO2absorption capacity and requires

    much lower heat forsolvent regeneration(Kohl andNielsen, 1997;

    Sakwattanapong et al., 2005; Lianget al., 2011). Itwasdiscussedby

    Kohl and Nielsen (1997) that the energy requirement for solvent

    regeneration contributes about 70% of the cost of capturing CO2.

    Therefore, in order to maintain low heat requirement for solvent

    regeneration andhighabsorption capacity characteristicsofMDEA

    in theblended solutions,much higherblended ratiosofMDEA over

    MEAwere selected in this work.

    4.2. Effect of temperature onmass transfer performance

    In the present work, the liquid inlet temperature was varied

    from294 to 318K. It was found that the CO2concentration profile

    became lower as temperature increased as presented in Fig. 5. The

    mass transfer performance in terms ofKGavwas also found to cor-respond well with that of the CO2concentrationprofile in that the

    KGavincreased as temperature increasedas shown in Fig. 6. There-fore, it can be inferred from Figs. 5 and 6 that the mass transfer

    performance of the blended MDEA-MEA increases as temperature

    increases over a temperature range of 294318K. This is because

    the reaction kinetics of blended MDEA-MEA increase as tempera-

    ture increases as discussed in the works ofMandal et al. (2001),

    Liao and Li (2002), and Edali et al. (2009).

    Fig.5. Effect of temperatureon CO2 concentrationprofileof 23/7%wtMDEA-MEAat

    CO2loading at absorbertopof 0.04mol CO2/mol amine, liquidflow rateof 5m3/m2,

    and inert gas flowrate of 15.99kmol/m3

    h.

  • 8/10/2019 Masa Articulo Bob Bob Bob

    6/10

    8 A. Naami et al. / International Journal of Greenhouse Gas Control 19 (2013) 312

    Fig. 6. Effect of temperature on KGav of blended MDEA-MEA at blended ratios of

    27/3, 25/5, and 23/7%wt, CO2 loading at absorber top of 0.04mol CO2/mol amine,

    liquidflow rateof 5m3/m2, inert gasflow rate of 15.99kmol/m2 h,andYCO2 of 0.09.

    4.3. Effect of CO2loading on mass transfer performance

    For the effectof CO2loadingat theabsorbertoponmass transferperformanceofblendedMDEA-MEA,it canbe found inFigs.7and8

    that the mass transfer performance (in terms of CO2 concentra-

    tion profileandKGav) is significantlyaffected byCO2loading at the

    Fig.7. Effectof CO2loadingatabsorber topon CO2 concentrationprofileof 23/7%wt

    MDEA-MEA at temperature of 294K, liquidflow rate of 5m3/m2, and inert gas flow

    rate of 18.65kmol/m2 h.

    Fig. 8. Effect of CO2 loading at absorber top on KGav of blended MDEA-MEA at

    blended ratios of 27/3, 25/5, and 23/7%wt, temperature of 294K, liquid flow rate

    of5m

    3

    /m

    2

    , inert gas flowrate of 18.65kmol/m

    2

    h, and YCO2 of 0.09.

    Fig.9. Effectof liquidflowrateonCO2concentrationprofile of 23/7%wtMDEA-MEA

    at temperatureof 294K, CO2loading at absorbertop of 0.2molCO2/molamine, and

    inert gas flowrate of 18.65kmol/m2 h.

    Fig. 10. Effect of liquid flow rate on KGavof blended MDEA-MEA at blended ratiosof27/3, 25/5,and 23/7%wt, at temperatureof 294K, CO2 loading at absorber topof

    0.2mol CO2/mol amine, inert gasflow rate of 18.65kmol/m2 h, and YCO2 of 0.09.

    absorber top in that the mass transfer performance decreased as

    CO2 loading increased over a CO2 loading range of 0.050.25mol

    CO2/mol amine. This is because the amounts of active free amines

    (MEA and MDEA) decreases as CO2loading increases.

    4.4. Effect of liquid flow rate onmass transfer performance

    It can be seen from Fig. 9 that the CO2 concentration profile

    became lower as liquid flow rate increased over the range of

    2.85.0m3/m2 h. This observation correspondswell with themasstransfer performance in terms ofKGav. As presented in Fig. 10,the KGav increased as liquid flow rate increased. Regard to the

    results observed in the present work (from Figs. 9 and 10), it

    can be inferred that the liquid flow rate has a very significant

    effect on the mass transfer performance for CO2 absorption into

    aqueous solutionsof blendedMDEA-MEA in that themass transfer

    performance increases as liquidflow rate increases over the liquid

    flow rate range of 2.85.0m3/m2 h. Thus, it can be reasoned that

    increase of liquid flow rate results in an increase of liquid side

    mass transfer coefficient (kL), which significantly increases the

    KGavin the case of liquid-phase controlled mass transfer (Astaritaet al., 1983). Additionally, by increasing the liquid flow rate, the

    gasliquidsurfaceareaisgreatly increased,resultinginmoreliquid

    spreading on the packing surface. The increase of liquid flow rate

  • 8/10/2019 Masa Articulo Bob Bob Bob

    7/10

    A. Naami et al. / International Journal of Greenhouse Gas Control 19 (2013) 312 9

    not only increases the mass transfer performance in the packed

    column, but also leads to higher circulation and regeneration

    costs; thus, it might not improve the overall system efficiency. In

    addition, the range of liquid flow rate used in the present work

    (2.85.0m3/m2 h) is in the effective range of using DX structured

    packing, which is 0.15.0m3/m2 h, as provided by the packing

    supplier (Sulzer Chemtech Canada, Inc.). The use of a liquid flow

    rate higher than 5.0m3/m2 h can lead to a decline ofmass transfer

    performance.

    4.5. Effect ofMDEA-MEA blending ratio on cyclic capacity

    Astarita et al. (1983) and Maneeintr et al. (2009) described the

    cyclic capacity concept in which cyclic capacity is defined as the

    differenceof molesof CO2absorbedin thesolutionper unit volume

    of solution in theabsorption step andthat in theregenerationstep,

    which is, then, crucial to the CO2 absorption process. With the

    same volume of solvent, the solvent with higher cyclic capacity

    can carry a higher amount of absorbed CO2 than that with lower

    cyclic capacity. Therefore, it can be inferred from this concept that

    for a solvent that has high cyclic capacity, a low liquid circulation

    rate can be applied, which results in (i) a lower operation cost

    for pumping liquid and (ii) a smaller volume of solvent can beused in the packed column. In order to investigate the effect of

    MDEA-MEA blended ratio on the cyclic capacity, three blended

    ratios of 27/3, 25/5, and 23/7%wt were tested in the present work.

    The experimental and calculation procedures for cyclic capacity

    can be found in our previous work (Maneeintr et al., 2009). The

    results showed that the cyclic capacity of the blended MDEA-MEA

    increased as the ratio of MDEA in the blended solution increased

    and can be ranked as: 27/3%wt MDEA-MEA> 25/5%wt MDEA-

    MEA>23/7%wt MDEA-MEA, as presented in Fig. 11. Based on this

    observation, this result occurred because MDEA has higher cyclic

    capacity than MEA (Chowdhury et al., 2011); thus, by increasing

    the ratio of MDEA (in another words, decreasing the ratio of MEA)

    in theblended solution, the cyclic capacity of the blended solution

    was then found to be increased.

    Fig. 11. Effectof MDEA-MEA blended ratio on cyclic capacity.

    4.6. Relative solvent regeneration ability

    One of the key points for the CO2 absorption process usingchemical solvent is the ability of solvent to be generated. It has

    beengenerallyacceptedthatgood/promisingsolventsfor thistech-

    nology should be easy to regenerate; in other words, they should

    require lowheatfor solvent regeneration.Thisis becausethemajor-

    ity (about 70%) of the cost of CO2 capture comes from the solvent

    regeneration unit.

    In the present work, the relative solvent regeneration ability

    of the blended MDEA-MEA was determined and compared with

    those of 2M MDEA and 5M MEA. The experiment was conducted

    at 80 C in a temperature controlled bath (Cole-Parmer; the tem-

    perature can range from -20 to 200 C with 0.01 C accuracy).

    3000ml of the solutions, which include 27/3%wt (or 2.3/0.5 molar

    ratio) MDEA-MEA, 2M MDEA, and 5M MEA, at the same initial

    CO2 loading of 0.5 were introduced into round-bottom flasks

    Fig. 12. Experimental set up for determining relative solvent regenerationability.

  • 8/10/2019 Masa Articulo Bob Bob Bob

    8/10

    10 A. Naami et al. / International Journal of Greenhouse Gas Control 19 (2013) 312

    Fig. 13. Relative solvent regeneration ability of 5M MEA, 2M MDEA, and2.3/0.5M

    (27/3%wt) MDEA-MEA.

    connected with condensers as shown in Fig. 12. Within the same

    operating conditions, the CO2loadings of the three testedsolvents

    were then measured as the experiment proceeded by titrating

    with standard 1.0M HCl using methyl orange as an indicator.

    The results obtained from this experiment suggest thesolvents

    relative regeneration ability in that the CO2 loading of a solu-

    tion that has high relative solvent regeneration ability (in other

    words, one that is relatively easy to regenerate) would decrease

    more rapidly than one that has lower relative solvent regeneration

    ability. Itwas found that the CO2 loadings of the three testing solu-

    tions decreased as the operational time increased as presented in

    Fig. 13. Even though the results observed from Fig. 13 can gener-

    ally beunderstood as showing that therelativeregenerationability

    of blended MDEA-MEAwould fall in between those of MDEA and

    MEA, the results obtained from the present work clearly show

    how close the relative regeneration ability of 27/3%wt (or 2.3/0.5

    molar ratio) blended MDEA-MEA is to that of 2M MDEA. This newobservation is considered to be very useful in order to (i) use the

    blended MDEA-MEAmore effectively in the pilot plant-scale test-

    ing and (ii) enhance the performance of the blended MDEA-MEA

    by addition of the third component (e.g., amine or additive). In

    addition, at the end of the experiment, the total amine concentra-

    tions of the three testing solutions were determined (by titration

    with standard 1.0M HCl (Horwitz, 1975)) and compared with the

    initial concentrations. It was found that the total amine concen-

    trations were very close to the initial concentrations. Thus, it can

    be said that the experimental set up as shown in Fig. 12 is effec-

    tive. More importantly, the results obtained from this study are

    reliable.

    In the present work, the mass transfer performance of CO2

    absorption intoaqueoussolutionsof blendedMDEA-MEAwas com-prehensively investigated in a DX structured packed column at

    various operating conditions of MDEA-MEA blend ratio, temper-

    ature, CO2 loading at the absorber top, and liquid flow rate. The

    mass transfer performancewasevaluated in termsofKGavandCO2concentration profile along the height of the column. It was found

    that themass transfer performanceincreasedas theratioof MEAin

    the blended solution, temperature, and liquid flow rate increased

    butdecreased asCO2loading increased(aspresentedin Figs.310)

    over the testing conditions. In addition, the mass transfer perfor-

    mance (in terms of both KGav and CO2 concentration profile) of

    blended MDEA-MEA increased as the ratio of MEA in the blended

    solution increasedas shown inFigs. 3,4, 6,8 and 10. This is because

    MEAhasfasterreactionkineticsofCO2 absorption thanMDEA(Kohl

    andNielsen,1997;Semaetal., 2012). The higherthe ratio ofMEA in

    theblended solutions, thehigher theamounts of themore reactive

    MEA molecules that can absorb CO2; thus, a higher mass transfer

    performance was observed. By comparing the three MDEA-MEA

    blendratios(27/3, 25/5, and23/7%wtMDEA-MEA), itwasobserved

    that the23/7%wtMDEA-MEA provided the best mass transfer per-

    formance among the three as shown in Figs. 3, 4, 6, 8 and 10.

    However, in order to effectively use blended MDEA-MEA, not only

    mass transfer performance,but also thecycliccapacityandrelative

    regeneration ability shouldbe taken into consideration.

    In summary, by increasing theratio ofMEAin theblended solu-

    tion, the mass transfer performance would be increased but the

    cyclic capacity and the relative solvent regeneration ability would

    be decreased. As shown in Figs. 3, 4, 6, 8 and10, it can be observed

    that themass transfer of 23/7%wtMDEA-MEA ismuchhigher than

    those of 25/5 and 27/3%wt MDEA-MEA, respectively. On the other

    hand, the cyclic capacities of the three blend ratios are consider-

    ably close to each other as presented in Fig. 11. Therefore, it can be

    reported that the effect of ratio ofMEA in the blendedMDEA-MEA

    solutions on mass transfer performance is more significant than

    that on cyclic capacity. As a result, based on above discussion, it

    is reasonable to conclude that the 23/7%wt MDEA-MEA provides

    the best CO2 absorption performance among the three blend-

    ing ratios over the operating conditions conducted in the present

    work.

    4.7. Empirical predictive correlation for KGavof blended

    MDEA-MEA

    Liang et al. (2011) mentioned that in order to effectively

    design an absorption column, the KGav is required. However, itis an expensive and time consuming process to experimentally

    determine the KGav in a packed column. Thus, the predictive cor-relation for KGav i s then found to be important since it can be

    used to determine the KGav from operating conditions withoutexperimental work. Dey and Aroonwilas (2009) proposed a pre-

    dictive correlation for blended AMP-MEA. The model was tested

    with the experimental mass transfer data of blended AMP-MEA

    in a laboratory-scale absorption column packed with DX struc-

    tural packing. They concluded that the predictive results were

    found to be in good agreement with the experimental results.

    For the MDEA-MEA system, the predictive correlation can be seen

    in Eq. (3).

    KGav= K eA(MDEA/MEA)

    eB eCxCO2 LD1 eECs eF/T (3)

    where KGav is the overall volumetric mass transfer coefficient(kmol/m3 hkPa), (MDEA/MEA) is themolar ratioofMDEAandMEA,

    xCO2 is the mole fraction of CO2, is theCO2loading (mol CO2/molamine), Csis theconcentration of amine in thesolution (kmol/m

    3),

    L1 is the liquid flow rate (m3/m2 h), Tis the absolute temperature

    (K), and K, A, B, C, D, E, and Fare the coefficients for the respective

    parameters modeled in theproposed equation.Theexperimental values ofKGavobtainedin thepresentwork at

    various operating conditions of MDEA-MEA blending ratios (27/3,

    25/5, and23/7%wt), temperatures (298, 303, and318K), CO2load-

    ings at the absorber top (0.05, 0.17, and 0.25mol CO2/mol amine),

    and liquid flow rates (2.8, 3.8, and 5m3/m2 h) were then used to

    correlate the predictive correlation in Eq. (3) using the nonlinear

    regression analysis package NLREG (with a minimum confidence

    level of 97%). The coefficients (K, A, B, C, D, E, and F) obtained

    from the NLREG program are presented in Table 1. By compar-

    ing the predicted and experimental results in the parity chart,

    as shown in Fig. 14, it can be seen that the predicted values of

    KGav calculated from Eq. (3) are in fairly good agreement withthe experimental valueswith an absolute average deviation (AAD)

    of 21.8%.

  • 8/10/2019 Masa Articulo Bob Bob Bob

    9/10

    A. Naami et al. / International Journal of Greenhouse Gas Control 19 (2013) 312 11

    Table 1

    Summary of parameters for predictive equationpresented in Eq. (3).

    Concentrationof

    blended

    MDEA-MEA (%wt)

    Confidential level A B C D E F K AAD

    27/3 0.97 0.0032 4 10.325 0.8531 0.1438 595.211 0.9254 20.9%

    25/5 0.97 0 1.1 14.3 0.559 0.3665 511.5 1 21.7%

    23/7 0.99 0.04 3.65 11.4 0.91 0.2 443 1 22.8%

    Fig. 14. Parity chart compares predicted and experimental values ofKGav for CO2absorption intoblendedMDEA-MEA solutions.

    5. Conclusions

    Themass transfer performance of CO2 absorption into aqueous

    solutions of blended MDEA-MEA was experimentally determined

    (in terms ofKGavand CO2 concentration profile) in a laboratory-scale absorption column packed with DX structured packing. The

    experiments were conducted at various operating conditions ofMDEA-MEA blending ratios (27/3, 25/5, and 23/7%wt), temper-

    atures (298, 303, and 318K), CO2 loadings at the absorber top

    (0.05, 0.17, and 0.25mol CO2/mol amine), and liquid flow rates

    (2.8, 3.8, and 5m3/m2 h). The results show that the mass transfer

    performance increasesas ratio ofMEAintheblendedsolution, tem-

    perature,and liquidflow rate increasebutdecreases asCO2loading

    increaseswithin the range of conditions using in thepresent work.

    On the other hand, the cyclic capacity and the relative solvent

    regeneration ability decrease as the ratio of MEA in the blended

    solution increases. However, after taking into consideration all

    three parameters (i.e., mass transfer performance, cyclic capac-

    ity, and relative solvent regeneration ability), it can be concluded

    that 23/7%wtMDEA-MEAprovides thebest CO2absorption perfor-

    mance among the three blend ratiosover the operating conditionsconducted in thepresent work.

    Acknowledgments

    The first author (A. Naami) would like to acknowledge and

    appreciate the scholarship support from the Libyan Higher Edu-

    cational studies through thecultural section of theLibyanEmbassy

    inOttawa, Canada. Thefinancial support from theNationalNatural

    Science Foundation of China (NSFC No. 21276068, 21250110514,

    and 21376067), Ministry of Science and Technology of the Peo-

    ples of Republic of China (MOST No. 2012BAC26B01), Ministry

    of Education of the Peoples of Republic of China-Supported Pro-

    gram for Innovative Research Team in University (No. IRT1238),

    Shaanxi Yanchang Petroleum (Group) Co., LTD, Chinas State

    Project985inHunanUniversityNovelTechnologyResearchand

    Development for CO2 Capture as well as Hunan University to

    the Joint International Center for CO2 Capture and Storage (iCCS)

    is gratefully acknowledged. In addition, we would also like to

    acknowledge the research supports over the past many years of

    the Industrial Research Consortium Future Cap Phase II of the

    International Test Center for CO2Capture (ITC) at theUniversity of

    Regina. We would also like to acknowledge the research support

    from the following organizations: Natural Sciences and Engineer-

    ing Research Council of Canada (NSERC), Canada Foundation for

    Innovation (CFI), Saskatchewan Ministry of Energy & Resources,

    Western Economic Diversification, Saskatchewan Power Corpo-

    ration, Alberta Energy Research Institute (AERI), and Research

    Institute of Innovative and Technology for the Earth (RITE).

    References

    Aroonwilas, A., Tontiwachwuthikul, P., 1998. Mass transfer coefficients and cor-relation for CO2 absorption into 2-amino-2-methyl-1-propanol (AMP) usingstructured packing. Industrial and Engineering Chemistry Research 37 (2),569575.

    Aroonwilas, A. , Veawab, A. , 2004. Characterization and comparison of theCO2 absorption performance into single and blended alkanolamines in apacked column. Industrial and Engineering Chemistry Research 43 (9),22282237.

    Astarita, G., Savage,D.W., Bisio, A., 1983. Gas TreatingwithChemical Solvents. JohnWiley,NY, USA.

    Austgen, D.M., Rochelle, G.T., Chen, C.C., 1991. Model of vapor-liquid equilibria foraqueous acid gas-alkanolamine systems. 2. Represetation of hydrogen sulfideand carbondioxide solubility in aqueous MDEA and carbon dioxide solubility

    in aqueous mixtures of MDEA with MEA or DEA. Industrial and EngineeringChemistry Research30 (3), 543555.

    Barchas, R., Davis, R., 1992. The Kerr-McGee/ABB Lummus Crest technology for therecoveryof CO2fromstack gases.EnergyConversionandManagement33 (58),333340.

    Bensetiti, Z., IIiuta, I., Larachi, F., Gradjean, B.P.A., 1999. Solubility of nitrus oxidein amine solutions. Industrial and Engineering Chemistry Research 38 (1),328332.

    Charkravarty, T., Phuken, U.K., Weilund, R.H., 1985. Reaction of acid gases withmixtures of amines. Chemical Engineering Progress40, 3236.

    Chowdhury, F.A., Okabe, H.,Yamada,H., Onoda, M., Fujioka, Y., 2011. Synthesisandselection of hindered newamine absorbents for CO2 capture. Energy Procedia4, 201208.

    Critchfield, J., Rochelle, G.T., 1987. CO2 absorption into aqueous MDEA andMDEA/MEA solutions. In: Paper No. 43e, Presented at theAIChE NationalMeet-ing, Houston, TX.

    Dawodu,O.F., Meisen, A., 1994. Solubility of carbondioxide in aqueousmixtures ofalkanolamines. Journal of Chemical andEngineeringData39 (3), 548552.

    Dawodu,O.F.,Meisen,A., 2009.Degradationof alkanolamineblendsby carbondiox-

    ide. Canadian Journal of Chemical Engineering 74 (6), 960966.deMontigny,D., 2004.ComparingPackedColumnsandMembraneAbsorbers forCO2

    Capture.University of Regina,Regina, Saskatchewan, Canada,Ph.D. Dissertation.deMontigny,D.,Tontiwachwuthikul, P.,Chakma,A., 2001. Parametric studiesof car-

    bondioxide absorption intohighly concentratedmonoethanolamine solutions.Canadian Journal of Chemical Engineering 79, 137142.

    Dey,A., Aroonwilas, A., 2009.CO2absorption intoMEA-AMP blended:mass transferand absorber height index. Energy Procedia 1, 211215.

    Dooley, J.J., Davidson, C.L., Dahowski, R.T., 2009. An Assessment of theCommercialAvailability of CarbonDioxide Capture andStorage Technology as of June2009.Office of Scientific and Technical Information, US Department of Energy, TN,USA.

    Edali,M.,Aboudheir,A., Idem,R.,2009.Kineticsof carcarbondioxideabsorptionintomixed aqueoussolutions ofMDEAandMEAusing a laminar jetapparatus andanumerically solved 2D absorption rate/kineticsmodel. International Journal ofGreenhouse Gas Control 3, 550560.

    Eswaran, S., Wu, S., Nicola, R., 2010. Advanced amines-basedCO2 Capture for coal-fired power plant. In: Proceeding of theCoal-Gen2010 Conference, Pittsburgh,PA, USA, August1012.

    http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0005http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0005http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0005http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0005http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0005http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0005http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0005http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0010http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0010http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0010http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0010http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0010http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0010http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0010http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0015http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0015http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0025http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0025http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0025http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0025http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0025http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0025http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0025http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0030http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0030http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0030http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0030http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0030http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0035http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0035http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0035http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0040http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0040http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0040http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0040http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0040http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0040http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0040http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0045http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0045http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0045http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0045http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0045http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0045http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0050http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0050http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0050http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0055http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0055http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0055http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0060http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0060http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0060http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0065http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0065http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0065http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0065http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0070http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0070http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0070http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0070http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0070http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0070http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0075http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0075http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0075http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0075http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0080http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0080http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0080http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0080http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0080http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0080http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0085http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0085http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0085http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0085http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0085http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0085http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0085http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0085http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0085http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0085http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0085http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0085http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0085http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0085http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0085http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0085http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0085http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0085http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0085http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0085http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0085http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0085http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0085http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0085http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0085http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0085http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0085http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0085http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0085http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0080http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0080http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0080http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0080http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0080http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0080http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0080http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0080http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0080http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0080http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0080http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0080http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0080http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0080http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0080http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0080http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0080http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0080http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0080http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0080http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0080http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0080http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0080http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0080http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0080http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0080http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0080http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0080http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0080http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0080http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0080http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0080http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0080http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0080http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0080http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0080http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0075http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0075http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0075http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0075http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0075http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0075http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0075http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0075http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0075http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0075http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0075http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0075http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0075http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0075http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0075http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0075http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0075http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0075http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0075http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0075http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0075http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0075http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0075http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0075http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0075http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0075http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0075http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0075http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0075http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0070http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0070http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0070http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0070http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0070http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0070http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0070http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0070http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0070http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0070http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0070http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0070http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0070http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0070http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0070http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0070http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0070http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0070http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0065http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0065http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0065http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0065http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0065http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0065http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0065http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0065http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0065http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0065http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0065http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0065http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0065http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0065http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0065http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0065http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0065http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0065http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0065http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0065http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0060http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0060http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0060http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0060http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0060http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0060http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0060http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0060http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0060http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0060http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0060http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0060http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0060http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0060http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0060http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0060http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0060http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0060http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0055http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0055http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0055http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0055http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0055http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0055http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0055http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0055http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0055http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0055http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0055http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0055http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0055http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0055http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0055http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0055http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0055http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0055http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0050http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0050http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0050http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0050http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0050http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0050http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0050http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0050http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0050http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0050http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0050http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0050http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0050http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0050http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0050http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0050http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0050http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0050http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0050http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0050http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0045http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0045http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0045http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0045http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0045http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0045http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0045http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0045http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0045http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0045http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0045http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0045http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0045http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0045http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0045http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0045http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0045http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0045http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0045http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0045http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0045http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0045http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0040http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0040http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0040http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0040http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0040http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0040http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0040http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0040http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0040http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0040http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0040http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0040http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0040http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0040http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0040http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0040http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0040http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0035http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0035http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0035http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0035http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0035http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0035http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0035http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0035http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0035http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0035http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0035http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0035http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0035http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0035http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0030http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0030http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0030http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0030http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0030http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0030http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0030http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0030http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0030http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0030http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0030http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0030http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0030http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0030http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0030http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0030http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0030http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0025http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0025http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0025http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0025http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0025http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0025http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0025http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0025http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0025http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0025http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0025http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0025http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0025http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0025http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0025http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0025http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0025http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0025http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0025http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0025http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0025http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0025http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0025http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0025http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0025http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0020http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0015http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0015http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0015http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0015http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0015http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0015http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0015http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0015http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0015http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0010http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0010http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0010http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0010http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0010http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0010http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0010http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0010http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0010http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0010http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0010http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0010http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0010http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0010http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0010http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0010http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0010http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0010http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0010http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0010http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0010http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0010http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0010http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0010http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0010http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0010http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0010http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0010http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0005http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0005http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0005http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0005http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0005http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0005http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0005http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0005http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0005http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0005http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0005http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0005http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0005http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0005http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0005http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0005http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0005http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0005http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0005http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0005http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0005http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0005http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0005http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0005http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0005http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0005
  • 8/10/2019 Masa Articulo Bob Bob Bob

    10/10

    12 A. Naami et al. / International Journal of Greenhouse Gas Control 19 (2013) 312

    Fernandes, J., Lisboa,P.F., Simoes,P.C.,Mota, J.P.B., Saatdjian, E., 2009.ApplicationofCFDin thestudyof supercriticalfluidextractionwith structuredpacking.JournalofSupercritical Fluids 50, 6168.

    Fu, K.,Sema, T.,Liang,Z., Liu, H.,Na,Y., Shi, H.,Idem, R., Tontiwachwuthikul,P.,2012.Investigationof mass-transfer performance for CO2 absorption into diethylen-etriamine (DETA) in a ramdomly packed column. Industrial and EngineeringChemistryResearch51 (37), 1205812064.

    Glasscock, D.A., Critchfirlf, J.E., Rochelle, G.T., 1991. CO2 absorption/desorption inmixturesof methyldiethanolaminewithmonoethanolamineor diethanolamine.Chemical Engineering Science 46, 28292845.

    Goto, K.,Okabe, H., Chowdhury, A.F., Shimizu,S., Fujioka,Y., Onoda,M.,2011.Devel-

    opmentof novel absorbentsfor CO2capturefromblast furnacegas. InternationalJournal of GreenhouseGas Control 5, 12141219.

    Hagewiesche, D.P., Ashour, S.S., Al-Ghawas, H.A., Sandall, O.C., 1995. Absorp-tion of carbon dioxide into aqueous blendeds of monoethanolamineand N-methyldiethanolamine. Chemical Engineering Science 50,10711079.

    Horng, S.Y., Li, M.H., 2002. Kinetics of absorption of carbon dioxide into aqueoussolutions of monoethanolamine+triethanolamine. Industrial and EngineeringChemistryResearch41 (2), 257266.

    Horwitz,W., 1975. AssociationofOfficialAnalyticalChemists(AOAC)Methods,12thed. George Bant, Gaithersburg, MD, USA.

    Hsu, C.H., Li, M.H., 1997. Densities of aqueous blends amines. Journal of ChemicalandEngineeringData 42 (3), 502507.

    Huang, Y.M., Soriano, A.N., Caparanga, A.R., Li, M.H., 2011. Kinetics of absorptionofcarbondioxide in 2-amino-2-methyl-1-propanol+N-methyldiethanolamine.Journal of the Taiwan Institute of Chemical Engineers42, 7685.

    Idem, R., Tontiwachwuthikul, P., Gelowitz, D.,Wilson,M., 2011a. Latest researchonfundamental studies of CO2 capture process technologies at the InternationalTest Centrefor CO2 Capture. Energy Procedia 4, 17071712.

    Idem, R., Shi, H., Gelowitz, D., Tontiwachwuthikul, P., 2011b. Catalytic Method andApparatus forSeparating a Gaseous Component from an Incoming Gas Stream.International Patent Application PCT/CA2011/000328 filed29/03/2011.

    Idem, R.,Wilson,M., Tontiwachwuthikul, P., Chakma,A.,Veawab,A., Aroonwilas, A.,Gelowitz, D., 2006. Aqueous MEA and mixed MEA/MDEA solvents at the Uni-versity of Regina CO2 capture technology developmentplant and the BoundaryDam CO2 capture demonstration plant. Industrial and Engineering ChemistryResearch 45 (8), 24142420.

    Jou, F.Y., Otto, F.D.,Mather,A.E., 1994.Vapor-liquidequilibriumof carbondioxide inaqueousmixtires of monoethanolamine andmethyldiethanolamine. IndustrialandEngineering ChemistryResearch33 (8), 20022005.

    Kaewsichan, L., Al-Boferson, O., Yesavage, V.F., Selim, M.S., 2001. Prediction of thesolubility ofacidgasesin monoethanolamine(MEA)andmethyldiethanolamine(MDEA) solutionsusing the electrolyte-UNIQUACmodel. FluidPhase Equilibria183184, 157171.

    Kohl, A.L., Nielsen, R.B., 1997. Gas Purification, 5th ed. Gulf Publishing Company,Houston,USA.

    Lawal,A.O., Bello, A., Idem, R.O., 2005. Therole ofmethyl diethanolamine(MDEA) in

    preventing the oxidative degradation of CO2 loaded and concentrated aqueousmonoethanolamine (MEA)-MDEAblendsduringCO2absorption fromfluegases.Industrial andEngineering Chemistry Research44 (6), 18741896.

    Lawal, A.O., Idem, R.O., 2005.Effects of operating variables on the product distribu-tion andreactionpathways in theoxidativedegradationof CO2-loadedaqueousMEA-MDEAblendsduring CO2absorption fromfluegasstreams. Industrial andEngineering ChemistryResearch44 (4), 9861003.

    Lawal, A.O., Idem, R.O., 2006. Kinetics of the oxidative degradation of CO2 loadedand concentrated aqueousMEA-MDEAblends during CO2absorption fromfluegasstreams. Industrial andEngineering ChemistryResearch 45 (8),26012607.

    Li,M.H., Lai, M.D., 1995. Solubility anddiffusivity of N2O andCO2 in (monoethanolamine+N-methyldiethanolamine+water) and in (monoethanolamine+2-amino-2-methyl-1-propanol +water).Journalof ChemicalandEngineeringData40 (2), 486492.

    Li,Y.G.,Mather,A.E., 1994.CorrelationandPredictionof thesolubilityof carbondiox-ide in a mixed alkanolamines solution. Industrial and Engineering ChemistryResearch 33 (8), 20062015.

    Li, M.H., Shen, K.P., 1992. Densities and solubilities of solutions of carbon dioxidein water +monoethanolamine +N-methyldiethanolamine. Journal of Chemical

    andEngineeringData 37 (3), 288290.Li, M.H., Shen, K.P., 1993. Calculation of equilibrium solubility of carbon dioxide

    in aquous mixtures of monoethanolamine with methyldiethanolamine. FluidPhase Equilibria 85, 129140.

    Liang, Z.H.,Sanpasertpanich, T., Tontiwachwuthikul,P., Gelowitz, D., Idem, R., 2011.Design, modelling and simulation of post-combustion CO2 capture systemsusing reactive solvents. CarbonManagement 2, 265288.

    Liao,C.H.,Li, M.H.,2002. Kinetics of absorptionof carbon dioxide intoaqueoussolu-tions of monoethanolamine+N-methyldiethanolamine. Chemical EngineeringScience 57, 45694582.

    Mamun,S., Nilsen,R., Svendsen, H.F.,Juliussen,O., 2005.Solubilityof carbondioxidein30%massmonoethanolamineand 50%massmethyldiethanolaminesolutions.Journal of Chemical and EngineeringData 50 (2), 630634.

    Mandal, B.P., Guha,M., Biswas, A.K., Bandyopadhyay, S.S., 2001.Removal of carbondioxide by absorption in mixed amines: modelling of absorption in aque-

    ous MDEA/MEA and AMP/MEA solutions. Chemical Engineering Science 56,62176224.

    Mandal, B.P., Biswas, A.K., Bandyopadhyay, S.S., 2003. Absorption of carbon diox-ide into aqueous blends of 2-amino-2-mthyl-1-propanol and diethanolamine.Chemical Engineering Science 58, 41374144.

    Mandal, B.P., Kundu, M., Bandyopadhyay, S.S., 2005. Physical solubilityand diffusivity if CO2 and N2O into aqueous solutions of (2-amino-2-methyl-1-propanol +monoethanolamine) and (N-methyldiethanolamine+monoethanolamine). Journal of Chemical and Engineering Data 50 (2),352-258.

    Maneeintr, K., Idem,R.O., Tontiwachwuthikul, P.,Wee,A.G.H., 2009. Synthesis, sol-ubilities, and cyclic capacity of amino alcohols for CO2 Capture from flue gasstreams.Energy Procedia 1, 13271334.

    Naami, A., Edali, M., Sema, T., Idem, R., Tontiwachwithikul, P., 2012. Mass transferperformance of CO2 absorption into aqueous solutions of 4-diethylamine-2-butanol, monoethanolamine, and N-methyldiethanolamine. Industrial andEngineering ChemistryResearch51 (18), 64706479.

    Ramachandran, N., Aboudheir, A., Idem, R., Tontiwachwuthikul, P., 2006. Kinet-ics of the absorption of CO2 into mixed aqueous loaded solutions of

    monoethanolamine and methyldiethanolamine. Industrial and EngineeringChemistry Research45 (8), 26082616.

    Rangwala, H.A., Morrell, B.R., Mather, A.E., Otto, F.D., 1992. Absorption of CO2 intoaqueous tertiaryamine/MEA solutions. Canadian Journal of Chemical Engineer-ing 70, 482490.

    Rao, A.B., Rubin, E.S., 2002.A technical, economical, andenvironmental assessmentofamine basedCO2capturetechnology forpower plant greenhousegascontrol.Environmental Science andTechnology 36, 44674475.

    Samanta, A., Bandyopadhyay, S.S., 2011. Absorption of carbon dioxide intopiperazine activated aqueous N-methyldiethanolamine. Chemical EngineeringScience 171,734741.

    Sakwattanapong,R., Aroonwilas,A., Veawab,A., 2005.Behaviorof reboilerheat dutyfor CO2 capture plants using regenerable single and blended alkanolamines.Industrial andEngineering ChemistryResearch44 (12), 44654473.

    Sema, T.,Naami, A.,Liang, Z., Idem, R.,Ibrahim, H.,Tontiwachwuthikul, P.,2013. 1Dabsorption kinetics modeling of CO2-DEAB-H2O system. International JournalofGreenhouse Gas Control 12, 390398.

    Sema, T.,Naami,A., Liang,Z.,Shi,H.,Rayer,A.V.,Sumon,K.Z.,Wattanaphan,P., Henni,

    A., Idem, R., Saiwan, C., Tontiwachwuthikul, C., 2012. Reaction kinetics of CO2absorption into reactive amine solutions.CarbonManagement 3 (2), 201220.Setameteekul,A., Aroonwilas, A., Veawab,A., 2008. Statistical factorial design anal-

    ysis for parametric interaction and empirical correlations of CO2 absorptionperformance inMEAandblendedMEA/MDEA processes. Separation andPurifi-cation Technology 64, 1625.

    Shannon, M.S., Bara, J.E., 2012. Properties of alkylimidazoles as solvents for CO2captureandcomparisonsto imidazoliun-basedionicliquids.Industrial andEngi-neering ChemistryResearch50 (14), 86658677.

    Shen, K.P., Li, M.H., 1992. Solubility of carbon dioxide in aqueous mixtures ofmonoethanolaminewith methyldiethanolamine. Journalof Chemical andEngi-neering Data 37 (1), 96100.

    Versteeg, G.F., Kuipers, J.A.M., van Beckum, F.P.H., van Swaaij, W.P.M., 1990.Masstransfer with the complex recersible chemical reactions-II. Parallel reversiblechemical reactions. Chemical Engineering Science 45, 183197.

    Vrachnos, A., Kontogeorgis, G., Voutsas, E., 2006. Thermodynamics modeling ofacidic gassolubilityin aqueoussolutionsofMEA,MDEA, andMEA-MDEAblends.Industrial andEngineering ChemistryResearch45 (14), 51485154.

    Wang, Y.W., Xu,S., Otto, F.D., Mather, A.E., 1992. Solubility of N2O in alkanolamines

    andmixedsolvents. Chemical Engineering Journal 48, 3140.Weiland,R.H., Dingman,J.C., Cronin,D.B., Browning, G.J.,1998.Densityandviscosity

    ofsomepartially carbonated aqueousalkanolaminessolutionsand theirblends.Journal of Chemical and EngineeringData 43 (3), 378382.

    http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0090http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0090http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0090http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0090http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0090http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0095http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0095http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0095http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0095http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0095http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0095http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0100http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0100http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0100http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0100http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0100http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0100http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0105http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0105http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0105http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0105http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0105http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0105http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0110http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0110http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0110http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0110http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0110http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0110http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0115http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0115http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0115http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0115http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0115http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0120http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0120http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0120http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0120http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0125http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0125http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0125http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0130http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0130http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0130http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0130http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0130http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0130http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0130http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0135http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0135http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0135http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0135http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0135http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0135http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0135http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0135http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0145http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0145http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0145http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0145http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0145http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0145http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0145http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0145http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0145http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0145http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0150http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0150http://refhub.elsevier.com/S1750-5836(13)00307-1/sbref0150http://refhub.elsevier.com/S1750-5836(13)