management of cyanide toxicity in patients with burns 2015 burns

Upload: patrick-john

Post on 23-Feb-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/24/2019 Management of Cyanide Toxicity in Patients With Burns 2015 Burns

    1/7

    http://dx.doi.org/10.1016/j.burns.2014.06.001http://www.elsevier.com/locate/burnshttp://www.sciencedirect.com/science/journal/03054179mailto:[email protected]://dx.doi.org/10.1016/j.burns.2014.06.001http://crossmark.crossref.org/dialog/?doi=10.1016/j.burns.2014.06.001&domain=pdfhttp://crossmark.crossref.org/dialog/?doi=10.1016/j.burns.2014.06.001&domain=pdf
  • 7/24/2019 Management of Cyanide Toxicity in Patients With Burns 2015 Burns

    2/7

    1. Introduction

    Inhalational injury is one of the major predictors of mortality

    in patients with burns [1], and is estimated to be present in

    2030% ofpatients withburnswhoundergo hospitalisation [2].

    Advances in fluid resuscitation, surgery and antibiotics have

    improved the management of burn shock and sepsis [3], withfire and burn mortality in the USA dropping from 3.0 to 1.2 per

    100,000 population in the 25-year period from 1981 to 2006 [4].

    However, the management of inhalational injury remains one

    of

    the

    greatest

    challenges

    of

    burn

    care,

    and

    its

    presence

    is

    reported to double the mortality by burn [5,6].

    Inhalation injury comprisesdirect thermal injury, chemical

    irritation of lung parenchyma and the systemic effects of

    absorptionof the toxic productsof combustion, suchas carbon

    monoxide and cyanide. There is increasing evidence that

    cyanide

    toxicity

    plays

    an

    important

    role

    in

    smoke

    inhalation

    injury and its associated mortality [79], with smoke inhala-

    tion reportedly the most common cause of cyanide toxicity

    [10,11]. It is difficult to accurately determine the true incidenceof

    cyanide

    toxicity

    due

    to

    smoke

    inhalation

    as

    blood

    cyanide

    levelsareoften notmeasured;however, ithasbeen reported to

    have been found in as many as 76% of patients with smoke

    inhalation injury [9]. This paper aims to appraise the evidence

    base for the pharmacological management of cyanide toxicity

    in the context of smoke inhalation and burn injuries, in order

    to

    guide

    management

    in

    this

    clinical

    setting.

    2. Methods

    A search of Medline (1950June 2013), EMBASE (1980June

    2013) and CINAHL (1981June 2013) databaseswas undertakenusing the NHS Evidence Interface. The search terms cyanide

    plus smoke inhalation, and also cyanide plus either

    hydroxycobalamin, sodium thiosulphate, nitrite, or dico-

    balt edetate were used.

    3. Biochemistry

    Cyanide

    refers

    to

    any

    substance

    that

    contains

    the

    cyano

    (CN)

    group. This includes inorganic cyanides with a negatively

    charged cyanide ion, such as sodium cyanide, and organic

    cyanides with a covalent CN group such as methyl cyanide.

    Inorganic cyanides are salts of hydrocyanic acid, also knownashydrogen cyanide,andarehighly toxic.Hydrogen cyanide is

    a volatile liquid that forms a colourless gas at 26 8C and has a

    distinctiveodourofbitter almonds;however, 2040% ofpeople

    are genetically unable to detect this [12,13]. Cyanide com-

    pounds are used in the production of acrylic, rubber and

    plastic;

    for

    industrial

    processes

    including

    electroplating,

    steel

    production and metal extraction from ores; and for fumiga-

    tion. In smoke inhalation injury, cyanide toxicity is thought to

    occur from exposure to the products of combustion of those

    cyanide-containing

    synthetic

    substances.

    Cyanide acts by binding to the ferric ions in cytochrome c

    oxidase, thus inhibiting its action in the electron transport

    chain in mitochondria. This disruption of the electron

    transport chain blocks cellular aerobic respiration, which

    can rapidly become fatal. Whole blood cyanide levels above

    0.51.0 mg/L (1940 mmol/L) are regarded as toxic [7,9,14], and

    untreated levels above 2.53 mg/L (96115 mmol/L) are poten-

    tially fatal [12,14].

    Although the affinity of cyanide for ferric ions is strong, the

    process is reversible. Cyanide disassociates from cytochrome

    c oxidase by binding with sulphur transferred from endoge-nous thiosulphate by the catalyst rhodanese. The resultant

    thiocyanate undergoes renal excretion. Observational studies

    have shown a half-life of between 1 and 3 h [7,15].

    4. Clinical features and diagnosis

    Early clinical manifestations of cyanide toxicity include those

    of sympathetic activation namely tachycardia, hypertension,

    palpitations,

    tachypnoea

    and

    anxiety,

    as

    well

    as

    nausea,

    headache and dizziness.As the toxicity becomesmore severe,

    signs include confusion, drowsiness, seizures, bradycardia,

    bradypnoea, hypotension and pulmonary oedema, progres-sing

    to

    loss

    of

    consciousness,

    fixed

    pupils,

    cardiovascular

    collapse and ultimately death. The patients breath classically

    smells of bitter almonds to the majority of clinicians able to

    detect this odour. One study found that 67% of smoke

    inhalation victims without major burns but with neurological

    impairment had toxic cyanide levels above 39 mmol/L (1.0 mg/

    L)

    [9].

    Although blood cyanide concentration can be measured, it

    is not of use for diagnosis in the acute setting as few

    laboratories perform the assay and results cannot be obtained

    rapidly. Diagnosis is therefore clinical; however, plasma

    lactate has been found to correlate with the severity of

    cyanide toxicity due to lactic acidosis from the prevailinganaerobicmetabolism [7,16,17]. In victimsof smoke inhalation

    with burns 10 mmol/L (90 mg/dL) has been found to be a

    sensitive indicator of cyanide toxicity suggesting blood

    cyanide levels >40 mmol/L (1.0 mg/L) [7].

    A panel endorsed by the European Society for Emergency

    Medicine recently developed algorithms for both prehospital

    and in-hospital management of possible cyanide toxicity in

    smoke

    inhalation.

    Empiric

    antidotal

    treatment

    was

    recom-

    mended in the prehospital setting for those with a history of

    smoke inhalation and either a Glasgow Coma Scale (GCS)

  • 7/24/2019 Management of Cyanide Toxicity in Patients With Burns 2015 Burns

    3/7

    this situation is limited and conflicting [1922]. In addition, it is

    not widely available and the chamber presents a difficultenvironment

    in

    which

    to

    resuscitate

    the

    patient.

    Several antidotes have been postulated, with differing

    mechanismsof action and variable evidenceof efficacy.These

    antidotes include hydroxycobalamin, sodium thiosulphate,

    methaemoglobin-producing nitrites and dicobalt edetate

    (Table 1).

    6. Hydroxycobalamin

    Hydroxycobalamin binds cyanide by substituting a hydroxyl

    group for a CN group, forming cyanocobalamin, a non-toxic

    substance that can be excreted by the kidneys. It is thought a5-gdose canbindblood cyanide levelsup to 40 mmol/L (1.0 mg/

    L) [23]. It also has the additional effect of scavenging nitric

    oxide thus raising blood pressure,which can potentially offset

    the hypotension induced by the cyanide toxicity.

    Hydroxycobalamin has been shown to reduce cyanide

    levels in smokers [24]. In addition, animal studies by Bebarta

    [2527] andRiou [28] support the efficacyofhydroxycobalamin

    in reversing the effects of cyanide toxicity in swine and rat

    models.

    Hydroxycobalamin has been utilised in France as the first-

    line antidote for cyanide toxicity for many years, and is often

    administered at the scene of injury following smoke inhalation

    by emergency physicians who form partof the prehospital careteam within the fire service. Fortin and Borron have published

    large case series which demonstrate mean survival of 4267%

    following hydroxycobalamin administration to smoke inhala-

    tion victims with presumed [29] or confirmed [9] cyanide

    toxicity. Borron has shown 62% and 64% survival in patients

    with

    blood

    cyanide

    concentration

    over

    100

    mmol/L

    (2.6

    mg/L),

    a

    level usually regarded as fatal, when treated with hydroxyco-

    balamin for cyanide toxicity due to smoke inhalation [9] and

    other causes [30], respectively. Fortin noted statistically

    significant

    differences

    in

    mean hydroxycobalamin

    dose

    in

    those who had cardiac arrest without recovery, cardiac arrest

    with early recovery but later death and cardiac arrest with

    recovery [31], and concluded thathydroxycobalamin should be

    administered presumptively and as quickly as possible when

    cyanide toxicity is suspected, and in the event of cardiac arrestthe

    dose

    should

    be

    increased

    or

    repeated

    unless

    a

    rapid

    response is observed. As there were no significant adverse

    effects of hydroxycobalamin administration in any of these

    case series, they conclude thathydroxycobalamin is safe touse

    empirically for suspected cyanide toxicity in prehospital care.

    Hydroxycobalamin has a very mild side effect profile:

    transient

    hypertension,

    bradycardia,

    headache

    and

    skin

    and

    urine discolouration have been documented but no major

    adverse effects have been reported [9,2932].

    A number of recent review articles have also concluded,

    based on the limited efficacy data available, as well as the

    more widely documented safety data, that hydroxycobalamin

    is a safe and effective first-line antidote for cyanide toxicity[14,18,3339].

    7. Sodium thiosulphate

    Endogenous thiosulphate forms part of the bodys normal

    excretion mechanism of cyanide, by transferring sulphur to

    cyanide to form thiocyanate which is excreted by the kidneys,

    under

    the

    action

    of

    the

    catalyst

    rhodanese.

    Administration

    of

    sodium thiosulphate is thought to upregulate the bodys

    natural excretion of cyanide by increasing the availability of

    substrate, thus limiting toxicity. Sodium thiosulphate is

    generally well tolerated with only minor side effects such asnausea, vomiting and headache being reported [3941].

    Much of the evidence in the literature assesses the efficacy

    of sodium thiosulphate when given in conjunction with other

    antidotes [39]. Evidence for theefficacyof sodium thiosulphate

    as a sole agent is confined to case reports and animal models,

    and

    outcomes

    are

    mixed.

    It

    has

    been

    shown

    to

    reverse

    the

    effects of cyanide in sheep when given at triple the standard

    humandose [42],and to reverse the effectsof cyanide in rats at

    standard human doses [43]. One study in a dog model

    demonstrated

    reduced

    plasma

    cyanide

    levels

    compared

    to

    the control but differences were only seen after 1 h [44]. This

    apparent slow onset of action may explain why some studies

    donot show clinical efficacy, as either the studyperiodmaybe

    Table 1 Cyanide antidote properties.

    Antidote Mechanism of action Dose and route Side effects

    Hydroxycobalamin Binds cyanide directly 5 g IV over 15 min Transient hypertension, headache,

    bradycardia, skin and urine

    discolouration

    Sodium thiosulphate Upregulates bodys

    natural excretion

    mechanism of formingthiocyanate

    12.5 g IV over 10min Nausea and vomiting, headache

    Sodium nitrite, Amyl

    nitrite, 4DMAP

    Convert haemoglobin to

    methaemoglobin which

    binds cyanide

    Sodium nitrite: 300mg

    IV over 520min

    Amyl nitrite: 0.3 ml

    ampoules crushed and

    inhaled

    4DMAP: 250 mg IV over

    1 min

    Reduction in oxygen carrying capacity

    of blood, vasodilation, hypotension

    Dicobalt edetate Binds cyanide directly 300 mg IV over 1 min Anaphylaxis, hypotension, cardiac

    arrhythmias; more severe in absence of

    cyanide toxicity

    b ur ns 4 1 ( 20 15 ) 1 8 2420

  • 7/24/2019 Management of Cyanide Toxicity in Patients With Burns 2015 Burns

    4/7

    too short [45] or the severity of the cyanide toxicity so great as

    to cause death before a response is seen [46].

    Several literature reviews conclude that there is reasonable

    evidence that sodium thiosulphate is effective in cyanide

    toxicity [37,38,40]; however, the slower onset of action

    compared to other antidotes is also generally accepted [37

    40,47].Considering the rapidhalf-life ofcyanide, it ispostulated

    that in the period prior to the onset of action of sodiumthiosulphate the cyanide would either prove fatal or reduce to

    non-critical concentrations; thus, this slow onset of action

    limits the usefulness of sodium thiosulphate as an antidote for

    the

    acute

    cyanide

    toxicity

    seen

    in

    smoke

    inhalation.

    8. Sodium nitrite, amyl nitrite, 4DMAP

    Nitrites such as sodium nitrite or amyl nitrite oxidise iron in

    haemoglobin

    from

    ferrous

    to

    ferric

    iron,

    forming

    methaemo-

    globin. 4-dimethylaminopyridine (4DMAP) works by a similar

    mechanism via methaemoglobin. Oxygen cannot bind to the

    ferric iron in methaemoglobin, but cyanide binds preferen-tially

    with

    methaemoglobin

    over

    cytochrome

    c

    oxidase,

    forming cyanmethaemoglobin, thus releasing cytochrome c

    oxidase so that aerobic metabolism can resume.

    Nitrites have been used as a cyanide antidote since their

    efficacy was demonstrated in animal models in the 1930s [48

    52]. These studies popularised a regime of amyl nitrite and

    sodium

    nitrite

    given

    together

    with

    sodium

    thiosulphate.

    However, 2030% of haemoglobin needs to be converted to

    methaemoglobin for adequate efficacy [47], which has an

    adverse effect on the oxygen carrying capacity of blood,

    making this an unsafe choice in patients with smoke

    inhalation injury who may also have concurrent carbon

    monoxide toxicity [14,37,39,53]. In addition, nitrites causevasodilation and consequently hypotension which can wors-

    en circulatory stability [53,54], a side effect which could be

    particularly dangerous in patients with major burns.

    9. Dicobalt edetate

    Dicobalt edetate also acts by binding cyanide, and it has been

    used

    as

    a

    cyanide

    antidote

    for

    over

    100

    years.

    Once

    again,

    evidence of efficacy is derived from animal models and case

    reports [41] rather than human clinical trials. It is associated

    with a number of serious side effects, including anaphylaxis,

    hypotension and cardiac arrhythmias [55,56]. These sideeffects may be even more pronounced if dicobalt edetate is

    administered in the absenceof cyanide toxicity; therefore, it is

    generally recommended that it is only used as an antidote in

    severe confirmed cases of cyanide toxicity [38]. In practical

    terms, this precludes it from being used as a cyanide antidote

    in

    patients

    with

    burns

    with

    smoke

    inhalation

    as

    cyanide

    toxicity can rarely be absolutely confirmed in these cases.

    10. Choice of antidote

    There are no randomised controlled human trials to evaluate

    the efficacy of cyanide antidotes in the literature, only animal

    models and case series. There are a number of factors to

    account for this, including the relative rarity of cyanide

    poisoning, the lack of a rapid test to confirm the presence of

    cyanide toxicity and ethical issues which would prevent the

    use of a placebo when cyanide toxicity is suspected. In the

    absence of controlled human studies, these animal models

    and case series become the only evidence on which we can

    base our practice. The only randomised controlled trial inhumans in the literature is a safety study of hydroxycobala-

    min inhealthyhuman subjects [32]; however, this providesno

    information on efficacy.

    There

    is

    evidence

    of

    efficacy

    in

    the

    literature

    for

    every

    cyanide antidote in our review; however, not all of these

    antidotes appear to be suitable in the context of smoke

    inhalation injury.

    Antidotes such as sodium nitrite, amyl nitrite and 4DMAP,

    which act by forming methaemoglobin, reduce the oxygen

    carrying

    capacity

    of

    blood.

    The

    coexistence

    of

    carbon

    monoxide toxicity in smoke inhalation injury may also

    simultaneously reduce the oxygen carrying capacity of blood,

    making methaemoglobin-forming antidotes potentially dan-gerous

    in

    this

    context,

    and

    there

    have

    been

    reports

    of

    fatal

    reductions in oxygen carrying capacity when sodium nitrite

    has been given in the presence of carbon monoxide toxicity

    [40,53]. In addition, we postulate that the reduction in

    oxygenation of the blood in these vital first few hours post

    injury could potentially have an adverse effect on coexisting

    burns,

    and

    the

    side

    effect

    of

    hypotension

    with

    nitrite

    use

    could

    worsen circulatory stability in patients with burn shock.

    Dicobaltedetate isassociatedwith frequent andsevere side

    effects such as anaphylaxis, hypotension and arrhythmias.

    These side effects can be amplified when it is administered in

    the absence of cyanide toxicity [57]. Consequently, its use is

    usually limited to cases where cyanide toxicity has beenconfirmed such as ingestion of a known cyanide-containing

    substance [40]. In the context of patients with burns with

    smoke inhalation, cyanide toxicity can be suspected but

    cannot be definitively confirmed in the immediate resuscita-

    tion period, therefore precluding the use of dicobalt edetate as

    a cyanide antidote in smoke inhalation injury.

    Hydroxycobalamin and sodium thiosulphate are both

    associated with a mild side-effect profile and are regarded

    as

    safe

    to

    use

    in

    smoke

    inhalation

    patients.

    Sodium

    thiosulphate however appears to have a slower onset of

    action which may limit its usefulness as a sole agent in the

    urgent reversal of severe cyanide toxicity. Sodium thiosul-

    phate has traditionally been used in conjunction with othermore rapid acting antidotes [39,41], particularly sodiumnitrite

    [26], and evidence in the literatureof its efficacy as a sole agent

    is limited. Recent guidance on antidote availability from the

    UK College of Emergency Medicine recommends that hydro-

    xycobalamin be considered in smoke inhalation victims

    showing

    signs

    associated

    with

    cyanide

    toxicity,

    and

    that

    sodium thiosulphate generally be used as an adjuvant to other

    antidotes [58].

    There has been a lack of good quality comparative studies

    in

    the

    literature

    comparing

    the

    relative

    efficacy

    of

    cyanide

    antidotes;however, Bebarta et al. have recently published two

    randomised controlled comparative studies in a swine model

    [25,26]. In the first study, hydroxycobalamin with sodium

    b ur ns 4 1 ( 20 15 ) 1 8 24 21

  • 7/24/2019 Management of Cyanide Toxicity in Patients With Burns 2015 Burns

    5/7

    thiosulphate was compared to sodium nitrite with sodium

    thiosulphate, and found that hydroxycobalamin with sodium

    thiosulphate reversed hypotension morerapidlybut therewere

    no statistically significant differences in mortality, acidosis or

    lactate [25]. In the second study, hydroxycobalamin, sodium

    thiosulphate and hydroxycobalamin plus sodium thiosulphate

    were compared, andwhereas the cyanide toxicitywas reversed

    in thehydroxycobalamin and combined groups,all the subjectsdied in the sodium thiosulphate group [26]. In addition, no

    difference in outcome measures was seen in the combined

    group compared to hydroxycobalamin alone. These results

    suggest

    that

    hydroxycobalamin

    is

    significantly

    more effective

    than sodium thiosulphate for cyanide toxicity, as there was a

    profound difference in survival demonstrated in this model.

    Clearly, the applicability of an animal model to a human

    population has its limits; however,asasimilar study inhumans

    would be ethically unfeasible, increased reliance on animal

    models

    may be

    necessary.

    We therefore

    recommend

    that

    hydroxycobalamin is used as the antidote of choice in patients

    with burns with cyanide toxicity due to smoke inhalation.

    11. Discussion

    It has been suggested that the low flashpoint of hydrogen

    cyanide of 18 8C (0 8F), which is the lowest temperature at

    which cyanide will ignite, means that most hydrogen cyanide

    will

    combust

    and

    therefore

    not

    be

    present

    in

    significant

    levels

    in smoke in adomesticfire [47]. However, the lowerflammable

    limit, the minimum concentration at which a substance can

    ignite, is 5.6% (56,000 ppm) which is a level immensely higher

    than the immediate danger to life or health value of 50 ppm

    [59], suggesting that dangerous cyanide levels could still be

    present before the threshold for ignition is reached. Thehighest concentration of cyanide appears to occur in the first

    few minutes following fire ignition [60,61], which may explain

    why one study did not find dangerous exposure levels using

    measuring devices attached to coats of firefighters who will

    have arrived on scene after cyanide levels have dropped [62].

    Studies of smoke inhalation victims measuring cyanide levels

    at the fire scene have demonstrated blood cyanide levels

    significantly higher than controls [7], with levels above

    39

    mmol/L

    in

    67%

    of

    victims

    [9].

    The necessity to use specific cyanide antidotes for blood

    cyanide concentrations which in isolation are generally

    regarded as toxic but not fatal has also been questioned

    [47]. Although it may not be necessary to use antidotes in thissituationwhen the cyanide toxicity is an isolated injury, in the

    context of a patient with burns with smoke inhalation injury

    we believe that amore aggressive approachwith early use of a

    specific antidote is warranted. Animal studies have shown

    that in the presence of concomitant major atmospheric

    oxygen

    depletion,

    the

    fatal

    dose

    of

    blood

    cyanide

    was

    one

    tenth of that expected [8]. Even if the cyanide toxicity alone is

    not sufficient to be fatal, it could potentially confer a worse

    outcome on a concomitant major burn injury. Optimal

    perfusion

    of

    the

    burnt

    skin

    during

    the

    resuscitation

    period

    can affect the survival of tissue in the zone of stasis [63]. We

    postulate that the ischaemia and acidosis caused by cyanide

    toxicity may reduce perfusion of the burnt tissue, and in

    patients with major burns aggressive reversal of even mild

    cyanide toxicity may improve burn tissue perfusion and

    consequently could potentially indirectly improve survivalfrom

    the

    burn

    injury.

    We therefore

    recommend

    treatment

    with hydroxycobalamin for any burn victim with a history of

    smoke inhalation who has clinical features consistent with

    cyanide toxicity (Fig. 1).

    The clinical features suggestive of cyanide toxicity are

    similar to those of carbon monoxide toxicity, and it is possible

    that

    clinical

    features

    in

    a

    patient

    warranting

    empiric

    cyanide

    antidote treatment are in fact attributable to carbonmonoxide

    toxicity. However, we believe the risk of treatment of cyanide

    toxicity in a patient with only carbon monoxide toxicity is

    outweighed by the potentialbenefit of early empiric treatment

    for cyanide toxicity. High-flow oxygen is indicated for both

    toxins, and empiric hydroxycobalamin treatment has a safeside-effect profile even in the absence of cyanide toxicity. In

    addition, a correlation between blood concentrations of

    carbon monoxide and cyanide has been shown in smoke

    inhalation victims [7] suggesting that most patients in actual

    fact suffer toxicityof both simultaneously.The possibility that

    the clinical features may be attributable to another cause

    should of course always be considered when resuscitating a

    patient, and it should not be assumed that cyanide toxicity is

    the

    sole

    cause

    of

    the

    patients

    clinical

    condition.

    The time delay to administration of a cyanide antidote is

    thought to have a significant impact on outcome [64]. Early

    empiric treatment at the scene of injury with hydroxycoba-

    lamin for patients suspected to have cyanide toxicity isutilised in France [9,2931]. Early administration of hydro-

    xycobalamin is possible in France as prehospital care includes

    a physician-led ambulance team. We postulate the earlier

    intervention has an important role in improving survival, and

    that feasibility studies of early empiric treatment of cyanide

    toxicity

    with

    hydroxycobalamin

    administered

    at

    the

    scene

    of

    injury are warranted in other countries.

    12. Conclusion

    The natureof cyanide toxicity inpatientswithburnsprecludes

    the possibility of randomised controlled human trials to

    aConsider 10g dose in the event of cardiac arrest.

    bFurther 5g dose can be given up to 10g total dose.

    History of Smoke Inhalation

    5g IV hydroxycobalamina 5g IV hydroxycobalaminb

    100% O2

    Pre-hospital:

    GCS < 14 and/or cardiovascular

    instability

    In hospital:

    Plasma lactate > 10mmol/L

    Fig. 1 Flowchart for assessment and management of

    cyanide

    toxicity

    in

    patients

    with

    burns.

    Source: Modified from Anseeuw et al. [18].

    b ur ns 4 1 ( 20 15 ) 1 8 2422

  • 7/24/2019 Management of Cyanide Toxicity in Patients With Burns 2015 Burns

    6/7

    provide strong clinical evidence for the efficacy of antidotes;

    therefore, pharmacological theorymust be combinedwith the

    available evidence in the literature from animal models and

    case series, despite the limitations of this type of evidence, in

    order to determine optimal treatment strategies. Dicobalt

    edetate and methaemoglobin-forming agents such as sodium

    nitritehave side-effect profiles that render them unsafe to use

    in patients with burns with smoke inhalation injury. There isevidence of efficacy for both hydroxycobalamin and sodium

    thiosulphate and both are well tolerated; however, compara-

    tive studies in the literature found hydroxycobalamin to be

    substantially

    more

    efficacious

    than

    sodium

    thiosulphate,

    and

    in addition concerns have been raised regarding the slow

    onset of action of sodium thiosulphate. We therefore

    recommend that hydroxycobalamin is used as the first-line

    antidote of choice in patients with burns with inhalational

    injury where features consistent with cyanide toxicity are

    present.

    In

    addition,

    we

    suggest

    that

    protocols

    are

    developed

    in the prehospital and emergency care setting that facilitate

    the most timely administration of hydroxycobalamin in order

    to maximise efficacy.

    Conflict

    of

    interest

    There are no conflicts of interest to declare.

    r e f e r e n c e s

    [1] Belgian Outcome in Burn Injury Study Group. Developmentand validation of a model for prediction of mortality in

    patients with acute burn injury. Br J Surg 2009;96(1):1117.[2] Smith DL, Cairns BA, Ramadan F, Dalston JS, Fakhry SM,

    Rutledge R, et al. Effect of inhalation injury, burn size, andageonmortality: a study of 1447 consecutive burn patients.J Trauma 1994;37(4):6559.

    [3] Mlcak RP, Suman OE, Herndon DN. Respiratorymanagement of inhalation injury. Burns 2007;33(1):213.

    [4] Peck MD. Epidemiology of burns throughout theworld. PartI: Distribution and risk factors. Burns 2011;37(7):1087100.

    [5] Palmieri TL, Gamelli RL. Diagnosis and management ofinhalation injury. In: Jeschke MG, Kamolz LP, Sjoberg F,Wolf SE, editors. Handbook of burns. Vienna: Springer;2012. p. 16372.

    [6] Colohan SM. Predicting prognosis in thermal burns withassociated inhalational injury: a systematic review of

    prognostic factors in adult burn victims. J Burn Care Res2010;31(4):52939.

    [7] Baud FJ, Barriot P, Toffis V, Riou B, Vicaut E, Lecarpentier Y,et al. Elevated blood cyanide concentrations in victims ofsmoke inhalation. N Engl J Med 1991;325(25):17616.

    [8] Alarie Y. Toxicity of fire smoke. Crit Rev Toxicol2002;32(4):25989.

    [9] Borron SW, Baud FJ, Barriot P, Imbert M, Bismuth C.Prospective study of hydroxocobalamin for acute cyanidepoisoning in smoke inhalation. Ann Emerg Med2007;49(6):794801.

    [10] Walsh DW, EcksteinM. Hydrogen cyanide in fire smoke: anunderappreciated threat. Emerg Med Serv 2004;33:1603.

    [11] Eckstein M, Maniscalco PM. Focus on smoke inhalation: themost common cause of acute cyanide poisoning. Prehosp

    Disaster Med 2006;21(2):s4955.

    [12]

    Kulig K. Case studies in environmental medicine: cyanidetoxicity. Atlanta, GA: Agency for Toxic Substances andDisease Registry, US Department of Health and HumanServices; 1991.

    [13] Kirk RL, Stenhouse NS. Ability to smell solutions ofpotassium cyanide. Nature 1953;171(4355):6989.

    [14] Shepherd G, Velez LI. Role of hydroxocobalamin in acutecyanide poisoning. Ann Pharmacother 2008;42(5):6619.

    [15] Kirk MA, Gerace R, Kulig KW. Cyanide and methemoglobinkinetics in smoke inhalation victims treated with thecyanide antidote kit. Ann Emerg Med 1993;22(9):14138.

    [16] Singh BM, Coles N, Lewis P, Braithwaite RA, Nattrass M,Fitzgerald MG. The metabolic effects of fatal cyanidepoisoning. Postgrad Med J

    1989;65(770):9235.[17] Baud FJ, Borron SW, Megarbane B, Trout H, Lapostolle F,

    Vicaut E, et al. Value of lactic acidosis in the assessment ofthe severity of acute cyanide poisoning. Crit Care Med2002;30(9):204450.

    [18] AnseeuwK, DelvauN, Burillo-Putze G, De Iaco F, Geldner G,Holmstrom P, et al. Cyanide poisoning by fire smokeinhalation: a European expert consensus. Eur J Emerg Med2013;20(1):29.

    [19] Lawson-Smith P, Jansen EC, Hilsted L, Hyldegaard O. Effect

    of hyperbaric oxygen therapy on whole blood cyanideconcentrations in carbon monoxide intoxicated patientsfrom fire accidents. Scand J Trauma Resusc Emerg Med2010;18:32.

    [20] Lawson-Smith P, Olsen NV, Hyldegaard O. Hyperbaricoxygen therapy or hydroxycobalamin attenuates surges inbrain interstitial lactate and glucose; and hyperbaricoxygen improves respiratory status in cyanide-intoxicatedrats. Undersea Hyperb Med 2011;38(4):22337.

    [21] Hart GB, Strauss MB, Lennon PA, Whitcraft 3rd DD.Treatment of smoke inhalation by hyperbaric oxygen. JEmerg Med 1985;3(3):2115.

    [22] Way JL, End E, Sheehy MH, De Miranda P, Feitknecht UF,Bachand R, et al. Effect of oxygen on cyanide intoxication.IV. Hyperbaric oxygen. Toxicol Appl Pharmacol

    1972;22(3):41521.[23] Houeto P, Hoffman JR, Imbert M, Levillain P, Baud FJ.

    Relation of blood cyanide to plasma cyanocobalaminconcentration after a fixed dose of hydroxocobalamin incyanide poisoning. Lancet 1995;346(8975):6058.

    [24] Forsyth JC, Mueller PD, Becker CE, Osterloh J, Benowitz NL,RumackBH, et al.Hydroxocobalamin as a cyanide antidote:safety, efficacy and pharmacokinetics in heavily smokingnormal volunteers. J Toxicol Clin Toxicol 1993;31(2):27794.

    [25] Bebarta VS, Tanen DA, Lairet J, Dixon PS, Valtier S, Bush A.Hydroxocobalamin and sodium thiosulfate versus sodiumnitrite and sodium thiosulfate in the treatment of acutecyanide toxicity in a swine (Sus scrofa) model. Ann EmergMed 2010;55(4):34551.

    [26] Bebarta VS, Pitotti RL, Dixon P, Lairet JR, Bush A, Tanen DA.

    Hydroxocobalamin versus sodium thiosulfate for thetreatment of acute cyanide toxicity in a swine (Sus scrofa)model. Ann Emerg Med 2012;59(6):5329.

    [27] Bebarta VS, Pitotti RL, Dixon PS, Valtier S, Esquivel L, BushA, et al. Hydroxocobalamin and epinephrine both improvesurvival in a swine model of cyanide-induced cardiacarrest. Ann Emerg Med 2012;60(4):41522.

    [28] Riou B, Baud FJ, Astier A, Barriot P, Lecarpentier Y. In vitrodemonstration of the antidotal efficacy ofhydroxocobalamin in cyanide poisoning. J NeurosurgAnesthesiol 1990;2(4):296304.

    [29] Fortin JL, Giocanti JP, RuttimannM, Kowalski JJ. Prehospitaladministration of hydroxocobalamin for smoke inhalation-associated cyanide poisoning: 8 years of experience in theParis Fire Brigade. Clin Toxicol (Phila) 2006;44(Suppl. 1):

    3744.

    b ur ns 4 1 ( 20 15 ) 1 8 24 23

    http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0005http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0005http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0005http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0010http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0010http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0010http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0010http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0015http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0015http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0020http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0020http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0025http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0025http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0025http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0025http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0030http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0030http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0030http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0030http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0035http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0035http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0035http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0040http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0040http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0045http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0045http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0045http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0045http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0050http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0050http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0055http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0055http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0055http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0060http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0060http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0060http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0060http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0065http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0065http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0070http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0070http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0075http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0075http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0075http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0080http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0080http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0080http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0080http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0080http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0085http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0085http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0085http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0085http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0090http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0090http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0090http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0090http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0090http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0090http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0095http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0095http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0095http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0095http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0095http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0100http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0100http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0100http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0100http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0100http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0105http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0105http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0105http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0110http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0110http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0110http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0110http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0115http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0115http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0115http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0115http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0120http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0120http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0120http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0120http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0120http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0120http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0125http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0125http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0125http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0125http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0125http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0125http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0125http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0125http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0125http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0130http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0130http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0130http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0130http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0130http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0130http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0135http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0135http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0135http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0135http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0140http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0140http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0140http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0140http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0145http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0145http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0145http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0145http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0145http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0145http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0145http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0145http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0145http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0145http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0140http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0140http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0140http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0140http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0135http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0135http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0135http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0135http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0130http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0130http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0130http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0130http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0125http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0125http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0125http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0125http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0125http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0120http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0120http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0120http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0120http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0115http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0115http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0115http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0115http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0110http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0110http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0110http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0110http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0105http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0105http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0105http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0105http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0100http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0100http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0100http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0100http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0100http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0095http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0095http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0095http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0095http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0095http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0090http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0090http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0090http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0090http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0085http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0085http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0085http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0085http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0080http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0080http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0080http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0075http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0075http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0075http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0070http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0070http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0065http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0065http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0060http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0060http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0060http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0060http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0055http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0055http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0055http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0050http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0050http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0045http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0045http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0045http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0045http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0040http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0040http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0035http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0035http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0035http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0030http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0030http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0030http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0030http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0025http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0025http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0025http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0025http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0025http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0020http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0020http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0015http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0015http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0010http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0010http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0010http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0010http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0005http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0005http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0005
  • 7/24/2019 Management of Cyanide Toxicity in Patients With Burns 2015 Burns

    7/7

    [30] Borron SW, Baud FJ, Megarbane B, Bismuth C.Hydroxocobalamin for severe acute cyanide poisoning byingestion or inhalation. Am J Emerg Med 2007;25(5):5518.

    [31] Fortin JL, Desmettre T, Manzon C, Judic-Peureux V,Peugeot-Mortier C, Giocanti JP, et al. Cyanide poisoning andcardiac disorders: 161 cases. J Emerg Med 2010;38(4):46776.

    [32] Uhl W, Nolting A, Golor G, Rost KL, Kovar A. Safety ofhydroxocobalamin in healthy volunteers in a randomized,

    placebo-controlled study. Clin Toxicol (Phila)2006;44(Suppl. 1):1728.

    [33] Thompson JP, Marrs TC. Hydroxocobalamin in cyanidepoisoning. Clin Toxicol (Phila) 2012;50(10):87585.

    [34] OBrien DJ, Walsh DW, Terriff CM, Hall AH. Empiricmanagement of cyanide toxicity associated with smokeinhalation. Prehosp Disaster Med 2011;26(5):37482.

    [35] Lawson-Smith P, Jansen EC, Hyldegaard O. Cyanideintoxication as part of smoke inhalation: a review ondiagnosis and treatment from the emergency perspective.Scand J Trauma Resusc Emerg Med 2011;19:14.

    [36] Hamel J. A review of acute cyanide poisoning with atreatment update. Crit Care Nurse 2011;31(1):7281.

    [37] Borron SW, Baud FJ. Antidotes for acute cyanide poisoning.Curr Pharm Biotechnol 2012;13(10):19408.

    [38] Hall AH, Saiers J, Baud F. Which cyanide antidote? Crit RevToxicol 2009;39(7):54152.

    [39] Reade MC, Davies SR, Morley PT, Dennett J, Jacobs IC.Review article: management of cyanide poisoning. EmergMed Australas 2012;24(3):22538.

    [40] Megarbane B, Delahaye A, Goldgran-Toledano D, Baud FJ.Antidotal treatment of cyanide poisoning. J Chin MedAssoc2003;66(4):193203.

    [41] Meredith TJ, Jacobsen D, Haines JA, Berger J-C, van HeijstANP. International program on chemical safety/commission of the European Communities evaluation ofantidotes series. Antidotes for poisoning by cyanide, vol. 2.Cambridge: Cambridge University Press; 1993.

    [42] Burrows GE. Cyanide intoxication in sheep; therapeutics.Vet Hum Toxicol 1981;23(1):228.

    [43] Renard C, Borron SW, Renaudeau C, Baud FJ. Sodiumthiosulfate for acute cyanide poisoning: study in a ratmodel. Ann Pharm Fr 2005;63(2):15461.

    [44] VeseyCJ, Krapez JR, Varley JG, Cole PV. The antidotal actionof thiosulfate following acute nitroprusside infusion indogs. Anesthesiology 1985;62:41521.

    [45] Breen PH, Isserles SA, Westley J, Roizen MF, Taitelman UZ.Effect of oxygen and sodium thiosulfate during combinedcarbon monoxide and cyanide poisoning. Toxicol ApplPharmacol 1995;134(2):22934.

    [46] Paulet G, Dassonville J. Value of dimethylaminophenol(DMAP) in the treatment of cyanide poisoning:experimental study. J Toxicol Clin Exp 1985;5:10511[French].

    [47] Barillo DJ. Diagnosis and treatment of cyanide toxicity. J

    Burn Care Res 2009;30(1):14852.

    [48]

    Hug E. Compt. rend. Soc de biol 1932;111:519.[49] HugE. Actionof sodiumnitrite with sodiumthiosulphate in

    the treatment of poisoning provoked by potassium cyanidein the rabbit. Rev Soc Argent Biol 1933;9:917 [Spanish].

    [50] Chen K, Rose C, Clowes G. Amyl nitrite and cyanidepoisoning. J Am Med Assoc 1933;100(24):19202.

    [51] Chen K, Rose C, Clowes G. Methylene blue, nitrites, andsodium thiosulphate against cyanide poisoning. Proc Soc

    Ex Bio Med 1933;31:2503.[52] Chen K, Rose C, Clowes G. Comparative values of several

    antidotes in cyanide poisoning. Am J Med Sci 1934;188:76781.

    [53] Hall AH, Kulig KW, Rumack BH. Suspected cyanidepoisoning in smoke inhalation: complications of sodiumnitrite therapy. J Toxicol Clin Exp 1989;9(1):39.

    [54] Ivankovich AD, Braverman B, Kanuru RP, Heyman HJ,Paulissian R. Cyanide antidotes and methods of theiradministration in dogs: a comparative study.Anesthesiology 1980;52(3):2106.

    [55] Hillman B, Bardhan KD, Bain JTB. The use of dicobaltedetate (Kelocyanor) in cyanide poisoning. Postgrad Med J1974;50:1714.

    [56] Naughton M. Acute cyanide poisoning. Anaesth Intensive

    Care 1974;2(4):3516.[57] National Poisons Informations Service. Dicobalt edetate

    (antidote); 2012, http://www.toxbase.org/General-Info/Antidotesdoses-and-sources/Dicobalt-edetate/ [accessed8.1.14].

    [58] College of Emergency Medicine and National PoisonsInformation Service. Guideline on Antidote Availability forEmergency Departments; 2013, http://secure.collemergencymed.ac.uk/code/document.asp?ID=7559 [accessed 8.1.14].

    [59] Centers for Disease Control and Prevention.Documentation for Immediately Dangerous To Life orHealth Concentrations (IDLHs): Hydrogen cyanide; 1994,http://www.cdc.gov/niosh/idlh/74908.html [accessed16.3.14].

    [60] Madrzykowski D, Bryner NP, Grosshandler WL, StroupDW.Fire spread through a room with polyurethane foam-covered walls. In: Interflam 2004. International InterflamConference, 10th Proceedings, Volume 2; 2004. p. 112738.

    [61] Davies JWL. Toxic chemicals versus lung tissue-an aspectof inhalation injury revisited. J Burn Care Rehabil1986;7:21322.

    [62] Burgess WA, Treitman RD, Gold A. Air contaminants instructural firefighting.National Technical InformationService Publication PB 299017 Springfield, VA: USDepartment of Commerce; 1979.

    [63] JacksonDM. The diagnosis of the depth of burning. Br J Surg1953;40:58896.

    [64] Guidotti T. Acute cyanide poisoning in prehospital care:new challenges, new tools for intervention. Prehosp

    Disaster Med 2006;21(2):s408.

    b ur ns 4 1 ( 20 15 ) 1 8 2424

    http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0150http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0150http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0150http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0150http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0150http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0155http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0155http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0155http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0160http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0160http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0160http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0160http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0165http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0165http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0170http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0170http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0170http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0175http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0175http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0175http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0175http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0175http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0175http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0180http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0180http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0185http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0185http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0190http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0190http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0195http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0195http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0195http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0200http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0200http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0200http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0200http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0200http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0200http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0200http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0200http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0200http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0205http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0205http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0205http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0205http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0205http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0210http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0210http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0215http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0215http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0215http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0220http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0220http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0220http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0225http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0225http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0225http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0225http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0230http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0230http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0230http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0230http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0235http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0235http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0240http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0245http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0245http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0245http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0245http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0245http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0250http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0250http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0255http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0255http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0255http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0260http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0260http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0260http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0265http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0265http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0265http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0270http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0270http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0270http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0270http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0275http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0275http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0275http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0280http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0280http://www.toxbase.org/General-Info/Antidotes---doses-and-sources/Dicobalt-edetate/http://www.toxbase.org/General-Info/Antidotes---doses-and-sources/Dicobalt-edetate/http://secure.collemergencymed.ac.uk/code/document.asp%3FID=7559http://secure.collemergencymed.ac.uk/code/document.asp%3FID=7559http://secure.collemergencymed.ac.uk/code/document.asp%3FID=7559http://www.cdc.gov/niosh/idlh/74908.htmlhttp://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0300http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0300http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0300http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0300http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0305http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0305http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0305http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0310http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0310http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0310http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0310http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0315http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0315http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0315http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0315http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0320http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0320http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0320http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0320http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0320http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0320http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0315http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0315http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0310http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0310http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0310http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0310http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0305http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0305http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0305http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0300http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0300http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0300http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0300http://www.cdc.gov/niosh/idlh/74908.htmlhttp://secure.collemergencymed.ac.uk/code/document.asp%3FID=7559http://secure.collemergencymed.ac.uk/code/document.asp%3FID=7559http://secure.collemergencymed.ac.uk/code/document.asp%3FID=7559http://www.toxbase.org/General-Info/Antidotes---doses-and-sources/Dicobalt-edetate/http://www.toxbase.org/General-Info/Antidotes---doses-and-sources/Dicobalt-edetate/http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0280http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0280http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0275http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0275http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0275http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0270http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0270http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0270http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0270http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0265http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0265http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0265http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0260http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0260http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0260http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0255http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0255http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0255http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0250http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0250http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0245http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0245http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0245http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0240http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0235http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0235http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0230http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0230http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0230http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0230http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0225http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0225http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0225http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0225http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0220http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0220http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0220http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0215http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0215http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0215http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0210http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0210http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0205http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0205http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0205http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0205http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0205http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0200http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0200http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0200http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0195http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0195http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0195http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0190http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0190http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0185http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0185http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0180http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0180http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0175http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0175http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0175http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0175http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0170http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0170http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0170http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0165http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0165http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0160http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0160http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0160http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0160http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0155http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0155http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0155http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0150http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0150http://refhub.elsevier.com/S0305-4179(14)00210-1/sbref0150