magnetic & gyro compass

Upload: ibrahem-al-khawaja

Post on 07-Jul-2018

274 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/18/2019 Magnetic & Gyro Compass

    1/19

    Magnetic & Gyro Compass / Chief Mate

    Question (1):

    At Gibraltar, H= 0.26, Z=+ 0.32, the deiation due to:

    (1) !er"anent "a#netis" $as %& ', (2) due to ertial sot iron $as 6& *, (3) due

    to horiontal sot iron $as & '. -alulate the deiation due to eah ause at

    elbourne $here H= 0.22, Z= / 0.%6, $hat inerene an be dra$n $ith res!et to

    (2) aboe $hen loated at or near the "a#neti euator

    olution:

    1) To calculate the deviation caused by permanent magnetism:

    Where δ 1   and 1 related Gibraltar! and δ 2   and " related to Melbourne#

    δ 1

    δ 2=

     H  2

     H  1  δ 2=δ 1×

     H  1

     H  2  δ 2=5×

    0.26

    0.22

    δ 2=5.9⁰W 

     ") To calculate the deviation caused by vertical soft iron since the varies directly asZ 

     H 

    Where δ 1  ! 1 and $1 related Gibraltar! and δ 2  !" and $" related to Melbourne#

    δ 2=δ 1× H  1

    Z 1×

      Z 2

     H  2  δ 2=6×

     0.26

    0.32×0.56

    0.22  δ 2=12.4⁰W   

    Question (2):

    4 alta (H=0.26) oe5ient !er"anent ( = / 7&). -alulate the deiation on: (1)

    036& -, (2) 160& -, (3) 328& -.-alulate also the deiation on 206& - at (a) 9reeto$n (H = 0.30) (b) Halia, ;..

    (H= 0.16) and () o4 ai#on (H= 0.

  • 8/18/2019 Magnetic & Gyro Compass

    2/19

    Magnetic & Gyro Compass / Chief Mate

    ')  δ 2=9×

     sin 33

    sin 90  δ 2=4.90⁰ E

    %") To calculate the deviation heading "( C at: %a) . #'! %b) . #1(! %c) . #

    Where δ 1  !1 and θ1  related to the coe+cient! at Malta and , C or "* C

    respectively! and δ 2  ! " and θ2  are the re-uired deviation! at re-uired position! and

    the heading respectively#

     Thus!

    δ 1

    δ 2=

     H  2

     H  1× sin θ1

    sinθ2  δ 2=δ 1×

     H  1

     H  2× sin θ2

    sinθ1

    a) 0reetonδ 2=9×

     0.26

    0.30× sin 26

    sin 90  δ 2=3.42⁰ E

    b)alifa2! 3#4δ 2=9×

     0.26

    0.16×sin 26

    sin 90  δ 2=6.41⁰ E

    c) 4aigonδ 2=9×

     0.26

    0.40×sin 26

    sin 90  δ 2=2.56⁰ E  

    Question (3):

    he deiation due to !er"anent "a#netis" on a shi! $hen headin# north b>

    o"!ass is 8 * at a !osition $here (H = 0.1), (Z = +0.

  • 8/18/2019 Magnetic & Gyro Compass

    3/19

    Magnetic & Gyro Compass / Chief Mate

    δ 1

    δ 2=

     H  2

     H  1× cosθ1

    cosθ2  δ 2=δ 1×

     H  1

     H  2× cosθ2

    cosθ1

    Where δ 1  !1 and θ1  related to the initial condition! and δ 2  ! " and θ2  related to

    5nal condition#

    a) δ 2=7× 0.18

    0.14× cos 32

    cos0  δ 2=7.630W 

    b)δ 2=7×

    0.18

    0.14×cos 48

    cos0  δ 2=6.020 E  

    Question (

  • 8/18/2019 Magnetic & Gyro Compass

    4/19

    Magnetic & Gyro Compass / Chief Mate

    ") To calculate the deviation on heading "" C:

    δ 1

    δ 2=

    cosθ1

    cosθ2  δ 2=δ 1×

     cosθ2

    cosθ1  

    Where δ 1   and θ1  related to the values at the 5rst position! and δ 2  and θ2  related

    to the values of the second position#

     δ 2=δ 1×

     cosθ2

    cosθ1  δ 2=9×

     cos22

    cos51  δ 2=13.260 E  

    ') To calculate the deviation due to the changes of course and latitude:

     δ 1

    δ 2=

     H  2

     H  1×cosθ1

    cosθ2  δ 2=δ 1×

     H  1

     H  2× cosθ2

    cosθ1

    Where δ 1 ! 1 and θ1  related to the values at the 5rst position! and δ 2 ! " and

    θ2  related to the values of the second position#

    δ 2=δ 1× H  1

     H  2× cosθ2

    cosθ1  δ 2=9×

    0.32

    0.15×cos73

    cos51  δ 2=8.920W 

    Question (%):

    Anal>e the ollo$in# list o deiations into the a!!roi"ate oe5ients A, , -, ?

    and * and -alulate the deiation on the ourses 112& - and 272& -.

    H?G ?*@ A - ? *; 6 7 86 86 86;* 1" 7 81" 81"*

    * 1* W 91* 91* 1" W 91" 91" 91"

    ' * 7 8* 8*' 1" 7 81" 81" 81"

    ;' 7 8 8

    Coff . A=δ ( N + NE+ E+SE+S+SW +W + NW )

    8  Coff . A=+7.5 E

    Coff . B=δ ( E−W )

    2  Coff .B=−6W 

  • 8/18/2019 Magnetic & Gyro Compass

    5/19

    Magnetic & Gyro Compass / Chief Mate

    Coff .C =δ ( N −S)

    2  Coff .C =+10 E

    Coff . D=δ ( NE+SW )−( NW +SE)

    4  Coff .D=+7.75 E  

    Coff . E=δ ( N +S)−( E+W )

    4  Coff .E=−4W   

  • 8/18/2019 Magnetic & Gyro Compass

    6/19

    Magnetic & Gyro Compass / Chief Mate

    1) ;t course 11"

    δ = A+B sinco .+C cos co .+ D sin2co .+ E cos2co .

    δ =(7.5)+(−6)sin1120+(10)cos1120+(7.75)sin 2240+(−4 )cos224⁰  

    δ =−4.3W   

    ") ;t course ","

    δ = A+B sin co .+C cos co .+ D sin 2co .+ E cos2co .  

    δ =(7.5)+(−6)sin 2920+(10)cos2920+(7.75)sin2240+(−4)cos224⁰  

    δ =+14.3 E  

    Question (6):

    9ro" >our stud> o "a#neti o"!ass e!lain the ollo$in#:

    1) the nature o oe5ient .

    2) -ause o oe5ient .

    3) *4et o han#in# latitude and ourse.

  • 8/18/2019 Magnetic & Gyro Compass

    7/19

    Magnetic & Gyro Compass / Chief Mate

    b)

  • 8/18/2019 Magnetic & Gyro Compass

    8/19

    Magnetic & Gyro Compass / Chief Mate

    Question (8):

    'hen headin#

  • 8/18/2019 Magnetic & Gyro Compass

    9/19

    Magnetic & Gyro Compass / Chief Mate

    3ote: ;t position %") $ is negative so that the polarity in the ship=s vertical soft iron is

    reversed ith the change from 3orthern to 4outhern hemisphere and the sign of induced A is

    also reversed#

    ;t >osition %") total coe+cient A . >ermanent A 8

  • 8/18/2019 Magnetic & Gyro Compass

    10/19

    Magnetic & Gyro Compass / Chief Mate

    Question (7):

    E the deiation due to hard iron in a shi! is 10 ', $hen headin# 070 (-), at a

    !osition (1) $here H= 20 a"!eres !er "eter (AC"), Dnd the deiation due to the

    sa"e iron:

    (a) $hen on the sa"e headin# at a !osition (2) $here H= 16 AC".

    (b) $hen headin# 31% (-) at a !osition $here H= 30 AC".

     The deviation due to this iron comprise coe+cient permanent A and since Westerly deviationis caused on an 7asterly course it is named negative# The deviation varies inversely as hard

    directly as the 4in Co#

    olution:

    a) Comparing the deviation at position %1) & %")

    δ 2

    δ 1=

     H  1

     H  2× sin θ2

    sinθ1  δ  2

    −10=

    20

    16× sin 90

    sin 90  δ 2=−10×

    20

    16× 1

    1  

    δ 2=−12.5 °   or %1"#D W)

    a) Comparing the deviation at position %1) & %')

    δ 3

    δ 1=

     H 1

     H  3× sinθ3

    sinθ1  δ 3

    −10=

    20

    30×sin315

    sin 90

    δ 3=−10×20

    30×−0.707

    1  

    δ 3=4.7 °   or %#*D 7)

    1

  • 8/18/2019 Magnetic & Gyro Compass

    11/19

    Magnetic & Gyro Compass / Chief Mate

    Question (10):

    9ro" belo$ table obtain a list o deiations, (1) anal>se the" into the a!!roi"ate

    oe5ients and, i the s$in# tooF !lae on the "a#neti euator, (2) state ho$ the

    arious orretors should be adusted. Et $as disoered that the ai"uth "irror

    $ith $hih the bearin#s $ere taFen introdued oe5ient a!!arent A=/1.

    Head ; ;* * * ' ' ;'

    rue earin# 107 107.% 110 111 111 111.% 112 11<-o"!ass

    earin#110.% 112.% 111.% 111.% 118.% 12

  • 8/18/2019 Magnetic & Gyro Compass

    12/19

    Magnetic & Gyro Compass / Chief Mate

    %E) The soft iron spheres are over compensating and should be moved further from the

    compass to e-ual distances each side in order to change the deviation 'D on any one of the

    four intercardinal compass heading#

    %7) Aecause coe+cient 7 is small and unliKely to embarrass the navigator! it is! in this case!

     usti5ably ignored#

    1"

  • 8/18/2019 Magnetic & Gyro Compass

    13/19

    Magnetic & Gyro Compass / Chief Mate

    Question (11):

    *!lain ?a"!in# *rror

     This error is present in a compass hich is damped in tilt# ; compass damped in tilt alays

    settles east of the meridian and above the horiHon in 3! and vice9versa#

  • 8/18/2019 Magnetic & Gyro Compass

    14/19

    Magnetic & Gyro Compass / Chief Mate

    Question (1 ontrol in #>roso!e $ith sFethin# the e!lanation

     The gyro spin a2is can be made meridian9seeKing by the use of a pendulum acting under the

    inNuence of earth gravity# The pendulum causes a force to act upon the gyro assembly

    causing it to process# >recession! the second fundamental property of a gyroscope! enables

    the instrument to become north9seeKing# ;s the pendulum sings toards the center of 

    gravity! a donard force is applied to the heel a2le! hich causes horiHontal precession to

    occur#

    Question (1%):'hat is the e4et o o! hea> in #>roso!e and used orGyrocompasses to be e@ectively top9eighted and use an anticlocKise spinning rotor# Autadding a eight to the top of the rotor casing produces a number of Ondesirable e@ects#

     These e@ects become pronounced hen a ship is subected to severe movement in heavyeather# To counteract unanted e@ects! an PapparentP top eighting of the compass isachieved by the use of a mercury Nuid ballistic contained in to reservoirs or ballistic pots#

    Question (16):

    'hat is the use o botto" hea> in #>ro so!e ("aFe >our e!lanations b>sFethin#)

     This action causes the north end of the spin a2is! of a gravity9controlled undamped gyro! todescribe an ellipse about the meridian# Aecause it is un damped! the gyro ill not settle onthe meridian# 4hos this action for a gyro ith a clocKise rotating spinner# The ellipseproduced ill be anticlocKise due to the constant e2ternal inNuences acting upon the gyro#

     The e2tent of the ellipse ill! hoever! vary depending upon the initial displacement of thegyro spin a2is from the meridian and from the earthPs horiHontal# The term Pnorth9seeKingP isgiven to the undamped gravity controlled gyro mechanism because the northeast end of thespin a2is describes an ellipse around the 3orth >ole but never settles# Bbviously such a gyrois not suitable for use as a precise north reference compass aid

    Question (18):*!lain $ith sFethin# in brie the !rourer to "aFe #>roso!e north seeFin#Ay top or bottom heavy# Aottom9heavy control and a clocKise rotating gyro# top heavysystem ith an anticlocKise rotating spinner#With bottom9heavy control! tilting upards of the south end produces a donard force onthe other end! hich! for this direction of spinner rotation! produces a precession of the northend to the est#

  • 8/18/2019 Magnetic & Gyro Compass

    15/19

    Magnetic & Gyro Compass / Chief Mate

    1

  • 8/18/2019 Magnetic & Gyro Compass

    16/19

    Magnetic & Gyro Compass / Chief Mate

    Question (1):*!lain the da"!in# settlin# error in north I outh he"is!here b> sFethin# onl>

    Question (17):

    *!lain the ballisti deJetion error and auses o it

     This condition arising from changes in speed or course hereby an acceleration or

    deceleration force is set up hich alays acts on the pendulous mass of the gyro as ell as

    on the damping Nuid# This force no matter ho small! acting on the pendulous mass! ill

    cause the gyro to precess#

    ?esults from changes in shipPs south north component of velocity and speed changes#

    Question (20):

    9ro" >our stud> o #>roso!e desribe the ollo$in#:

    1# #>roso!e inertia. (Ki#idit> in the s!ae:( it is the ability of a free gyroscope to

    remain ith its spin a2is pointing in the same 52ed direction in space regardless of ho

    the gimbal support system may"# ?rit: 9 is the direction in hich spin a2is points relative to the true north#'# ilt: /is the angle of elevation or de9prerecession of the spin a2is above or belo the

    horiHontal## Breession: 9 is the movement at right angles as a reaction of applying a tor-ue to a

    spin a2is at right angle#

  • 8/18/2019 Magnetic & Gyro Compass

    17/19

    Magnetic & Gyro Compass / Chief Mate

    Question (21):'hat do >ou understand ro" the ite"s

    •  Tilting: 9 is the rate of change of the tilt of the spin a2is# Tg . 1 cos lat# Q sin ;H#• Erifting is the rate of change of the drift %;H#) of the spin a2is# Eg . 1 sin lat#

    Question (22):

    *!lain ho$ a ree #>roso!e an be "ade north seeFin# b> the use o #rait>

    ontrol

    Ay placing top/heavy eight on top on the rotor casing! such that hen the spin a2is is

    horiHontal the vertical through the center of gravity of the eight passes through the center

    of the rotor#

    g This achieved by means of gravity control in all lats# %394)! the north end of the gyro spin

    a2is ill tilt up if it is to east of the meridian and fall if it is to the est of the meridian this tiltcauses the precession in the re-uired direction by top eight# %the south end rotating

    anticlocKise! otherise ill be bottom eight)

    1*

  • 8/18/2019 Magnetic & Gyro Compass

    18/19

    Magnetic & Gyro Compass / Chief Mate

    Question (23):

    tate the e4et o da"!in# to "aFe #>roso!e as #>ro o"!ass $ith sFeth as

    need to e!lain

    Eamping! in order to respond to the drift! tilt and precession hich maKes it north seeKing!

    the suspension of gyroscope must be virtually frictionless and a gravity controlled gyroscope!

    ould then oscillate inde5nitely on either side of the meridian#

    Eamping in tilt means that hen the north seeKing end of the gyroscope a2is is tilted a

    damping tor-ue is applied in a horiHontal plane#

    Question (2ro o"!ass $hen steerin#

    160 () at s!eed 21.2 Fts. En lat

  • 8/18/2019 Magnetic & Gyro Compass

    19/19

    Magnetic & Gyro Compass / Chief Mate

    . 9 1#*' o

     To calculate hen altering course

     To calculate hen change speed

    Bn 4outherly courses error is o // Bn 3ortherly courses error is high

    Question (2%):

    En $hat lat. 'ill the ourse, lat and s!eed error not eeed % $hen stea"in# at 20

    Lts.

      Cos 16 or . one

    1,