m exponent ok plan

Upload: ignacio-fernandez-paba

Post on 04-Jun-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 m Exponent Ok Plan

    1/18

    WWW.GeoNeurale.Com January2012 2012RobertEBallay,LLC

    The essence of carbonate

    petrophysics is (often) pore system

    heterogeneity, as compared to clay

    conductivity issues for clastics

    The foundation of theLucia

    petrophysical classification is the

    concept thatpore-size distribution

    controls permeability and

    saturation

    Thefocus of this classification is

    on petrophysical properties and

    not genesis

    Petrophysical classifications focus on contemporary rock fabrics that include

    depositional and diagenetic textures

    To determine the relationships between rock fabric and petrophysical parameters, one

    mustdefine and classify pore space as it exists today in terms of petrophysical

    properties

    Addition of vuggy pore space alters the manner in which the pore space is connected

    Courtesy of Jerry Lucia

    Figure 1

    a :Rock Types 1 and 2 correspond to

    intergranular grainstone

    Limestone and dolostone

    b :Rock Type 3 issucrosic dolostone with

    intercrystalline porosity

    c :Rock Types 4 and 5 correspond tomoldic limestone and dolostone

    d :Rock Type 6 ismudstones and chalks

    e :Rock Type 7 is thecombination of

    matrix and moldic / vuggyporosity, ie vuggy

    packstone / wackestone

    f :Rock Type 8 isfracture / fissure

    porosity

    Cementation Exponents in ME Carbonate Reservoirs. J W Focke and D Munn, SPE Formation Evaluat ion, June 1987

    Illustrative, generic thin sections

    Porosity is black

    Figure 2

    ThemExponentinCarbonatePetrophysics

    RE(Gene)Ballay,PhD

    www.GeoNeurale.com

    In1952ArchiestatedIndiscussingthepetrophysicsoflimestones,itisnecessarytofirst

    classifytheminamannertoportrayasmuchaspossibletheessentialporecharacteristicsofa

    reservoir.Theapplicationofpetrophysicalrelationshipsinlimestonescanbemuchmore

    difficultthanforsandstonesbecauseoftheheterogeneity.Thisisduemainlytothevariation

    ofporesizedistribution.

    TheattributewithinArchiesequation

    whichrepresentstheporesystem

    tortuosityisthemexponent.

    Complicationsincarbonateformation

    evaluationcanariseduetomixed

    mineralogys(whichaffectsthe

    estimationoftotalporosity)and

    wettability(Sweeny&Jennings)/surface

    roughness(Diederix)whichdrivethe

    nexponent,butfromoneperspective

    themexponentcanbesaidtooften

    representtheessenceofcarbonate

    petrophysics.

    Ascomparedtoclasticpetrophysics,

    whichistypicallycompromisedbyclayconductivityissues,carbonatepetrophysicsissueswillin

    manycasesrevolvearoundpropercharacterizationoftheporesystem,whichreflectsboth

    depositionalanddiageneticproperties.JerryLuciaadvisesustofocusonpetrophysical

    properties,notgenesis,andwethusrealizethatpetrophysicalzonesmaybegenuinely

    differentthangeologicalzones:Figure1.

    Whilethereareseveralcarbonateclassificationsystemsinthepublicdomain(Lucia,Lny,

    etc),FockeandMunnsworkis

    particularlycompleteinthatit

    illustrateseachofthe

    following:Figure2.

    Poregeometryperthin

    sections.

    Laboratorym

    measurements

    correlatedwiththin

    sectiondescriptions.

    Wirelinemethodology

    fordeterminingmin

    thewellbore,across

  • 8/13/2019 m Exponent Ok Plan

    2/18

    WWW.GeoNeurale.Com January2012 2012RobertEBallay,LLC

    Interparticle vs moldic porosity and Sw

    J W Focke and D Munn: Cementation Exponents in Middle Eastern Carbonate Reservoirs, SPE Formation Evaluation 2

    (1987) : 155-167

    See Also A M Borai: A New Correlation for the Cementation Factor in Low-Porosity Carbonates, SPE Formation Evaluation

    2 (1987): 495-499

    Schlumberger Technical Review, Volume 36 Number 3

    Saturation Variations

    0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    1.5 1.7 1.9 2.1 2.3 2.5

    Saturation Exponent

    WaterSaturation

    Boxing in the uncertainty for specific criteria

    = 0.2, Rw@FT = 0.1 ohm-m, R = 50 ohm-mAt each value of 'n',a range (1.5 - 4.0) of 'm'values are displayed in steps of 0.25

    m = 3.50

    m = 3.00

    m = 2.50

    m = 2.00

    m = 1.75

    Pore Geometry Effects on Sw

    Figure 3

    Dots, ambient

    pressure

    Open circles,

    reservoir pressure

    1.9 < n < 2.1

    Middle East Carbonate

    Sw calculated with both constant and variable exponent

    Variable (high m) exponent evaluationconsistent with water test in lower zone

    Schlumberger Technical Review

    Seeking the Saturation Solution M.

    Watfa: Middle East Well Evaluation

    Review No. 3 (1987)

    Where m ~ 2.0 2.5,

    calculations and test agree

    Across the water test m

    approaches 3.5

    Failure to recognize this

    yields Sw(Actual) ~Sw(m=2) / 0.25 or

    Sw(Actual) ~ 4 * Sw(m=2)

    Sw calculates goodbut Test is water!!

    Figure 4

    boththewaterlegandhydrocarboncolumn.

    Comparisonofwirelinedeterminedmandlabdeterminedm.

    FockeandMunnfindthat

    thedifferencebetween

    aninter

    particle

    and

    vuggyporesystemcanbe

    aslargeasanmof~2

    versusanmof~4,

    correspondingtoanSw

    uncertaintyof~20%

    versus~75%:Figure3.

    Theconsequencescanbe

    devastating:aninterval

    ofhighresistivity

    (apparentlypay)

    may

    be

    nothingmorethan

    relativelytortuous,

    waterfilledporesystem.

    Oneapproachtothis

    uncertaintyistocombine

    anonArchietool(suchasthedielectric)withaconventional(shallowreading,sincethe

    dielectricisalsoshallow)resistivitymeasurement,andwiththismultiplicityofmeasurements

    deducewhatthefootbyfootmisinthewellbore:Figure4.

    Anotheroptionmightbe

    topartition

    the

    pore

    systemwithmoderntools

    (Gomaaetal,

    Ramamoorthy,etal,etc)

    andtothen

    independentlyestimate

    thecorrespondingfoot

    byfootmwithsome

    kindofelectricalcircuit

    model(Aguilera,Wang&

    Lucia,etc).

    Anattractionofa

    mathematical

    representationofthem

    exponentis thatwhat

    ifcalculationscanbe

    done,toascertainthe

  • 8/13/2019 m Exponent Ok Plan

    3/18

    WWW.GeoNeurale.Com January2012 2012RobertEBallay,LLC

    Comparison of Empirical Models for Calculating the Vuggy Porosity and

    Cementation Exponent of Carbonates from Log Responses. Fred P. Wang and F.

    Jerry Lucia

    In the graphic at right, cementation exponents calculated

    by theArchie equation (thick black line - mres ) are

    compared with those from SPI/Nugent, Nurmi

    /Asquith, Lucia, modified Myers, and Dual Porosity.

    Cementation Exponent Models vs Wireline m

    m(Dual Porosity) ~ m(Archie)

    Figure 5

    0.00

    0.10

    0.20

    0.30

    0.40

    0.50

    0 0.1 0.2 0.3 0.4

    RelativeUncertainty

    Porosity

    RelativeContribution ToSwUncertaintya

    Rw

    Phi

    m

    n

    Rt

    Below: Illustrative (Chen & Fang)Best

    Estimate of each parameter, with

    corresponding individual uncertainty,

    and associated relative uncertainty on

    Sw(Archie).

    Right:Relative impact on Sw(Archie)

    uncertainty of m & n,across a range

    of porosity values, for afixed Phi

    uncertainty.

    Attribute Uncertainties Specified Individually

    Light Green Cells require User Specification

    Light Blue Cells are calculated resultsIndividual Best Relative Uncertainty

    Attribute Uncertainty Estimate On Sw(Archie)

    a 0.0% 1.00 0.0000

    Rw 4.4% 0.02 0.0019

    Phi 15.0% 0.20 0.0900

    m 10.0% 2.00 0.1036

    n 5.0% 2.00 0.0480

    Rt 1.0% 40.00 0.0001

    Sw 11%

    Sw^n 1%

    Sw^n=0.367 is an inflection point

    After C. Chen and J. H. Fang.

    Sensitivity Analysis of the Parameters in Archies Water Saturation Equation. The Log Analyst. Sept Oct 1986

    Identifying theBiggest Bang for the Buck, in

    Improved Sw Estimation

    Figure 6

    rangeofestimates

    correspondingtoarange

    ofinputuncertainties

    (uncertaintyin,for

    example,theporosity

    partition).

    Regardlessofwhat

    approachisusedto

    estimatethewellbore

    m,duediligence

    requiresthatatevery

    opportunitytheresultbe

    comparedagainstthe

    inferredArchieestimate

    inthewaterleg[where

    Sw=1and

    m

    =

    log(Rw/Ro)/Log(Phi)]:

    Figure5.

    Weshouldfurthermorenotlosesightofthefactthattheremaybeintervals,particularlyinthe

    vicinityofthetransitionzone,acrosswhichtheArchiecalculationissimplynotvalid(Griffithset

    al).

    WheretoFocusAlthoughthemexponentmay(logically)bethefirstissuethatcomestomindincarbonate

    evaluation,itdoesnotalwaysdominatetheuncertaintyinSwestimates.Therearetwobasic

    waysofidentifyingwherethefocusshouldbe:Figure6.

    Takethevarious

    partialderivatives

    ofArchies

    equation,and

    compare

    magnitudesfor

    locallyspecific

    valuesand

    uncertainties.

    MonteCarlo

    simulation.

    Thetwooptions

    complementoneanother

    inthatthederivativesare

    easytocodeintoa

    spreadsheetor

  • 8/13/2019 m Exponent Ok Plan

    4/18

    WWW.GeoNeurale.Com January2012 2012RobertEBallay,LLC

    0.00

    0.10

    0.20

    0.30

    0.40

    0.50

    0 0.1 0.2 0.3 0.4

    RelativeUncertainty

    Porosity

    RelativeContribution ToSwUncertaintya

    Rw

    Phi

    m

    n

    Rt

    At 20 pu, formation evaluation should focus on

    improved porosity and m estimates, with n of

    relatively less importance.

    If porosity rises to 30 pu, however, improved

    porosity estimates become more important with m

    and n having similar, and less, impact.

    As porosity drops to 10 pu, it is the pore

    connectivity (m) that begins to dominate the

    accuracy.

    The Porosity Dependence

    The relative importance of m and n depend not only upon their specific

    uncertainty, but also upon the porosity of the interval in question; there is a link

    Figure 7

    After C. Chen and J. H. Fang.

    Sensitivity Analysis of the Parameters in Archies Water Saturation Equation. The Log Analyst. Sept Oct 1986

    0.00

    0.10

    0.20

    0.30

    0.40

    0.50

    0 0.1 0.2 0.3 0.4

    RelativeUncertainty

    Porosity

    RelativeContribution ToSwUncertaintya

    Rw

    Phi

    m

    n

    Rt

    Light Green Cells require User Specification

    Light Blue Cells are calculated results

    Individual Best Relative Un

    Attribute Uncertainty Estimate On Sw(Arc

    a 0.0% 1.00 0.0000Rw 4.4% 0.02 0.0019

    Phi 15.0% 0.20 0.0900

    m 10.0% 2.00 0.1036

    n 5.0% 2.00 0.0480

    Rt 1.0% 40.00 0.0001

    Sw 11%

    Sw^n 1%

    0.367 is a logarithmic inflection point

    0.00

    0.10

    0.20

    0.30

    0.40

    0.50

    0 0.1 0.2 0.3 0.4

    RelativeUncertain

    ty

    Porosity

    RelativeContribution ToSwUncertaintya

    Rw

    Phi

    m

    n

    RtLight Green Cells require User Specification

    Light Blue Cells are calculated results

    Individual Best Relative Un

    Attribute Uncertainty Estimate On Sw(Arc

    a 0.0% 1.00 0.0000

    Rw 4.4% 0.20 0.0019

    Phi 15.0% 0.20 0.0900

    m 10.0% 2.00 0.1036

    n 5.0% 2.00 0.0108

    Rt 1.0% 40.00 0.0001

    Sw 35%

    Sw^n 13%

    0.367 is a logarithmic inflection point

    If the water were fresher, sayRw = 0.2

    instead of 0.02, n diminishes in

    importance as compared to both the

    amount of porosity, and its connectivity

    (m).

    After C. Chen and J. H.

    Fang. Sensitivity Analysis

    of the Parameters in

    Archies Water Saturation

    Equation. The Log Analyst.

    Sept Oct 1986

    The Rw Dependence

    The Rw Dependence

    Figure 8

    petrophysicals/wpackage(forfootbyfootdisplay),whiletheMonteCarlogivesinsightinto

    theup anddownsides(with95%confidence,theuncertaintywillbelessthanhighlow

    calculations).

    UsingChenandFangsparameterstoillustratethedifferentialapproach(Figure6)wenote

    thatasporosityvaries,therelativeimportanceofmandnalsovaries.Thatis,the

    importanceof

    asingle

    attribute,

    m

    for

    example,

    is

    linked

    to

    the

    magnitude

    of

    other

    attributes.

    Inthecaseathand,a20

    puformationevaluation

    shouldfocuson

    improvedporosityand

    mestimates,withnof

    relativelyless

    importance.Asporosity

    dropsto10pu,thepore

    connectivity(m)

    begins

    todominatethe

    accuracy:Figure7.

    Thementalimagethat

    emergesisthatasporositydecreases,itsconnectivity(orefficiency)becomesincreasingly

    important.

    Weretheformationwaterresistivitytochange,itsquitepossiblethatthefocusshouldalso

    change:Figure8.

    Insummary,each

    situationshould

    be

    evaluatedwithitslocally

    specificparametersand

    uncertainties,andour

    focus(andbudget)applied

    accordingly.

  • 8/13/2019 m Exponent Ok Plan

    5/18

    WWW.GeoNeurale.Com January2012 2012RobertEBallay,LLC

    Generalized slope-intercept straight line equation

    y = m * x + b

    Log(FF) = - m * Log( ) + b

    At = 100 % , Log () = Log(1) = 0LeavingLog(FF) = Log(1) = 0 b = 0

    to give Log(FF) = - m * Log( )

    At = 10 % , FF = 100

    Log(100) = 2.0 = - m * Log (0.1) = m

    to givem = 2.0

    1

    Schlumberger Technical Review, Volume 36 Number 3

    G E Archie: The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics. Petroleum Transactions

    of the AIME 146 (1942): 54-62.

    The Key to working with the Log-Log displays is to

    think in terms of decadesand take logarithms

    when working with numerical values

    Figure 9

    mandCarbonatePoreSystemsArchiemeasuredtheporosity,permeabilityandresistivityofbrinesaturatedcarbonateand

    nonshalysandsamples,acrossarangeofbrinesalinities,toobservealinearrelation

    betweenRo(brinesaturatedsampleresistivity)andRw(brineresistivity).

    ThisresistivityratioisknownastheFormationFactor,where

    FF=R(sample)/R(brine)=1/m

    Archiecommentedthatmwasabout1.3inunconsolidatedrockandincreasedasthe

    cementationincreased.Atypicalformationstartingpointvalueformis2.0.

    ItwasHubertGuyodwhogaveusthetermcementationexponent,andwhoincidentally,also

    suggestedtheoriginalnameoftheSPWLAJournal(TheLogAnalyst).

    Themexponenttypicallyinvolvesaloglogdisplayofthebasicdata,andassuchisless

    intuitivethanasimplelineardisplay.Semilogandloglogdisplaysarecommoninmany

    petrophysicalendeavors(phiperm,etc),however,anditsusefultobeabletodrawourown

    linethrough

    the

    data

    and

    deduce

    the

    corresponding

    exponent.

    The

    Key

    to

    working

    with

    the

    LogLogdisplaysisto

    thinkintermsof

    decadesandtake

    logarithmswhen

    workingwith

    numericalvalues.

    Sketchingourline

    throughArchies1942

    dataanddrawingupon

    theslope

    intercept

    formulationofalinear

    relation,revealsthat

    m~2.0isindeeda

    reasonablestarting

    pointwiththatdata

    set:Figure9.

    WhileitwasMrGuyod

    whogaveusthe

    terminology

    cementationexponent,

    it

    appears

    that

    we

    derive

    the

    m

    nomenclature

    from

    the

    mathematiciansslopeinterceptrepresentationofastraightline,whereintheslopeisdenoted

    bym:y=m*x+b.

    Lookingaheadjustabit,totheResistivityIndex(incontrasttotheFormationFactor),itwould

    furtherseemthatournnomenclaturemayhavearisenalphabetically,sincenfollowsm.

    Interestinglyfromahistoricalperspective,thiskindofrelationshiphadbeenpostulatedearlier

    bySundberg,butwithoutthesupportingdata.

  • 8/13/2019 m Exponent Ok Plan

    6/18

    WWW.GeoNeurale.Com January2012 2012RobertEBallay,LLC

    Archies 1947 Data - Sandstone and Limestone

    G E Archie: Electrical Resistivity as an Aid in Core Analysis Interpretation, AAPG Bulletin 31 (1947): 350-366

    Schlumberger Technical Review, Volume 36 Number 3

    Suggested to Archie thatpermeability (molecular fluid

    flow) and resistivity (ionic movement) were different

    Formation Factor (Rformation / Rbrine )

    Figure 10 Conceptually,giventhat

    bothrepresentaflow,

    onemightexpecta

    strongerrelationship

    betweenresistivityand

    permeability,as

    comparedtoresistivity

    andporosity.Archie

    addressedthisby

    plottinghis

    measurementsboth

    ways:Figure10.

    Perhapssurprisingly,the

    variousFormation

    Factormeasurements

    convergemuch

    better

    whendisplayedagainst

    porosity,thanagainst

    permeability,promptingArchietosuggestthatmolecularfluidflow(permeability)andionic

    motion(current)weredifferent.ThosewhohaveworkedbothIG/IXandchalksystemsare

    alreadyawareofthis,havingnoticedthatthemforthetwoverydifferentpermeabilitiescan

    bothbeabout2.

    Verweretalhaveperformedadigitalimageanalysisofthinsectionsrepresentingcarbonate

    plugsuponwhichresistivitymeasurementsweremade.Threeattributeswererecognizedas

    playinganimportantrole.

    Perimeterover

    area:

    twodimensional

    equivalent

    to

    the

    pore

    surface

    /pore

    volume

    ratio.

    Dominantporesize:theupperboundaryofporesizeswithwhich50%oftheporosityon

    thethinsectioniscomposed.

    Microporosity:calculatedasthedifferencebetweentheobservedmacroporosityinDIA

    andthemeasuredporosityfromtheplugsample.

    Theirmeasurements,nicelyillustratedwithaccompanyingthinsections,demonstratethatin

    additiontoourintuitiveexpectations,

    sampleswith

    high

    resistivity

    can

    have

    high

    permeability,

    sampleswithlowpermeabilitycanhavea(relatively)lowmexponent.

    AsArchiepointedoutin1952,carbonateporesystemsmaybequitevariable,causinganm=

    2calculationtobenonrepresentative.WyllieandGregoryboundedthemexponentfora

    rangeofbeadpacksconsistingofunconsolidatedandcementedspheres,viachemicalflushes,

    andfoundtherelationbetweenformationfactorandporositycouldinvolveanadditional

    parameter,C,whichdifferedfromunity.

  • 8/13/2019 m Exponent Ok Plan

    7/18

    WWW.GeoNeurale.Com January2012 2012RobertEBallay,LLC

    Wyllie and Gregory constructedbeadpacks with varying degrees of

    cementation

    The baseline represents a formation of

    unconsolidated spheres

    This dataprompted them to propose the

    relation

    FF = C / m

    C was aformation dependent constant

    m ~ 1 for unconsolidated spheres

    m ~ 4 for cemented bead pack

    M R Wyllie and A R Gregory: Formation Factors of

    Unconsolidated Porous Media: Influence of Particle Shape

    and Effect of Cementation, Petroleum Trans of the AIME

    (1953): 103-110.

    Schlumberger Technical Review, Volume 36 Number 3

    Figure 11Archie commented that m was about 1.3 in

    unconsolidated sandandbecame higher as

    cementation increased

    Cementation Exponents in Middle Eastern Carbonate Reservoir.

    J W Focke and D Munn, SPE Form Evaluation, June 1987

    Geological descriptions of hundreds of

    samples reveal asystematic relation between

    Rock Type and Archies m exponent

    Rock with a more tortuous and/or poorly

    interconnected porosity (moldic) display well-

    defined trends of increasing m with

    increasing porosity

    The additionalmoldic porosity is less

    effective at electrical conduction

    In some rock m is found to rise from 2

    @ 5 pu, to 5.4 @ 35 pu

    m variations, within a specific Rock Type,

    can bereduced by segregating the samples of a

    specific Rock Type into Permeability Classes

    Figure 12

    Rock Type 4, themoldic limestone

    grainstone, represents a diagenetic inversion

    whereby the original porosity (between the

    grains) was filled with cement, and the

    original grains were dissolved to form the

    current porosity

    Symbols refer to different wells

    FF=R(sample)/R(brine)=C/m

    Cisformationdependent,andtherangeofmexponentswasfoundtobem~1for

    unconsolidatedbeads

    m~4forcemented

    beads:Figure11.

    FockeandMunnthen

    conductedadetailed

    studyofm

    measurementson

    actualcarbonate

    samples,supported

    withthinsection

    descriptionstofind

    systematicrelations

    betweentheporosity

    typeand

    m.

    Whiletheintergranular

    /intercrystallinepore

    systemhadm~2(so

    longas>5pu),

    consistentwithArchies

    earlierlabwork,vuggyporesystemscouldexhibitanmthatreached5:Figure12.

    TheirRockType4,representingadiageneticinversioninwhichOriginalPorosityRockand

    OriginalRock

    Porosityis

    an

    example

    ofwhereanincreasein

    porositycorrespondsto

    anincreaseinvuggy

    porositycontent.

    Becausethevuggy

    porosityisless

    efficientatelectrical

    conduction,them

    exponent(counter

    intuitively)risesas

    porosityincreases:

    Figure13.

  • 8/13/2019 m Exponent Ok Plan

    8/18

    WWW.GeoNeurale.Com January2012 2012RobertEBallay,LLC

    Rock Type 4, the moldic limestone

    grainstone, represents adiagenetic

    inversion whereby theoriginal porosity

    (between the grains) wasfilled with

    cement, and theoriginal grains were

    dissolved to form the current porosity

    Perm Class 1:Perm < 0.1 md

    Perm Class 2: 0.1 md < Perm < 1 md

    Perm Class 3: 1.0 md < Perm < 100 md

    Perm Class 4: 100 md < Perm

    Moldic Rock

    1

    2

    3

    4

    5

    0 5 10 15 20 25 30 35Porosity

    CementExp

    onent

    RT4/PC1

    RT4/PC2

    RT4/PC3

    RT4/PC4

    m vs Porosity

    Rock Type 4: Classes 1, 2, 3, 4

    Figure 13

    Cementation Exponents in Middle Eastern Carbonate Reservoir. J W Focke and D Munn, SPE Form Evaluation, June 1987

    Fracture porosity has an effect opposite to vuggy porosity

    Provides a conductive conduit => lowers m

    m can be estimated with Charts

    R Aguilera: Analysis of Naturally

    Fractured Reservoirs from Sonic and

    Resistivity Logs, SPE 4398, Journal of

    Petroleum Technology 26 (1974)

    R Aguilera: Analysis of Naturally

    Fractured Reservoirs from ConventionalWell Logs, SPE 5342, Journal of

    Petroleum Technology 28 (1976)

    Schlumberger Technical Review, Volume

    36 Number 3

    Illustrative calculation

    is the fraction of porositythat is fracture

    Phi(Total) ~ 20 pu

    ~ 50 %m ~ 1.35

    Figure 14

    Althoughextreme,

    diageneticinversionis

    reportedinotherstudies,

    forexampleEberlietal,

    whoillustrateitwiththin

    sectionsand

    describe

    the

    processastheoriginal

    grainsaredissolvedto

    produceporesasthe

    originalporespaceis

    filledwithcementto

    formtherock

    FockeandMunnnext

    noticedthatthe

    correlationbetweenm

    andporosity

    could

    be

    improvedbybreakingthatRockTypeintopermeabilityclasses,eachofwhichcorrespondedto

    diageneticallyinvertedrock,butwithdifferentpermeabilities.Weshallreturntothedifferent

    mvstrendsassociatedwiththedifferentpermeabilityclasses,withinthecontextofa

    digitalmexponentmodel,shortly.

    Fractureporosityhasaneffectoppositetovuggyporosity,conceptuallyformingakindof

    shortcircuit,whichisrepresentedmathematicallybyadecreaseinvalue:Figure14.

  • 8/13/2019 m Exponent Ok Plan

    9/18

    WWW.GeoNeurale.Com January2012 2012RobertEBallay,LLC

    TheDual Porosity Cementation Exponent model follows from a simple two

    component (intergranular and vuggy porosity) electrical model

    1/R(equivalent) = 1/R1 + 1/R2 = C0 = C1 + C2

    Each component satisfies Archies relation between resistivity and formation factor

    Resistivity = Rw * FF Conductivity = Cw / FF

    Formation Factor is related to porosity as FF = a / m

    Thetwo component parallel circuit equation is

    then

    C0 = Cw [1/FF1 + 1/FF2]

    C0 = Cw [ (1)m(1)/ a(1) + (2)m(2)/ a(2)]Now take a(1) as 1.0, m(2) as 1 and allow a(2) to

    vary from 1 to infinity [av(2) represents the

    tortuosity of the vuggy partition]

    intergranular vuggy

    Figure 15

    Comparison of Empirical Models for Calculating the Vuggy Porosity and

    Cementation Exponent of Carbonates from Log Responses. Fred P. Wang

    and F. Jerry Lucia

    Type Iformula:Assuming that mv is 1 and that av varies from 1 to infinity, we can

    write the parallel circuit equation as below

    The deduction of the net effective m from the conductivity equation follows from

    (relative to the simple Archie relation)

    Ro = Rw / ( m) => Co = Cw * ( m)

    Take logarithm of Co - Cw equation

    log(Co) = log(Cw) + m log()

    Following exhibit

    Details

    following

    exhibit

    Figure 16

    Comparison of Empirical Models for Calculating the Vuggy Porosity and Cementation Exponent of Carbonates from Log

    Responses. Fred P. Wang and F. Jerry Lucia

    DigitalmExponentModel

    WithintheLuciasystem,

    vuggyporosityis

    everythingthatisnot

    interparticle,and

    includesboth

    touching

    vugs(fractures,etc)

    andseparatevugs

    (moldic,intraparticle,

    etc).Whilethereare

    chartsavailableto

    estimatem,asa

    functionofvuggy

    porositycontent,forthe

    variousscenarios,it

    would

    be

    advantageous

    tohaveadigitalmodel.

    Thereareseveral

    digitalmodelsavailable,andhereweuseWang&Luciaforillustrativepurposes,because:

    Itisbaseduponasimplecircuitmodelthatiseasytofollowforthosenotparticularly

    comfortablewithelectricalcircuittheory,

    Itallowsforbothtouchingandseparatevugs,andeverythinginbetween,

    WangandLuciaincludedindependentQCchecksontheviabilityoftheirmodel,

    WangandLuciarepresent

    vuggyrockasatwocomponent,parallelcircuit:

    Figure15.

    Eachcomponent

    (independently)satisfies

    Archiesequation,andthey

    thensimplifytheresulting

    netconductivity

    expressionbysettingthe

    mofthevuggyfractionto

    be1andrepresentingthetortuosityofthevugs(be

    theytouching,separateor

    somethinginbetween)

    withaparameterav:Figure

    16.

  • 8/13/2019 m Exponent Ok Plan

    10/18

    WWW.GeoNeurale.Com January2012 2012RobertEBallay,LLC

    Type Iformula:Assuming that mv is 1 and that av varies from 1 to infinity, we can write

    the parallel circuit equation as below (details in exhibits following)

    The deduction of m from the conductivity equation follows from (relative to the

    simple Archie relation)

    Ro = Rw / ( m) => Co = Cw * ( m)

    log(Co) = log(Cw) + m log()

    m log() = log(Co) - log(Cw) = log(Co / Cw) = log [ ]

    m = log(Co / Cw) / log() = log [ ] / log()

    Figure 17

    Comparison of Empirical Models for Calculating the Vuggy Porosity and Cementation Exponent of Carbonates from Log

    Responses. Fred P. Wang and F. Jerry Lucia

    This indicates

    that equation 30

    can be used to

    model reservoirs

    with separate

    vugs, touching

    vugs, and

    fractures using

    appropriate

    values of av.

    av representsthe connectivity, or lack thereof, of the vuggy portion of the pore syste

    Figure 18

    Thisleavesthemwithan

    expressionforthenet

    cementationexponent

    asafunctionofthetotal

    porosity,theporosity

    partition,the

    exponent

    oftheinterparticle

    fraction(mip)andthe

    connectivityofthe

    vuggyfraction(av):

    Figure17.

    Withthisdigitalmodel

    inhand,duediligence

    requiresthatitbe

    tested,withonesuch

    testbeing

    acomparison

    ofthecalculatedmto

    thatinferredfrom

    Archiesequationinthewaterleg,Figure5,wheretheyfindthatanappropriatechoiceofav

    resultsinamatch.

    Whilethereisatendencytothinkofnonfracturevugsasseparate,withoutcontributionto

    permeability,aliteraturesearchwillrevealinstancesofthepermeabilityactuallyincreasing,

    withthepresenceofvuggycontent.Thisbehaviorbringsforwardtheimportanceofparameter

    av,whichisavailabletorepresentsuchasituation.

    WangandLuciaalsotestedtheirmodelinsuchasituation,drawinguponMeyersdata,where

    theyagain

    found

    that

    a

    locallyappropriatechoiceof

    avbroughtmeasurements

    andestimatesinto

    agreement:Figure18.

    Theattractionofadigital

    modelisthatitallowswhat

    ifcalculations.Suppose,for

    example,avisual

    examinationofcore

    indicatesthat

    about

    1pu

    of

    vuggyporosityispresent,

    dispersedamongstthe

    matrixporosity.Ifthatvuggy

    porosityisnotwell

    connected(ieav>>1)and

    thetotalporosityis~5puor

  • 8/13/2019 m Exponent Ok Plan

    11/18

    WWW.GeoNeurale.Com January2012 2012RobertEBallay,LLC

    So long as ~ 5 pu and greater,only at av ~ 1

    does a small ( v ~ 1 pu) cause the CementationExponent to differ from mip = 2.0

    Dual-porosity Model / What If Characterizations

    0

    1

    2

    3

    4

    0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

    CementExponent

    Total Porosity [ Phi(v)=0.01 ]

    Dual Porosity / Type 1

    av=1

    av=10

    av=100

    av=1000

    ip + v = 2 pu

    0

    1

    2

    3

    4

    0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

    CementExponent

    Total Porosity [ Phi(v)=0.05 ]

    Dual Porosity / Type 1

    av=1

    av=10

    av=100

    av=1000

    ip + v = 6 puSo long as ~ 10 pu (or more)and the vugsare not present as fractures (or connected vugs),

    an m of ~ 2.5 would be a reasonable starting

    point.

    Figure 19

    Monte Carlo Dual-porosity Model

    What If Characterizations

    TheMonte Carlo method relies on repeated

    random sampling to model results

    Advantages of Monte Carlo include

    any type of distribution can be used tocharacterize the uncertainty distribution of

    any parameter

    normal, log normal, etc

    insight is gained into the upside and

    downside

    0

    100

    200

    300

    400

    500

    600

    1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00

    Frequency

    DualPorosity"m"

    MonteCarloDistribution

    "m"DualPhi

    0

    1

    2

    3

    4

    0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

    CementExpone

    nt

    Total Porosi ty [ Phi(v)=0.05 ]

    Dual Porosity / Type 1

    av=1

    av=10

    av=100

    av=1000

    Figure 20

    more,thedualporositymodel

    wouldindicatethataneffective

    mofabout2isareasonable

    startingpoint:Figure19.

    If,however,that1puispresent

    inthe

    form

    of

    well

    connected

    vugs(fractures),thenav~1and

    theeffectivembecomesmuch

    moresensitivetotheporosity

    partitionandconnectivity.

    Nextconsideranintervalwith

    about5puofvuggyporosity

    (Figure19,again),withamatrix

    cementationexponentof2.So

    longasthetotalporosityis10pu

    orgreater,

    areasonable

    initial

    valueoftheeffectivemwouldbeabout2.5,solongasthevuggyportionisnotwell

    connected.

    Buildinguponthisconcept,werealizethatifitispossibletopartitionporosity,footbyfootin

    thewellbore,thenonemayalsocalculatemfootbyfootandusethatexponentvalueto

    thenestimateSw.Insuchasituation,itwouldbeadvisabletoseekoutawaterintervalatthe

    firstopportunityandcomparetheresultingSw(whichishopefullycloseto100%)withthat

    deducedfromaninversionofArchie(asWang&Luciadid,inFigure5),forvalidationpurposes.

    Ifthecalculateddualporosity

    exponentis

    afair

    representation

    oftheinvertedArchiem,then

    theevaluationofvuggyintervals

    hingesupontheaccuracyofthe

    porositypartition,whichmayin

    factbeahurdle.Limitationsthat

    willariseare,

    theimagelogwillbe

    compromisedifthevug

    sizeislessthanthebutton

    resolution,about

    3

    5mm,

    incarbonatestheNMRT2

    willlosetheporesize

    relationatporebodysizes

    ofabout50100um.

  • 8/13/2019 m Exponent Ok Plan

    12/18

    WWW.GeoNeurale.Com January2012 2012RobertEBallay,LLC

    Matrix has a relatively uniform amount of

    interparticle porosity (the background), with

    variable amounts of vuggy porosity, with

    different degrees of connectivity

    mip = 2.0, ip & avconstant across range of v

    Moldic Rock

    1

    2

    3

    4

    5

    0 5 10 15 20 25 30 35Porosity

    CementExponent

    RT4/PC1

    RT4/PC2

    RT4/PC3

    RT4/PC4

    Focke & Munns Data

    Rock Type 4, Perm Classes 1 => 4, amoldic

    limestone grainstone: representing a

    diagenetic inversion whereby theoriginal

    porosity (between the grains) wasfilled with

    cement, and theoriginal grains were

    dissolved to form the current porosity

    Dual Porosity / Type 1

    1

    2

    3

    4

    5

    0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

    Total Poros ity [ Phi(ip)=0.01 ]

    Ceme

    ntExponent

    av=1

    av=10

    av=100

    av=1000

    ip + v = 2 pu

    TheDual Porosity Modelhas captured

    the essential trends of the independent

    Focke & Munn data.

    The Dual Porosity Model vs Lab Data

    Figure 21 Thereisyetanother

    advantageofexpressing

    thevuggyporesystem

    exponentin

    mathematicalform:it

    becomespossible

    to

    performaMonteCarlo

    simulation:Figure20.

    Nowweareableto

    accountforuncertainty

    inthevariousinputs(the

    porositypartition,asan

    example),and

    characterizetheBest

    Estimateintermsof

    probabilities.That

    is,

    ratherthangowitha

    high/lowestimate,one

    canidentify(for

    example)95%oftheMCdistribution.Inmanycaseswewillfindthat,ifwecanaccepttwo

    standarddeviationsofuncertainty(95%),thelikelyhigh/lowvaluesarenotsoextremeasthe

    possiblehigh/low.Thisisbecause,ingeneral,itisunlikelythatallthehigh(orlow)input

    valueswilloccursimultaneously.

    Theprecedingillustrationsrepresentafixedvuggyportioninthepresenceofmoreorless

    matrixporosity.Itisalsopossiblethatmostoftheporosityisintheformofvugs,withsome

    smallamount

    of

    (background)

    matrix

    porosity:

    Figure

    21.

    Thatis,insteadofaconstant1pu(or5pu)ofvuggyporosity,asthetotalporositygoesupand

    down(Figure19),onemighthaveasmallamountofinterparticleporosity,withmoreorless

    vugspresent.Thedualporositymodelexponenttrendsarenowverydifferent,becausethe

    bulkoftheporosityisnotefficient.

    Solongasthevugsarenotconnected,Figure21revealsatrendofincreasingm,with

    increasingporosity.Asavvariesfromslightlyconnected(av~10)toseparate(av~1000),the

    differenttrendsseparate,andexhibitapatternverysimilartowhatFockeandMunnfound

    experimentally.

    Fockeand

    Munns

    Rock

    Type

    4(diagenetically

    inverted),

    with

    different

    permeability

    classes,

    can

    berepresentedwiththedualporositymodel.Atasimplelevel,theavvaluescorrespondtothe

    chokingoffoftheporethroats,whichbothreducespermeabilityandincreasesm.

    Itisimportanttorealizethat,conceptually,someporesystemsmaynotsatisfytheparallel

    circuitassumptionandthatadditionallyinsomereservoirstheporesystemisatripleporosity

    system,notdual.Insuchasituation,thisparallelcircuitdualporositymodelisnotgoingtobe

    sufficient.

  • 8/13/2019 m Exponent Ok Plan

    13/18

    WWW.GeoNeurale.Com January2012 2012RobertEBallay,LLC

    Cementation Exponents in Middle Eastern Carbonate Reservoirs

    J W Focke and D Munn, SPE Formation Evaluation, June 1987

    m(EPT) &m(core),foot by foot, with the

    two m estimates compared incrossplot in

    later graphic

    Immobile oil in black, movable oil shaded,

    both as a fraction of porosity, calculated with

    Schlumbergers Global package

    Moldic

    IG / IX

    Upper Interval

    m from logs,

    foot-by-foot,

    compared to core

    Figure 22

    mfromnonArchieTechniques

    Iftheporesystemcanbepartitioned,amathematicalmodelofthemexponentwillallow

    onetothenevaluatethehydrocarboncolumnwithvariablem.Analternativeapproachisto

    includeanadditionaltoolinthesuite,whichwhencombinedwitharesistivitymeasurement,

    allowsonetodeducethelocalm,andtothenusethatmintheinterpretationofthedeep

    resistivity.

    FockeandMunncombinedthedielectriclogwithanRxomeasurementinjustthisway,to

    calculatemfootbyfootinthehydrocarboncolumn,

    comparethewellboremestimateswithlabm.

    Althoughtheconceptis

    straightforward,Focke

    andMunnwerecareful

    topointoutkeyissues

    thatmustbekeptin

    mind.

    Theevaluation

    requiresthatthe

    dielectricbe

    pairedwith

    routineporosity

    andRxotools,

    whichhavea

    greaterdepthof

    investigation

    andless

    vertical

    resolution.They

    arethen

    reflectinga

    largervolumeofreservoirthanisthedielectric.

    Rxomayalsobereflectingamixofmudfiltrateandformationbrine.Ifso,aneffective

    value Rmfe shouldbeused.

    Archiessaturationexponentisassumedtobe2.0andcarbonatescanassumenon

    waterwetvalueswithn>2.0.

    Intheir

    illustrative

    well,

    two

    pore

    systems

    are

    recognized,

    moldic

    and

    IG/IX:

    Figure

    22.

    Asexpected,themoldicporosityexhibitsanincreasedm,andreaches~3.5inplaces,as

    seenwithbothlabdataandthedielectricbasedestimate.

  • 8/13/2019 m Exponent Ok Plan

    14/18

    WWW.GeoNeurale.Com January2012 2012RobertEBallay,LLC

    Wireline m(EPT) vsLaboratory m(core)are in general agreement

    m and from corem from logs vs from logs

    Cementation Exponents in Middle Eastern Carbonate Reservoirs J W Focke & D Munn, SPE Form Evaluation, June 1987

    Figure 23

    Similar Trends

    Labandwirelinecanalso

    becomparedviacrossplot.

    Recognizingthedifferent

    volumesofinvestigation,

    andattemptingto

    compensate,Focke

    and

    Munncrossplotm

    versusporosityforcore,

    andforlog:Figure23.

    Inthemoldicintervals,the

    tworesultsdisplayan

    almostidenticaltrendof

    increasingmas(moldic)

    porosityincreases.

    RasmusandKenyon

    provideyet

    another

    illustrationofthecontributionthatadielectriclogcanmakeinthepresenceofoomoldic

    porosity.

    InthetimesinceFockeandRasmus,significantadvanceshavebeenmadeindielectric

    measurements,andtheynowoffermoresophisticatedoptions(ZappingRocks.Romulo

    Carmona,etal.OilfieldReview.Spring2011.).

    SummaryIn1952Archiepointedoutthecomplicationsthatarisewithcarbonateporesystems,whichcan

    resultintortuouswaterfilledporesystemshavingaresistivitysimilartoaninterparticlepore

    systemthat

    is

    hydrocarbon

    charged.

    In

    one

    sense

    then,

    and

    recognizing

    that

    other

    complicationscanbepresent,thecementationexponent(whichrepresentstheporesystem

    tortuosity)representstheessenceofcarbonatepetrophysics.

    WyllieandGregoryboundedthemwithlaboratorybeadpackstudies,findingthatinapack

    ofunconsolidatedbeadsm~1,whilem~4inachemicallycementedpack.

    FockeandMunninterpretedhundredsofcarbonateformationfactormeasurements,within

    thecontextofthinsectiondescriptions,tofindasystematicrelationbetweenRockTypeand

    m.

    Inthecaseofmoldicporosity,FockeandMunnfoundthatmsystematicallyincreasesas

    total

    porosity

    increases:

    the

    additional

    porosity

    is

    simply

    not

    effective

    in

    the

    electrical

    conductionsense.

  • 8/13/2019 m Exponent Ok Plan

    15/18

    WWW.GeoNeurale.Com January2012 2012RobertEBallay,LLC

    Petrophysical Characterization of Permian Shallow-Water

    Dolostone. M H Holtz, R. P. Major. SPE 75214, 2002

    http://www.beg.utexas.edu/mainweb/presentations/2002_presentations/holtz_spe0402ab.pdf

    Pore geometries controlthe interrelationship ofpetrophysical properties.

    The three most important pore-geometry characteristics are

    amount andtypes of pores or shape

    interconnectedness of pores (tortuosity)

    size of interconnectingpore throats

    Various m exponentsas a

    function of vuggy porosity ratio

    Note the Myers trend is relatively

    flat: the vugs in this data set exhibit

    touching behavior.

    As the separate vug

    fraction increases, so too

    does the Archie m

    Figure 23

    Ingeneral,thepresence

    ofvuggyporosity

    correspondstoan

    increaseinm,withthe

    magnitudeofthat

    increasediffering

    from

    onedatasettothenext:

    Figure23.

    Therearebothcharts

    andmathematical

    modelsthatallowoneto

    estimatemforvarious

    porositypartitions.The

    advantageofthe

    mathematicalmodelis

    thatthey

    easily

    allow

    bothfootbyfoot

    estimatesandMonteCarlosimulation.

    Chartsandmodelsshouldalwaysbetested,atthefirstopportunity,bycomparingthem

    estimatetothatdeducedbyinvertingArchiesequationinthewaterlegofarepresentative

    well.InthecaseoftheDualPorositymodelusedforillustrationsherein,thatcomparisonis

    reasonable.TheDualPorositymmodelisalsofoundtomatchtheindependentlab

    measurementsofMeyers,andtocapturethepatternsreportedbyFockeandMunn.

    AwellborealternativetommodelsistoaddanonArchietooltothetoolsuite,whichallows

    aneffectivemtobededuced.Thatmisthenusedtointerpretthedeepresistivity

    measurement.

    Regardlessoftheapproachused,weshouldbearinmindthatparticularlyinthevicinityofthe

    transitionzone,thereservoirmayfailtosatisfythebasicArchiecriteria.

    Acknowledgement

    MohamedWatfasArchiesLaw:ElectricalConductioninClean,WaterbearingRockisan

    importantsinglepointhistoricaloverviewsource.FockeandMunnsCementationExponentsin

    MiddleEastCarbonateReservoirsliterallysetthestandardforasystematicinvestigationof

    theissue,backin1987.TothesemustreadarticlesIhaveaddedmorerecentmaterial,and

    mypersonalthoughts/techniques.

    Thisone

    is

    for

    my

    Mother,

    who

    is

    always

    there,

    through

    thick

    and

    thin.

    ReferencesAguilera,R.AnalysisofNaturallyFracturedReservoirsfromSonicandResistivityLogs,SPE4398,

    JournalofPetroleumTechnology26(1974):12331238

    Aguilera,R.AnalysisofNaturallyFracturedReservoirsfromConventionalWellLogs,SPE5342,

    JournalofPetroleumTechnology28(1976):764772

  • 8/13/2019 m Exponent Ok Plan

    16/18

    WWW.GeoNeurale.Com January2012 2012RobertEBallay,LLC

    AlGhamdi,AliandBoChen,HamidBehmanesh,FarhadQanbari&RobertoAguilera.An

    ImprovedTriplePorosityModelforEvaluationofNaturallyFracturedReservoirs.Trinidadand

    TobagoEnergyResourcesConference.June2010.

    Archie,G.E.TheElectricalResistivityLogasanAidinDeterminingSomeReservoir

    Characteristics.PetroleumTransactionsoftheAIME146(1942):5462.

    Archie,G.E.ElectricalResistivityasanAidinCoreAnalysisInterpretation,AAPGBulletin31

    (1947):350366

    Archie,G.E.ClassificationofCarbonateReservoirRocksandPetrophysicalConsiderations.

    AAPG,Vol36,No2,1952.

    Ballay,GeneandRoyCox.FormationEvaluation:CarbonatevsSandstones.2005.

    www.GeoNeurale.Com.

    Ballay,Gene.RiskyBusiness.March2009.www.GeoNeurale.com

    Ballay,Gene.RollingtheDice.July2009.www.GeoNeurale.com

    Ballay,Gene.

    Coffee

    Or

    Tea.

    October

    2009.

    www.GeoNeurale.com.

    Ballay,Gene.SplitPersonality.December2009.www.GeoNeurale.com.

    Ballay,Gene.StatisticsArePliable.February2010.www.GeoNeurale.com.

    Ballay,Gene.TheBiggestBangfortheBuck.April2011.www.GeoNeurale.com

    Carmona,Romuloetal.ZappingRocks.OilfieldReview.Spring2011

    Chen,CandJ.H.Fang.SensitivityAnalysisoftheParametersinArchiesWaterSaturation

    Equation.TheLogAnalyst.SeptOct1986

    Diederix,K.M.AnomalousRelationshipsBetweenResistivityIndexandWaterSaturationsinthe

    RotliegendSandstone(TheNetherlands),TransactionsoftheSPWLA23rdAnnualLoggingSymposium,CorpusChristi,Texas,July69,1982,PaperX

    Eberli,GregorP.andGregorTBaechle,FlavioSAnselmetti&MichalLIncze.Factorscontrolling

    elasticpropertiesincarbonatesedimentsandrocks.THELEADINGEDGEJULY2003

    Focke,J.W.andDMunn.CementationExponentsinMECarbonateReservoirs.SPEFormation

    Evaluation,June1987

    Gomaa,N.andA.AlAlyak,D.Ouzzane,O.Saif,M.Okuyiga,D.Allen,D.Rose,R.Ramamoorthy

    &E.Bize.CasestudyofPermeability,VugQuantificationandRockTypinginaComplex

    Carbonate.2006SPEAnnualTechnicalConferenceandExhibition.SanAntonio,Texas,U.S.A.,

    2427September

    2006.

    R.Griffiths,A.Carnegie,A.Gyllensten,M.T.Ribeiro,A.Prasodjo,andY.Sallam.EstimatingSw

    withavolumemeasurement.WorldOil,October2006

    Guyod,H.FundamentalDatafortheInterpretationofElectricLogs,TheOilWeekly115,No38

    (October30,1944):2127

  • 8/13/2019 m Exponent Ok Plan

    17/18

    WWW.GeoNeurale.Com January2012 2012RobertEBallay,LLC

    Hartmann,DanandEdwardBeaumont.PredictingReservoirSystemQualityandPerformance.

    www.searchanddiscovery.net/documents/beaumont/index.htm

    Herrick,D.C.andW.D.Kennedy.SPWLA34thAnnualLoggingSymposium,1993.ELECTRICAL

    EFFICIENCY:APOREGEOMETRICMODELFORTHEELECTRICALPROPERTIESOFROCKS.

    Lny,Arve.

    Making

    Sense

    of

    Carbonate

    Pore

    Systems.

    AAPG

    Bulletin,

    v.

    90,

    no.

    9(September

    2006),pp.13811405

    Lucia,Jerry.TheOilfieldReview.Winter2000

    Lucia,Jerry.RockFabric/PetrophysicalClassificationofCarbonatePoreSpaceforReservoir

    Characterization. AAPGBulletin79,no.9(September1995):12751300.

    Lucia,Jerry.Petrophysicalparametersestimatedfromvisualdescriptionofcarbonaterocks:a

    fieldclassificationofcarbonateporespace.JournalofPetroleumTechnology.March,v.35,p.

    626637.1983.

    Lucia,Jerry.www.beg.utexas.edu

    Mazzullo,S.

    J.

    Overview

    of

    Porosity

    Evolution

    in

    Carbonate

    Reservoirs

    www.searchanddiscovery.net/documents/2004/mazzullo/images/mazzullo.pdf

    Myers,M.T.,1991,Porecombinationmodeling:atechniqueformodelingthepermeabilityand

    resistivitypropertiesofcomplexporesystems:SocietyofPetroleumEngineers,Annual

    TechnicalConferenceandExhibition,SPEpaperno.22662.

    Morgan,W.B.andS.J.Pirson.TheEffectofFractionalWettabilityontheArchieSaturation

    Exponent

    Ramamoorthy,RaghuandAustinBoyd,ThomasJ.Neville,NikitaSeleznev,HaitaoSun,Charles

    Flaum

    &

    Juntao

    Ma.

    A

    New

    Workflow

    for

    Petrophysical

    and

    Textural

    Evaluation

    of

    Carbonate

    Reservoirs.Petrophysics,Vol51,No1,February2010.

    Rasmus,J.C.andWEKenyon. AnImprovedPetrophysicalEvaluationofOomoldicLansing

    KansasCityFormationsUtilizingConductivityandDielectricLogMeasurements,Transactionsof

    theSPWLA26thAnnualLoggingSymposium,Dallas,June1720,1985,PaperV

    Sundberg,K.EffectofImpregnatingWatersonElectricalConductivityofSoilsandRocks,

    PetroleumTransactionsoftheAIME97(1932):367391.

    Sweeney,S.A.andHYJenningsJr:TheElectricalResistivityofPreferentiallyWaterWetand

    PreferentiallyOilWetCarbonateRock,ProducersMonthly24,No7(May1960):2932

    Toumelin,E.

    and

    C.

    Torres

    Verdn.

    INFLUENCE

    OF

    OIL

    SATURATION

    AND

    WETTABILITY

    ON

    ROCK

    RESISTIVITYMEASUREMENTS:AUNIFORMPORESCALEAPPROACH.SPWLA46th

    AnnualLogging

    Sym.NewOrleans,LA.June,2005.

    Verwer,KlaasandGregorP.Eberli&RalfJ.Weger.Effectofporestructureonelectrical

    resistivityincarbonates.AAPGBulletin,v.95,no.2.Feb2011

    Wang,FredP.andF.JerryLucia.ComparisonofEmpiricalModelsforCalculatingtheVuggy

    PorosityandCementationExponentofCarbonatesfromLogResponses.

  • 8/13/2019 m Exponent Ok Plan

    18/18

    WWW.GeoNeurale.Com January2012 2012RobertEBallay,LLC

    Chattanooga shale

    Mississippian limestoneR. E. (Gene) Ballays35 years in petrophysics include

    research and operations assignments in Houston

    (Shell Research), Texas; Anchorage (ARCO), Alaska;

    Dallas (Arco Research), Texas; Jakarta (Huffco),

    Indonesia; Bakersfield (ARCO), California; and

    Dhahran, Saudi Arabia. His carbonate experience

    ranges from individual Niagaran reefs in Michigan to

    the Lisburne in Alaska to Ghawar, Saudi Arabia (the

    largest oilfield in the world).

    He holds aPhD in Theoretical Physics withdouble minors in Electrical Engineering

    & Mathematics, hastaught physics in two universities,mentored Nationals in

    Indonesia and Saudi Arabia, publishednumerous technical articles and been

    designatedco-inventor on both American and European patents.

    At retirement from the Saudi Arabian Oil Company he was the senior technical

    petrophysicist in the Reservoir Description Division and had represented petrophysics

    in three multi-discipline teams bringing on-line three (one clastic, two carbonate) multi-

    billion barrel increments. Subsequent to retirement from Saudi Aramco he establishedRobert E Ballay LLC, which provides physics - petrophysics training & consulting.

    He served in the U.S. Army as a Microwave Repairman and in the U.S. Navy as an

    Electronics Technician; he is a USPA Parachutist, a PADI Nitrox certified Dive Master

    and a Life Member of Disabled American Veterans.

    Watfa,M.etal.ArchiesLaw:ElectricalConductioninClean,WaterbearingRock.Technical

    Review,Volume36Number3

    Watfa,M.SeekingtheSaturationSolution.MiddleEastWellEvaluationReviewNo.3(1987)

    Wyllie,M.R.andARGregory:FormationFactorsofUnconsolidatedPorousMedia:Influenceof

    ParticleShape

    and

    Effect

    of

    Cementation,

    Petroleum

    Trans

    of

    the

    AIME

    (1953):

    103

    110.

    Biography