lodal pump bleve mar2011

Upload: khaiseah9225

Post on 06-Apr-2018

244 views

Category:

Documents


4 download

TRANSCRIPT

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    1/47

    Centrifugal Pump Isolation

    Hazards:

    Case Histories and

    Prevention MethodologiesPeter N. Lodal

    Eastman Chemical Company

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    2/47

    What is a B.L.E.V.E.?

    BoilingLiquid

    Expanding

    VaporExplosion

    Boiling liquid expanding vapor explosion, oftenreferred to by the acronym BLEVE, is a phenomenonwhich occurs when a vessel containing a pressurizedliquid substantially above its boiling point is ruptured,releasing the contents explosively.

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    3/47

    3

    Heat

    P

    Liquid

    Vapor

    PressureIncreases

    Temperature

    Increases

    T

    What Causes a BLEVE?

    ClosedSystem

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    4/47

    4

    Heat

    P

    Liquid

    Vapor

    PressureRapidlyDecreases

    LiquidFlash

    Vaporizes

    VesselRuptures

    1600xVapor

    Volumetric

    Expansion

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    5/47

    What can BLEVE?

    Tanks External pool fire If flammable, fireball is enormous

    Hot water heaters BLEVE does not necessarily involve flammables

    Drums

    External pool fire 15-20 minutes Launch

    Cylinders Launch like a missile

    Railcars External pool fire

    Launch over 1 mile in the air Pumps

    Running isolated (suction & discharge closed) As little as 20-30 minutes

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    6/47

    Case 1

    Sludge Pump

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    7/47

    Case 1:Description of Incident

    7

    A loud sound was heard and a 20 foot long white to

    whitish-gray cloud was seen in the area ofSludge Pump.

    Inspection showed Pump was fractured and small pieceswere found as far away as 35 feet. Pump suction and

    discharge valves were found closed and the local pump

    run switch was found in the auto position.

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    8/47

    8

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    9/47

    9

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    10/47

    10

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    11/47

    11

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    12/47

    Case 1: Data

    12

    Pump suction & discharge valves were closed.

    Pump local hand switch was set in Auto.

    DCS was set telling the pump to run. Electrical evaluation of the pump power breaker

    indicated the pump was running until some incident

    tripped the breaker.

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    13/47

    Case 1: Data (continued)

    13

    Pump fracture analysis suggests

    approximately 200-210 psig pressure was

    generated.

    Pegged pressure gauge on pump dischargesuggests pressure reached 200-210 psig.

    Vapor pressure data suggests temperature

    required to reach 200-210 psig was

    approximately 230 C.

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    14/47

    Case 1: Data (continued)

    14

    Differential Scanning Calorimeter (DSC) on actual

    pump sample showed no exotherm until 376 C.

    Autoignition temperature on actual pump sample was

    measured at 485 C.

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    15/47

    Case 1:Conclusions

    15

    No evidence of deflagration.

    Material does not appear to be thermally

    sensitive at our temperatures.

    Autoignition does not appear to be credible.

    Root Cause -- Pump was inadvertently started by

    DCS and left running with process material

    blocked into the pump head which built upenough temperature to raise the vapor pressure

    to 200-210 psig which caused the pump to fail.

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    16/47

    Case 2

    Caustic Pump

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    17/47

    17

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    18/47

    18

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    19/47

    19

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    20/47

    20

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    21/47

    21

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    22/47

    22

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    23/47

    23

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    24/47

    24

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    25/47

    25

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    26/47

    Case 2: Data

    26

    Pump suction & discharge valves were closed.

    Pump was inadvertently started when operator threw

    a hand switch thinking it was for a ventilation fan.

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    27/47

    Case 2: Conclusions

    27

    Material was non-flammable, so deflagration

    was ruled out.

    Root Cause = Pump was inadvertently startedand left running with process material blocked

    into the pump head which built up enough

    temperature to raise the pressure to a point

    which caused the pump to fail.

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    28/47

    Case 3

    Condensate Pump

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    29/47

    29

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    30/47

    30

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    31/47

    31

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    32/47

    32

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    33/47

    33

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    34/47

    34

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    35/47

    Case 3: Data

    35

    Pump suction & discharge valves were closed during

    a power interruption and system shutdown.

    Pump was started remotely 3 days after the

    shutdown.

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    36/47

    Case 3: Conclusions

    36

    Material was non-flammable, so deflagration

    was ruled out.

    One 5-lb piece of the casing was found 400

    feet from the pump installation.

    Root Cause = Pump was started

    automatically and left running with

    condensate blocked into the pump head

    which built up enough temperature to raise

    the pressure to a point which caused the

    pump to fail.

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    37/47

    Common Features

    37

    1. Complete Isolation (Suction and Discharge Blocked),not deadheaded (discharge only blocked).

    2. Fluid Filled

    3. Remote Start Capability4. Seal Failure did not provide adequate pressure relief

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    38/47

    38

    Case Pump Summaries

    Case 1 3500 RPM, 15 HP,

    140 psig

    Organic Acids &decomposition

    solidsCase 2 1750 RPM, 10 HP,

    55 psig

    50% Sodium

    Hydroxidesolution

    Case 3 2600 GPM, 75 HP,

    110 psig

    Steamcondensate

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    39/47

    Conclusions

    39

    Pump Explosions can occur with completely isolatedfluids, even when those fluids are non-flammable

    Damage potential increases as horsepower increases(increasing inability to dissipate energy)

    Seal failure as a relief mechanism is NOT a safeassumption

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    40/47

    Recommendations

    40

    So, what are the best ways of preventing pumpexplosions?

    1. Use local start only (remote shutoff is not an issue)

    2. Avoid the ability to isolate the pump

    Lock open or remove valves on the suction and/or discharge

    3. Train operators on the significance of this issue

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    41/47

    Centrifugal Pump with Remote Stop

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    42/47

    Recommendations

    42

    If local start and lock open valving are not options (e.g.,

    spared pump installations with auto-throwover), there are

    a number of control options that can be evaluated on a

    case-by-case basis for adequacy of risk reduction:

    Relief device (rupture disc or relief valve) High Temp Shutdown High Pressure Shutdown Limit switches on isolation valves to ensure they are open (or at

    least not closed)

    Low flow interlock Low power draw interlock (limited applicationreliability issues)

    Next

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    43/47

    Centrifugal Pump with Relief

    Back

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    44/47

    Centrifugal Pump with SIF

    Back

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    45/47

    Pump Protection Selection Matrix

    45

    Pump Protection Selection Guidance

    Type of Pump Hazard Pump Service TypesVersion: B 3/2/2011

    By KBYount(HPCC)

    PRELIMINARY DRAFT

    A B C D E F G H I J K L M N O

    Low Power Monitor Interlock 1 Y N N N Y C C Y Y N C N N

    Low Amps Interlock 2 Y N N N Y C C Y N C N N

    Low Flow Interlock (transmitter or switch) 3 Y C N Y Y Y Y Y C Y Y C

    High Temperature Interlock (Pump Casing) 4 Y Y N Y Y N Y Y Y Y Y Y Y Y

    High Pump Discharge Pressure Interlock 5 Y Y Y N Y Y C Y Y Y Y Y Y YC

    Overpressure Relief Valve 6 Y Y Y C N C Y Y Y Y Y CN

    Minimum Flow/Recirculation Line 7 Y N na Y N Y Y C Y Y CY

    Minimum Flow Control Loop (DCS or Mechanical FC) 8 Y N na Y N Y Y C C

    Y

    Block Valve Position Indication Interlock 9 Y Y Y Y Y Y C Y C C Y Y

    Operational Locks on Manual Isolation Val

    ves

    10Y Y Y Y Y Y Y N N N N Y Y Y na

    LocalOnly Operator Start Switch (New) 11

    Y = Yes, Typically good for this service

    N = No, Typically not a good fit for this service

    C = Conditionally good for the service, additional design details are required, see notes

    na = Not Applicable

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    46/47

    46

    Share Learnings

    Communicate the hazard

    Identify potential pump explosionhazards in our areas

    Remote start capability Evaluate each potential pump explosion

    hazard

    Make recommendations to mitigate risk

  • 8/3/2019 Lodal Pump BLEVE Mar2011

    47/47

    47

    Questions?