libro de electronica de potencia s

70
ELECTRONICA DE POTENCIA INDICE Introducción……………………………………………………………………………………….1 Diodo de potencia…………………………………………………………………....................2 Semiconductores………………………………………………………………….....................2 Estructura de semiconductores………………………………………………….....................2 Banda de valencia o capa exterior……………………………………………………………..3 Diodos semiconductores de potencia………………………………………………………….3 Funcionamiento del diodo……………………………………………………………………….4 Polarización directa………………………………………………………………………….......5 Polarización inversa……………………………………………………………………………..5 Barrera de potencial…........................................................ ...............................................6 Curva de operación del diodo semiconductor………………………………………………...6 Configuración del circuito con fuente de alimentación en cd……………….......................7 Alimentación con fuente de voltaje alterno monofásica para rectificar el voltaje en cd…9 Circuito rectificador de media onda monofásico……………………………………………..9 Circuito rectificador de onda completa con derivación central del transformador monofásico………………………………………………………………………………………10 Circuito puente rectificador de diodos para onda completa………………………………..11 Puente de Graetz o conexión en puente………………………………………. ……………………………………………………12 1

Upload: yofo-vladislav-tesla-clemente

Post on 07-Apr-2017

804 views

Category:

Engineering


9 download

TRANSCRIPT

Page 1: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

INDICE

Introducción……………………………………………………………………………………….1

Diodo de potencia…………………………………………………………………....................2

Semiconductores………………………………………………………………….....................2

Estructura de semiconductores………………………………………………….....................2

Banda de valencia o capa exterior……………………………………………………………..3

Diodos semiconductores de potencia………………………………………………………….3

Funcionamiento del diodo……………………………………………………………………….4

Polarización directa………………………………………………………………………….......5

Polarización inversa……………………………………………………………………………..5

Barrera de potencial….......................................................................................................6

Curva de operación del diodo semiconductor………………………………………………...6

Configuración del circuito con fuente de alimentación en cd……………….......................7

Alimentación con fuente de voltaje alterno monofásica para rectificar el voltaje en cd…9

Circuito rectificador de media onda monofásico……………………………………………..9

Circuito rectificador de onda completa con derivación central del transformador monofásico………………………………………………………………………………………10

Circuito puente rectificador de diodos para onda completa………………………………..11

Puente de Graetz o conexión en puente……………………………………….……………………………………………………12

Circuitos con tensión alterna trifásica Para rectificar tensión directa de ½ de onda……………………………………………………………………………………………….12

Rectificador trifásico de onda completa…………….…………………………………………14

Glosario……………………………………………………………………………………………15

Cuestionario………………………………………………………………………………………16

Evaluacion………………………………………………………………………………………...17

Bibliografía………………………………………………………………………………………..18

1

Page 2: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

INTRODUCCIÓN

El presente trabajo de electrónica de potencia consta de 4 unidades en las cuales se tratan temas

verdaderamente claros, con el fin de que los alumnos que cursan los estudios a nivel bachiller y

que se entroncan con las áreas tecnológicas, se les facilite comprender los principios básicos de

cada uno de los dispositivos electrónicos, para aplicarlos en el campo de control de sistemas de

procesos industriales.

Este trabajo se inicia explicando los elementos semiconductores que dan cavidad a una gama de

diferentes dispositivos electrónicos que durante en el trayecto se conocerán sus características

físicas y técnicas para su funcionamiento adecuado, para incorporarlos a los microprocesadores y

a la microelectrónica que han facilitado al desarrollo de la tecnología, como la robótica.

La unidad uno se inicia con el diodo de potencia para conocer y comprender la estructura,

simbología, curvas características, realización de circuitos rectificadores para su funcionamiento y

aplicación.

La unidad dos que trata sobre el transistor de unión bipolar (BJT) y la unidad tres sobre la familia

de tiristores como el (SCR), rectificador controlado de silicio, aplicándose a estos los mismos

conceptos tratados en el diodo de potencia.

También se elaboró un cuestionario, una evaluación y un glosario por cada unidad para que el

alumno reafirme el aprendizaje adquirido.

Espero que este libro sirva en alguna ocasión al lector que esté interesado por aprender

los dispositivos semiconductores que tanta aplicación tienen en el campo del desarrollo de

la electrónica.

2

Page 3: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

DIODO DE POTENCIA

SEMICONDUCTORES

Son materiales con propiedades que varían entre los conductores y los aislantes, una de sus propiedades más importantes es su resistividad, que cambian con la temperatura y con su grado de pureza.

Un semiconductor con un buen grado de pureza, a bajas temperaturas la resistencia aumenta y tiende a quedar entre los aislantes. Si la temperatura aumenta la resistividad disminuye y tiende hacia la de los conductores.

Los materiales semiconductores como el silicio y germanio son los más empleados para los dispositivos electrónicos; conocidos con el nombre de diodos, transistores, tiristores, y circuitos integrados lineales, de estos se presenta una amplia variedad de formas, tamaños y características para su aplicación.

Un semiconductor que en su estado natural y a temperatura en ambiente normal, no es un buen conductor ni un buen aislador de la electricidad, y su resistencia tiende a disminuir al aumentar la temperatura y en su última orbita tienen 4 electrones.

ESTRUCTURA DE SEMICONDUCTORES

Para comprender el funcionamiento de los semiconductores, del silicio y germanio es necesario algún conocimiento de la teoría atómica y de la estructura de los materiales. Dichos átomos difieren en que el silicio tiene 14 protones en su núcleo y el germanio 32, y tanto el silicio como el germanio, tienen 4 electrones de valencia en su la última órbita.La valencia de un átomo es el número de electrones en su capa exterior o en su última órbita, las figuras siguientes muestran la estructura atómica del átomo del silicio y para el átomo de germanio.

3

Page 4: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

BANDA DE VALENCIA O CAPA EXTERIOR

En un átomo, las orbitas se agrupan en bandas energéticas, conocidas como capas, un átomo tiene un número fijo de capas, cada capa tiene un número máximo de electrones en niveles energéticos permisibles.

Los electrones que giran en la capa exterior se conocen como electrones de valencia, al pasar el electrón de la banda de valencia a la banda de conducción queda el hueco y se provoca una corriente de electrones y una corriente de huecos; a los huecos se les asigna el signo (+).

4

Page 5: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

Aunque todos los electrones tienen la misma carga negativa, no todos poseen el mismo nivel de energía; los electrones que giran cerca del núcleo tienen menos energía que los de órbitas más alejadas, mientras más alejadas del núcleo estén las órbitas electrónicas mayor será la energía que contienen.

Si se agrega suficiente energía a un electrón de valencia, se puede sacarlo de su órbita, de modo que el electrón se libera de su átomo.

DIODOS SEMICONDUCTORES DE POTENCIA

Dispositivos semiconductores de estado sólido de potencia con 2 terminales ánodo y cátodo que conduce la corriente en un solo sentido y está constituido de materiales semiconductores de tipo P y tipo N, los dos combinados en una sola unidad PN; como se muestra la figura siguiente, la sección donde los 2 tipos de materiales se unen se conoce como unión o juntura.

Del símbolo del diodo, la punta de la flecha indica la sección P y señala en sentido del flujo de la corriente. Existen varios diodos de forma específica para manejar las demandas de alta potencia y alta temperatura de algunas aplicaciones.

El uso más frecuente de los diodos de potencia se da en el proceso de rectificación, donde señales de corriente alterna (con valor promedio cero) se convierte a otras que tienen un nivel promedio de cd, para esta actividad a los diodos se les menciona normalmente como rectificadores.

La mayoría de los diodos d potencia se construyen con silicio, debido a sus grados de alta corriente, temperatura y voltaje inverso pico (PIV). Las demandas de alta corriente requieren que el área de la unión sea grande para asegurar que haya una resistencia directa baja del diodo. Si la resistencia directa fuera muy grande las perdidas I2R serían excesivas.

La capacidad de corriente de los diodos de potencia pueden incrementarse poniendo dos o más en paralelo, y el valor PIV puede aumentarse poniendo los diodos en serie.

FUNCIONAMIENTO DEL DIODO

5

Page 6: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

Funciona actuando como una compuerta, la cual permite que la corriente fluya en un solo sentido. La polarización del voltaje aplicado en un diodo determina en todo caso si atreves del diodo fluirá o no corriente.

Las dos polaridades de un voltaje aplicado se conocen como polarización directa y polarización inversa.

POLARIZACIÓN DIRECTA

Un diodo esta en polarización directa cuando la terminal positiva de la batería se conecta a su ánodo y la terminal negativa a su cátodo.

La polarización directa es la condición que permite una corriente a través de la unión PN, es decir la corriente fluirá en el circuito de mas (+) a menos (-).

POLARIZACIÓN INVERSA

Se polariza en inversa cuando su ánodo se conecta a la terminal negativa de la batería y su cátodo a la terminal positiva, la corriente fluirá en el circuito de mas (+) a menos (-).

6

Page 7: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

BARRERA DE POTENCIAL

El voltaje o diferencia de potencial que se genera entre las dos secciones P y N impide toda interacción de los electrones y huecos en la unión del dispositivo, a este voltaje se le llama barrera de potencial. La barrera de potencial para el silicio es de 0.7 V y para el germanio 0.3 V.

7

Page 8: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

VA DE OPERACIÓN DEL DIODO SEMICONDUCTOR

La curva de operación del diodo de material tipo P y tipo N muestra como varia la corriente de un diodo de acuerdo con la magnitud y tipo de polarización aplicada, “Polarización directa o polarización inversa”. Cuando se aplica una polarización inversa, se obtiene un flujo pequeño de corriente inversa, la cual solo aumenta de modo despreciable al incrementarse el voltaje de polarización, y sin embargo la pequeña parte de la curva que empieza con la polarización cero, es no lineal, como se observa en la figura siguiente: La característica V, I del diodo se expresa matemáticamente con la ecuación de Schokley, que está dada por:

lD = lS (eVD/nVT -1)

Donde:

ID= corriente a través del diodo

VD = voltaje del diodo (polarización directa),

I S = corriente de fuga o corriente de saturación inversa (rango entre 10-6 y 10-15 A)

8

Page 9: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

n = constante empírica conocida como coeficiente de emisión o factor de idealidad (valor de 1 para el germanio y 2 para el silicio).

VT = constante llamada voltaje térmico y está dada por:

VT = kT / q = 25.8 mV

CONFIGURACIÓN DEL CIRCUITO CON FUENTE DE ALIMENTACIÓN EN CD

La fuente de alimentación de c d tiene como objetivo establecer una corriente a través del circuito en serie de acuerdo con el sentido de las manecillas del reloj. El hecho de que esta corriente y la dirección de conducción definida del diodo sean semejantes, indica que el diodo está en estado de encendido y que se establece la conducción, de acuerdo a la figura siguiente:

Un diodo está en estado de “ENCENDIDO” si la corriente de la fuente aplicada, su dirección concuerda con la flecha del símbolo del diodo, y Vds = 0.7 para el silicio y Vdg = 0.3 volts para el germanio. Al aplicar la ley de voltaje de Kirchhoff al circuito en serie, figura anterior dará por resultado:

E - VD - VR = 0

E= VD + VR

VR= E – VD

Si

ID=IR

IR = VR/R Ley de Ohm

9

Page 10: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

Ejemplo 1.- Para la configuración del diodo en serie de la figura siguiente, determinar: VD, VR y ID

Solución

VD= 0.7VE= VD + VR

VR= E – VD = 8V – 0.7V = 7.3VSi ID = IR

IR = VR/R =7.3V/2.2 K ohms = 3.32 mA

Ejemplo 2.- Para la configuración del ejemplo anterior determinar los mismos parámetros, con el diodo inverso.

Solución

En este caso la dirección de la corriente resulta opuesta a la flecha en el símbolo del diodo y equivale que el circuito está abierto.

Debido al circuito abierto nos queda:

ID = IR = 0 AmpVR = IRRVR = 0 R = 0 Vv D = E –VR

VD =8V – 0V = 8

10

Page 11: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

ALIMENTACIÓN CON FUENTE DE VOLTAJE ALTERNO MONOFÁSICA PARA RECTIFICAR EN VOLTAJE DIRECTO

Circuito rectificador de media onda monofásico

Vo=Vpπ 1

Vef=Vp√2

------2

Vp=√2Vef ----3

Sust . 3 en 1

Vo=√2Vefπ

Vo=0.45Vef …4

En un retificador de media onda, solamente pasará un semiciclo hacia la carga, osea que cuando la corriente alterna de la fuente ataca con el semiciclo positivo el ánodo del diodo, éste se comporto como un interruptor cerrado y deja pasar este semiciclo, pero cuando la corriente alterna ataca al ánodo con el semiciclo negativo,el diodi se comporta como un interruptor abierto, y evita cualquier flujo de corriente hacia la carga por lo que este montaje con un solo diodo solamnete dejará pasar un semiciclo (el positivo) y por eso decimos que es un rectificador de media onda.

Circuito rectificador de onda completa

11

Page 12: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

Vo=2Vpπ…………..(1)

VP=√2 X VEf …….(2)

SUSTITUYENDO2 EN 1

Vo=√2 X VEfπ

Vo=¿

Por la forma en que está armado el transformador en el secundario se presenta el efecto de un defasamiento entre las dos líneas extremas referidas a la derivación central.

Si la alimentación se estuviese presentando con la variación representada en el diagrama ocurre que el diodo D1 se polariza inversamente, con lo que se va a obtener la carga el voltaje y la corriente del medio ciclo positivo que circuló a través del diodo D1.

Cuando varía la alimentación ocurre que el diodo D1 se polariza inversamente y el diodo D2 se polariza directamente obteniéndose en la carga el voltaje y la corriente del semiciclo.

Circuito puente rectificador de diodos para onda completa

Para el funcionamiento del rectificador puente supongamos que en el primer semiperiodo el borne superior del secundario del transformador es positivo con respecto al borne inferior. La corriente sale de este borne y se encamina a través del diodo CR4, que le permite el paso, hacia la resistencia de carga, este es el camino que puede seguir la corriente puesto que CR1 y CR3 le bloquean el paso después de atravesar la resistencia de carga la corriente se encamina hacia el ánodo de CR2 que, al igual que CR4, le permite el paso. A su salida llega al borne inferior del secundario del transformador.

12

Page 13: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

En el siguiente semiperiodo, el borne inferior es positivo con respecto al borne superior; la corriente, sale por tanto del borne inferior, se encamina hacia la resistencia de carga a través del diodo CR3 que es el único que le permite el paso, puesto CR2 y CR4 están con respecto a ella en oposición. Observe que el sentido con la corriente de este segundo semiperiodo atraviesa la resistencia de carga coincide con el sentido con que la a travesaba la corriente del primer semiperiodo, por otro lado por la resistencia de carga circula una corriente continua pulsante. Después de haber atravesado la resistencia de carga, la corriente del segundo semiperiodo se encamina a través del CR1 hacia el borne superior, que el que en estos momentos es negativo con respecto al inferior.

En sucesivos periodos se repite el ciclo descrito.

El rectificador puente de diodos es también conocido por la denominación de puente de Graetz.

Puente de Graetz o conexión en puente

Un circuito rectificador en puente para corriente alterna monofásica tiene 4 rectificadores, o un número múltiplo de 4. En cada dirección de la corriente se encuentra siempre la mitad de los rectificadores existentes, en serie, en el caso más simple, con 4 rectificadores en total, se tienen 2 rectificadores en serie. Así, por conjunto rectificador, a las terminales de alimentación se les puede aplicar una tensión igual a la tensión nominal del rectificador individual. Cuando la tensión de alimentación es superior a la mitad de la tensión de bloqueo del rectificador utilizado, el número de elementos rectificadores en las conexiones con derivación central y en puente es lo mismo, independiente del tipo de carga.

13

Page 14: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

Circuitos con tensión alterna trifásica para rectificar tensión directa de media onda

Para rectificar la corriente de tensión alterna trifásica, consiste en colocar en cada una de las fases, un elemento rectificador, y luego unir los cátodos de todos los elementos rectificadores en uno de los bornes de la carga, en el positivo, el otro borne negativo de la resistencia de carga se conecta en la conexión de los tres bobinados donde forma la estrella, como se aprecia en la figura 31 (ello motivado por la imposibilidad de conectar el borne negativo de la resistencia de carga a uno solo de los bobinados, puesto que con ello solo tendríamos un simple y sencillo rectificador monofásico) el rectificador trifásico de media onda solo puede ser alimentado por transformadores cuyo secundario posea punto neutro, es decir este conectado en estrella o en zig-zag.

La figura 31, muestra el uso de una conversión delta-estrella con primario de alta tensión y secundario de baja tensión, usando rectificación de media onda a semiconductores, el primero es un triángulo para suprimir las armónicas. El neutro del secundario esta puesto a tierra por la misma razón. La corriente de CC tiene siempre el mismo sentido en cada devanado del secundario lo que provoca una corriente de debido a la magnetización excitación excesivamente elevada debido a la magnetización que produce la CC en el núcleo de hierro. El efecto resultante es un sobre calentamiento de los transformadores

(estos junto con las desventajas de un contenido mayor de rizado y una relación menor entre la tensión de CC y la tensión eficaz de CA aconseja el uso de la rectificación hexafásica, a pesar de que el factor de utilización del transformador sea algo inferior.)

14

Page 15: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

VoVef

=n√2π (sin 180n )

Vo=Vef n√2π (sin 180n )

Vo=Vef 3√2πVo=¿

Vef=3√2π (sin 1803 ) (sin 60 )

Vo=1.17Vef

Rectificador trifásico de onda completa

Para el rectificador trifásico de onda completa, en cada una de las terminales de salida de los devanados secundarios del transformador va conectado al cátodo y al ánodo de dos elementos rectificadores como se muestra en la figura 32, de esta forma cuando esta terminal de salida es positivo lo recibe del elemento cuyo cátodo tiene igualmente conectado.

15

Page 16: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

Vo=3Vpπ……….(1)

Vp=Vef √2….(2)

SUSTITUCION DE 2 EN 1

Vo=3Vef √2π

Vo=1.35Vef

16

Page 17: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

GLOSARIO

Amplificador Dispositivo electrónico usado en un circuito Para reforzar o aumentar una señal de entrada.

Borne Dispositivo fijado al extremo de un alambre o cable O un aparato, para hacer conexiones.

Frecuencia Núm. de ciclos de una corriente alterna por segundo.

Primario Nombre a signado a la bobina de un transformador Donde se recibe la alimentación de una fuente eléctrica.

Relevador Interruptor operado mediante electromagnetismo.

Secundario Nombre asignado a la bobina de un transformador Donde se tiene conectada la carga.

Termopar Dispositivo que consiste en dos tipos diferentes de Metales unidos por un extremo la juntura se calienta, Se produce un a través de los extremos externos de los Metales.

Tierra Conexión eléctrica entre un circuito y tierra, o entre un circuito o algún objeto de metal que toma el lugar de esta.

Transformador Dispositivo que transfiere energía de una bobina a otra por medio de la inducción electromagnética.

17

Page 18: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

CUESTIONARIO

1.- Para la construcción del rectificador puente con transformador se debe utilizar: ( )

a) Polaridad positivab) Polaridad negativac) Los dos casosd) Ninguno de los dos casos

2.- De la pregunta anterior el voltaje medio es: ( )

a) 0.318 Vmax.b) .0633 Vmax.c) 0.450 Vef.d) .900 Vef.

3.- ¿Cómo conducen los rectificadores en el puente mixto? ( )

a) La mitad de los rectificadores son controlables y la otra mitad no.b) Conducen primero una pereja de diodos y después la pareja de tiristores.c) Conducen primero la pareja de tiristores y después la pareja de diodos.d) Ninguno de los incisos son ciertos.

4.- En el puente de Graetz en cada dirección de la corriente se encuentran simpre la mitad de los rectificadores en: ( )

a) Serie b) Paraleloc) Mixtod) Ninguno de los tres casos

5.- La técnica para la amplificación de corrientes directas y alternas de relativamente bajas frecuencias es el amplificador muestreador: ( )

a) Graetzb) Chopperc) Thevenind) Ninguno de los tres

18

Page 19: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

EVALUACIÓN

1.- Con base en un esquema del puente de diodos que usted represente, explique su funcionamiento.

2.- Explique que entiende por voltaje máximo o pico y voltaje eficaz.

3.- Explique que es el voltaje medio.

4.- Del punto 2 y 3 escriba las fórmulas matemáticas.

5.- Escriba los distintos tipos de montaje de circuitos rectificadores.

19

Page 20: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

BIBLIOGRAFIA

Electrónica J. M. CalvertM. A. H. Mc CauslandEditorial Limusa

InstrumentaciónElectrónica moderna y técnica de mediciónWilliam D. CooperAlbert D. Helfrick

Aplicaciones del diodoEditorial Marcombo

20

Page 21: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

TRANSISTOR DE UNION BIPOLAR (BJT)

Esta formado de 3 capas de tipo PNP y tipo NPN, llamados con frecuencia bipolares, el término bipolar se refiere al uso de huecos y electrones, como portadores en la estructura del transistor.

Los transistores sos dispositivos de materiales semiconductores que pueden emplearse para controlar corrinete o amplificar un voltaje o corrinete de entrada y como interruptor electrónico.

Los transistores se fabrican combinando materiales tipo P y tipo N, los materiales se disponen como dos diodos conectados en oposición. Este arreglo forma tres capas llamadas colector, base y emisor.El emisor se representa por medio de una flecha que señala la dirección del flujo de huecos. Por convención se acepta que el emisor inyecta portadores mayoritarios a la base de modo que un emisor de tipo P se muestra con una flecha señalando hacia la base y un emisor de tipo N se representa con la flecha alejándose de la base, para indicar que se inyectan con electrones.

CONFIGURACIONES BÁSICAS DE OPERACIÓN DE LOS TRANSISTORES

La estructura del transistor solo tiene 3 capas: con nombres de base, emisor y colector, para un circuito de amplificación se necesitan dos bornes para la entrada y dos bornes para la salida, cuatro bornes en total.

Cada uno de los tres bornes del transistor puede ser utilizado como bornes común para la entrada y para la salida del circuito.

Se obtienen tres tipos de conexiones que son conocidos como: configuración de base común, configuración de emisor común y configuración de colector común. Según cuál de los bornes es el común para entrada y salida para el circuito.

21

Page 22: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

CONFIGURACIÓN DE BASE COMÚN

En la configuración del transistor la base es común tanto a la entrada como a la salida, a su vez se encuentran en el potencial de tierra, como se muestra en la figura siguiente.La flecha define la dirección de la corriente del emisor (flujo convencional) a través del dispositivo.

Todas las direcciones de corriente que aparecen en la configuración son las direcciones reales, definidas por medio de la dirección del flujo convencional, nótese, en cada caso, que IE = IC + IB.

Obsérvese que las polaridades aplicadas (fuentes de alimentación) son tales que permiten establecer una corriente en la dirección que se indica en cada rama. Es decir, se compara la dirección de IE con la polaridad de VEB, para cada configuración y la dirección de IC con la polaridad de VCB, en ambos casos la unión base emisor (BE) esta polarizada en directa, y que la unión base colector (BC) lo está en inversa.

22

Page 23: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

CONFIGURACIÓN DE EMISOR COMÚN

La configuración del emisor común es el que más aplicación tiene, hace referencia a las terminales tanto de entrada como de salida, para los dos tipos de transistores VBE polariza en directa la unión base emisor y VCB polariza en inversa la unión base colector.

23

Page 24: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

CONFIGURACIÓN DEL COLECTOR COMÚN

La configuración de colector común se utiliza sobre todo para propósitos de acoplamiento de impedancia debido a que tiene una alta impedancia de entrada y una baja impedancia de salida.Para todos los propósitos prácticos, las características de salida para la configuración de colector común son las mismas que para la configuración de emisor común.

24

Page 25: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

PARÁMETROS EN CD DEL TRANSISTOR

Con el objeto de analizar el comportamiento del funcionamiento de los parámetros eléctricos, considerar la configuración del transistor npn, en donde existen tres corrientes; lB, lE, lC, y tres voltajes: VBE, VCB, y VCE.

Donde VBB polariza en directa a la unión base emisor y VCC polariza en inversa a la unión base colector. Cuando la unión base emisor está polarizada en directa, se comporta como un diodo polarizado en directa y tiene una caída de voltaje de VBE = 0.7 VLas direcciones de corrientes convencionales en un transistor NPN se indican en la figura siguiente, donde la flecha en el emisor señala en la dirección de la corriente convencional, la corriente del emisor es la suma de las corrientes de colector y base.

lE = lC + lB.

lB es muy pequeña comparada con lE o con lC.

Para el circuito base emisor se tiene:

El voltaje a través de RB es:

VBB = VRB + VBE

VRB = VBB – VBE ………1

Si VRB = lB RB

Sustituyendo en 1

IB RB = VBB – VBE

IB = VBB – VBE/RB

EL VOLTAJE EN EL COLECTOR CON RESPECTO AL EMISOR PUESTO A TIERRA ES:

VCC = VRC + VCE

VCE = VCC - VRC

Si VRC = lC RC

VCE = VCC – lCRC

El voltaje entre la base y el colector es:

VCB = VCE - VBE

Del subíndice sencillo y doble se tiene:

25

Page 26: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

VCE = VC - VE

Donde

VCE = voltaje del colector emisor

VC = voltaje del colector a tierra

VE = voltaje del emisor a tierra

Si VE = 0 Volts se tiene

VCE = VC

Además

VBE = VB - VE

Si VE = 0 Volts se tiene

VBE = VB

BETA DE CD (βDC) Y ALFA DE CD (αDC).

La razón entre la corriente del colector lC y la corriente de la base lB es la beta o ganancia de corriente de cd (βdc) del transistor.

Βdc = lC / lB

Los valores típicos de βcd varían de 20 a 200 o puede ser más grande.La razón entre la corriente de colector de colector y la corriente del emisor del emisor lE es alfa de cd (αcd = lC / lE.

Los valores típicos de αcd varían de 0.95 a 0.99

Relación entre αcd y βcd

α cd = βcd / βcd + 1

βcd = α cd / 1 – α cd

26

Page 27: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

EJEMPLOS1.- Determine lB, lC, lE, VCE, VCB y α cd en el circuito de la figura si se tienen los valores siguientes:RB = 10 k Ω, RC = 100 Ω, VBB = 5 V, VCC = 10 V, βcd = 15

Solución

LB = VBB – VBE / RB = 5 V – 0.7 V / 10K Ω = 430 µA

LC = βcd LB = (150) (430µA) = 64.5 mA

α cd = βcd / βcd + 1 = 150 / 151 = 0.993

lE = lC / α cd = 64.5 mA / 0.993 = 64.95 mA

VCE = VCC - lCRC = 10 V – (64.5mA) (100Ω) = 10 V – 6.45 V = 3.55 V

VCB = VBE = 3.55 V – 0.7 V = 2.85 V

2.- Determine el voltaje VCB y la corriente lB para la configuración de base común de la figura siguiente.

Solución

Aplicando la ley de voltaje de Kirchhoff al circuito de entrada da.

-VEE + LE RE + vBE = 0

LERR = VEE – VBE

LE = VEE – VBE / RE

Sustituyendo valores se obtiene

LE = 4 V – 0.7 V / 1.2 KΩ = 2.75 mA

Aplicando la ley de voltaje de Kirchhoff al circuito de salida da

-VCB + LR RC - VCC = 0

VCB = VCC - LC RC donde LC = LE

VCB = 10 V – (2.75 mA) (2.4 KΩ) = 3.4 V

LB = LC / β = 2.75 mA / 60 = 45.8 µA

27

Page 28: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

EJERCICIOS

1.- Determine IB, IC, IE VCE y VCB para la configuración de emisor común de la figura, si se tienen los valores siguientes:

RB = 22 KΩ, RC = 220KΩ, VBB = 6 V, VCC = 9 V. β = 90

2.- Encuentre VCE, VBE, y VCB de la figura anterior con valores de

RB = 3.9 KΩ, RC = 180Ω, VBB = 5V, VCC = 15 V y β = 50

3.-Determine vce, vbe y Vcb de la figura siguiente si se tienen los valores de

RB = 27 KΩ, RC = 390 Ω, VBB = 3 V, VCC = 8 V, β =125

28

Page 29: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

POLARIZACIÓN DE LA BASE O CIRCUITO DE POLARIZACIÓN FIJA.

Consiste en polarizar un circuito con transistores, sin necesidad de utilizar una fuente de polarización de la base por separada. En los análisis hechos en el tema anterior sobre la operación o funcionamiento de los transistores se utilizó una batería VBB, para polarizar la unión base emisor, y otra VCC para polarizar la unión emisor colector. En esta ocasión se aplicara un método donde se utilizara una sola fuente o batería VCC de polarización en transistores como se observa en la figura siguiente: En el circuito de polarización fija las direcciones de corriente son las reales, y los voltajes están definidos por la dotación estándar de doble subíndice. Para fines de análisis la fuente debe ser Vcc de cd del circuito de polarización fija en las fuentes como se observa el circuito con fuentes separadas para obtener una separación de los circuitos de entrada y salida.

29

Page 30: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

CIRCUITO DE POLARIZACIÓN BASE

En este circuito base-emisor se tiene la ecuación de voltaje de Kirchhoff

Vcc – IBRB - VBE = 0

IBRB = Vcc – VBE

IB = Vcc – VBE / RB

Tomando en cuenta que la corriente de base es la corriente a través de RB, y de acuerdo con la ley de Ohm dicha corriente es el voltaje a través de RB dividido entre la resistencia RB. El voltaje a través de RB es el voltaje Vcc aplicado en un extremo menos la caída a través de la unión base-emisor VBE. Debido a que el voltaje Vcc y el voltaje base-emisor son constantes RB, Fija el nivel de la corriente de base para el punto de operación.

30

Page 31: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

CIRCUITO COLECTOR- EMISOR

En la figura siguiente del circuito colecto-emisor se representa la dirección de la corriente Ic indicada y la polaridad resultante a través de Rc. La magnitud de la corriente del colector está directamente relacionada a IB por lo que se tiene:

Ic = βIb

La aplicación de la ley de voltaje de Kirchhoff en la dirección del sentido de las manecillas del reloj alrededor del circuito cerrado, dará por resultado lo siguiente:

VCE + IcRc – Vcc = 0

VCE = Vcc – IcRc

Lo que establece que el voltaje a través del circuito colector-emisor de un transistor en la configuración de polarización fija o polarización de la base es el voltaje de alimentación menos la ciada a través de Rc:

EJEMPLOS

1.-Determinar la configuración de la polarización fija lo siguiente:

a) IB e Ic, b) VcE , c) VB Y Vc, d) VBC

β= 50

31

Page 32: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

POLARIZACION DE LA BASE

Solución:

1) IB = Vcc – VBE / RB = 12V – 0.7V / 240 K Ω = 47.08 µA

Ic = βlB = (50)(47.08 µA = 2.35 ma

2) VCE = Vcc – Ic Rc

= 12V – (2.35mA)(2.2 KΩ) = 6.86V

3) VB = VBE = 0.7V

Vc = VcE = 6.83V

4) La utilización de la notación del subíndice sencillo y doble previa da por resultado.

VBC = VB – Vc = 0.7V –6.83V = -6.13V

El signo negativo indica que la unión tiene polarización inversa, como debe ser para la amplificación linea

POLARIZACIÓN POR DIVISOR DE VOLTAJE

La configuración de polarización por divisor de voltaje resistivo que consta de R1 y R2 desarrollan un voltaje de polarización de cd en la base del transistor punto A, donde se forman dos caminos de la corriente hacia tierra, uno a través de R2 y el otro a través de la unión base-emisor, como se observa en la figura siguiente.

32

Page 33: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

EXISTEN DOS MÉTODOS QUE PUEDEN APLICARSE PARA ANALIZAR LA POLARIZACIÓN DEL DIVISOR DE VOLTAJE.

Método exacto que puede aplicarse en cualquier configuración de divisor de voltaje.

Método aproximado puede aplicarse a la mayoría de las situaciones y, por tanto, debe ser examinado con el mismo interés que el método exacto.

ANÁLISIS DEL MÉTODO EXACTO

De la configuración anterior de polarización mediante divisor de voltaje, se representa la figura siguiente, para el análisis en cd. Donde el punto de la terminal de la base lado izquierdo se tiene el circuito con las resistencias R1 y R2 e paralelo.

De la figura anterior para determinar la Requivalente Thevenin, la fuente de voltaje Vcc se reemplaza por un corto circuito equivalente como se observa en la figura siguiente.

33

Page 34: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

Req Tth = R1 X R2 / R1 + R2

Para obtener el Eth voltaje de base aplicamos la regla del divisor de voltaje a la figura siguiente:

ETh = VR2 X Vcc / R1 + R2

De la figura siguiente para calcular la corriente de base le aplicamos la ley de voltaje de Kirchhoff en la dirección de las manecillas del reloj.

Dónde:

VB = ETh

Requi = RTh

De la figura obtenemos:

ETh – iERTh – VBE – IERE = 0

Sustituyendo IE = (β + 1) IB y despejando a IB se tiene:

ETh – IBRTh – VBE -- (β + 1) IERE = 0

IBRTh + (β + 1) iERE = ETh – VBE

IB (RTh + (β + 1) RE) = ETh – VBE

Donde:

34

Page 35: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

IB = ETh – VBE / RTh + (β + 1) RE

Conociendo la IB, se conoce:

VCE = Vcc – Ic (Rc + RE)

Los valores para VE, Vc, y VB son las mismas que se obtuvieron para la configuración de polarización en emisor.

EJEMPLO

De la figura siguiente determine el voltaje de polarización de dc. VCE y la corriente Ic para la configuración del divisor de voltaje donde: Vcc = 22v, R1 = 39K Ω, R2 = 3.9KΩ, Rc = 10KΩ, RE =

1.5KΩ y β=140.

SOLUCION:

RTH. = R1 x R2 / R1 + R2

=39K Ω x 3.9KΩ / 39K Ω + 3.9KΩ = 3.55kΩ

ETh = R2 x Vcc / R1 + R2 = 3.9KΩ x 22v / 39K Ω + 3.9KΩ = 2v

IB = ETH – VBE / RTH + (β + 1) RE. = 2V – 0.7V / 3.55KΩ + 141 x 1.5KΩ

= 1.3V / 3.55KΩ + 211.5KΩ = 6.05µA

Ic = βIB = 140 X 6.05µA = 0.85mA

VCE = Vcc – Ic (Rc + RE) = 22V – (0.85mA) (10KΩ + 1.5KΩ) = 22V – 9.78V = 12.22V

35

Page 36: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

ANÁLISIS DEL MÉTODO APROXIMADO

La Resistencia de entrada RENT es la resistencia equivalente entre la base y tierra para el transistor con un resistor de emisor RE.

la resistencia de entrada entre la base y el emisor está definida por la expresión:

RENT = (β + 1) RE

Si RENT = (β + 1) RE = Βre, la condición que definirá, en caso de que pueda aplicarse a la aproximación, será lo siguiente:

βRE>≥ 10R2

Si β a veces es el valor de RE es por lo menos 10 veces el valor de R2, la aproximación podrá aplicarse con un alto grado de precisión,

El voltaje a través de R2, Que es el voltaje base, se calcula mediante la regla del divisor de voltaje

VB = R2 x Vcc / R1 + R2

Obtenido VB, se puede calcular VE

VE = VB –VBE

La corriente del emisor se calcula mediante:

IE = VE / RE

Ic = IE

El voltaje del colector emisor se encuentra determinado por:

VCE = Vcc - IcRc – IERE

SI IE = Ic

VCE = Vcc – Ic(Rc + RE)

EJEMPLOS

1.- resolver el ejemplo anterior utilizando el método aproximado y comparar resultados.

βRE ≥RE

(140)(1.5KΩ) ≥ 10(3-9KΩ)

210KΩ ≥ 39KΩ

Cuando βRE es mayor que 10 veces R2 se cumple la condición βRE ≥ 10R2 y la resistencia de entrada RENT puede despreciarse y se calcula VB.

VB = R2 x Vcc / R1 + R2

36

Page 37: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

VB = 3.9KΩ x 22V / 39 kΩ + 3,9kΩ = 2v

Entonces

VE = VB – VBE

VE = 2V – O.7V = 1.3V

SI Ic = IE = VE / RE = 1.3V / 1.5KΩ = 0.88mA

Comparada con 0.85mA Con el análisis exacto

Dónde:

VCE = Vcc – Ic (Rc + RE)

= 22V – (0.867mA) (10kΩ + 1.5kΩ)

= 22V – 9.97V = 12.03V

Comparada contra 12.22V obtenida en el análisis exacto

Por lo que se observa los resultados para Ic y para VCE son casi iguales.

2.- Determine Ic y VCE en la figura siguiente, en donde β = 100 para el transistor de silicio.

37

Page 38: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

SOLUCION:

RENT = βRE

ΒRE ≥10R2

100 (560K Ohms)≥10(5.6k ohms)

56K Ohms ≥ 56K Ohms

La condición de βRE ≥ 10R2 se cumple, por esta razón se desprecia la resistencia de entrada y se aplica el análisis aproximado, y se calcula VB.

VB = R2 _(Vcc) / R1 + R2

VB = 5.6KΩ (10V) / 10KΩ + 5.6KΩ

VB = 3.589V

Si se conoce VB se puede determinar VE

VE = VB – VBE

VE = 3.589V – 0.7V

VE = 2.89 V

Si:

IE = VE / RE

IE = 2.89 V / 560Ω

38

Page 39: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

IE = 5.16mA

Dónde:

IE = Ic

Ic = 5.16mA

Y

VCE = Vcc – IE (Rc – RE)

VCE = 10V – 5.16mA (1KΩ + 560Ω)

VCE = 1.95V

39

Page 40: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

TIRISTORES

El tiristor está formado por cuatro capas PNPN, con material semiconductor sólido y utiliza realimentación interna para producir un nuevo tipo de conmutación y sirve como rectificador y como amplificador, puede considerarse como una pareja de transistores de distintas polaridades con dos elementos en común, de los tres que componen cada transistor.

Las terminales principales del tiristor son: Ánodo, Cátodo y compuerta electrones que van del ánodo al cátodo, está controlada por un electrodo de mando llamado compuerta. Es un elemento unidireccional, una vez amplificada la señal de mando a la compuerta, el dispositivo deja de pasar una corriente que solo puede tener un único sentido.

La principal aplicación de estos dispositivos es el control de grandes corrientes de carga para motores, calentadores, sistemas de iluminación y otros dispositivos semejantes.

Las dos terminales principales del tiristor son el ánodo y el cátodo en la circulación entre ellos de corriente directa (electrones que van del cátodo al ánodo o corriente que va del anodo al cátodo) está controlada por un electrodo de mando llamado “compuerta”. Es un elemento unidireccional, una vez aplicada la señal de mando a la compuerta, el dispositivo deja de pasar una corriente que solo puede tener un único sentido.

El tiristor realiza varias funciones que enseguida se indican

1) Rectificación: consiste en usar la propiedad de funcionamiento unidireccional del dispositivo, el cual realiza entonces la función de un diodo.

2) Interrupción de corriente: es usado como interruptor, el tiristor puede remplazar a los contactares mecánicos.

3) Regulación: la posibilidad de ajustar el momento preciso de cebado permite emplear el tiristor para gobernar la potencia de la corriente medida de salida.

40

Page 41: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

4) Amplificación: puesto que la corriente de mando puede ser muy débil en comparación con la corriente principal, se produce un fenómeno de amplificación en corriente o en potencia.

El tiristor bajo tensión (en estado de bloqueo)

Consideramos que el cátodo del tiristor esta siempre a tierra y que la compuerta no está conectada, en estas condiciones se puede preparar el tiristor a tres diodos conectados en oposición, en efecto las capas P2N 2 y P1N 2 forman diodos que aseguran el aguante en tensión del dispositivo.

De esta forma:

Si el ánodo es positivo, el elemento esta polarizado directamente pero el diodo P1N 2 bloquea la tensión aplicada.

Si por el contrario, el ánodo es negativo, los diodos P2N 2 y P1N 1 tiene polarización inversa. Por

ser débil la tensión de avalancha de P1N 1

, su papel es despreciable y es P2N 2 el que ha de limitar la corriente inversa de fuga.La tensión máxima viene limitada, prácticamente por la tensión de avalancha de los diodos P2N 2 y P1N 2.

41

Page 42: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

Funcionamiento del tiristor bajo tensión directa

Se comprenderá mejor el funcionamiento del tiristor si nos referimos al arreglo con dos transistores PNP y NPN que resulta equivalente.

Estos dos transistores están conectados de forma que se obtenga una realimentación positiva.

Supongamos que sea positiva la región P2 con relación a N1. Las uniones J3 y J1 emiten portadores positivos y negativos respectivamente, hacia las regiones N2 y P1. Estos portadores, tras su difusión en las bases de los transistores, llegan a la unión J2, donde la carga crea un intenso campo eléctrico.

Siendo (α2) la ganancia de corriente que da la fracción de la corriente de huecos inyectada en el emisor y que llega al colector del PNP, siendo por otro lado (α1) la ganancia de corriente que da la fracción de la corriente de electrones inyectada en el emisor que llega al colector NPN.

Familia de los tiristores

El tiristor tiene dos estados estables que dependen de los efectos de realimentación de las uniones en la estructura PNPN. Estas uniones pueden ser dos o más y los elementos puede ser uni-o bidireccionales, con dos o más terminales, distinguiéndose entonces entre “diodos” (dos terminales), “tríodos” (tres terminales) y “tetrodos” (4 terminales).

Dentro de esta familia se distinguen:

42

Page 43: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

1. Diodo shockley o diodo tiristor, también llamado diodo de 4 capas, fig. 1.

2. Rectificador controlado de silicio (SCR), se trata de elementos unidireccionales, con tres terminales (ánodo, cátodo y compuerta), fig. 2

3. Interruptor controlado de silicio o SCS; tetrodo de dos electrodos de mando, fig. 3

43

Page 44: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

4. Triac; se denominan también “tiristores tríodos bidireccionales”, fig. 4

5.- Diac puede conducir corriente en cualquier dirección y se enciende cuando se excede un voltaje de ruptura. Se apaga cuando la corriente cae por a bajo del valor de retención

6.- PUT: El transistor de unijuntura programable ( put) puede programarse externamente a encendido a un nivel de voltaje ánodo-compuerta deseado.

44

Page 45: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

7.-La SCR: La luz actúa como fuente de disparo en los SCR activados por luz (LA SCR)

8.-Fototransistor: En un fototransistor, la corriente de base es generada por entrada de luz.

9.-TRANSISTOR DE UNIJUNTURA (U.J.T.) :La razón de espera intrínseca de un transistor de unijuntura (UJT) determina el voltaje al que el dispositivo se dispara encendido.

45

Page 46: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

Rectificador controlado de silicio (SCR)

El rectificador controlado de silicio está constituido por cuatro capas PNPN y tres terminales externas ánodo (A), cátodo (K) y compuerta (G) que se utilizan para el control de energía de c. a. y c. d., es un dispositivo de material semiconductor y mediante el cual es posible no sólo rectificar una corriente alterna, sino además controlar el paso de la misma a través de el y, como consecuencia a través de cualquier carga conectada en serie con él.

En la terminología técnica se utiliza, además de la palabra tiristor, la de thyrtristor, la de rectificador controlado de silicio y la abreviatura SCR (Silicon Controller Rectifier).

Este dispositivo cuando se enciende permite que fluya corriente a través de el en una sola dirección mediante la aplicación de voltaje polarizado de ánodo a cátodo. El circuito anodo-catodo no es, normalmente conductor en ninguna de las dos direcciones. Se requiere un valor mínimo de corriente de ánodo, que se conoce como corriente de retención para mantener al SCR en conducción.

Comúnmente un SCR se dispara por medio de un voltaje positivo aplicado a la compuerta, y se apaga reduciendo el voltaje de

ánodo a cátodo por debajo del valor requerido para mantener la corriente de retención.

La compuerta de un SCR es aproximadamente equivalente a un diodo, por esta razón, son necesarios al menos 0.7 volts para disparar un SCR, además, para que se inicie la realimentación positiva se requiere una corriente de entrada mínima.

Actualmente existe una gran variedad de SCR de fácil adquisición en el comercio con potencia desde miliwatts hasta megawatts, con corrientes tan altas como 1000 A.

Algunos campos de aplicación comprenden controles de relevador, alimentadores reguladas de potencia, controles para motores, cargadores de batería y controles de calefacción.

En la figura 9, se muestra una curva característica de corriente IA directa-inversa de ánodo como una función de voltaje directo-inverso de ánodo a cátodo VAK.

Si se le aplica suficiente voltaje directo o inverso entre el ánodo y el cátodo, el SCR entra en ruptura y se satura sin importar cual sea el potencial de la compuerta. (IG = 0).

Sin embargo, la caída a través de SCR en dirección directa disminuye al mínimo la saturación de VAK

(aproximadamente 0.7 volts), debido a que se establece la regeneración y el SCR funciona como si la compuerta hubiera disparado a conducción. La curva muestra en el disparo de compuerta (IG1 e IG2) reduce el voltaje directo de ruptura. Cuando fluye corriente directa , se requiere un valor de corriente mínimo IH (corriente de retención) para mantener la conducción, pues en caso contrario el SCR se apaga automáticamente.

Se puede apagar el SCR reduciendo VAK a un valor tal que la corriente directa IA sea inferior a la corriente IH de retención. La aplicación de una corriente de mando en la compuerta desplaza, hacia la derecha del punto de disparo Vd. El disparo se provoca por el aumento de la tensión directa. Cuando es nula la tensión V, lo es también la corriente IA.

46

Page 47: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

Operación básica del rectificador controlado de silicio

La operación del SCR es diferente al de la del diodo semiconductor de dos capas en que una tercer terminal, denominado compuerta, determina cuanto conmuta el rectificador controlado de silicio del estado de circuito abierto al de circuito cerrado.

No es suficiente polarizar simplemente la región ánodo - cátodo del dispositivo. En la región de conducción la resistencia dinámica del SCR es típicamente 0.01 a 0.1 ohms. La resistencia inversa es típicamente 100K ohms o más.

Si se tiene que establecer la conducción directa, el ánodo debe ser positivo con respecto al cátodo. Esto sin embargo, no es un criterio suficiente para poner el dispositivo en conducción. Un pulso de magnitud suficiente también debe aplicarse a la compuerta para establecer una corriente de encendido, representada simbólicamente por IGT.

Un examen más detallado de la operación básica de un SRC se logra mejor separando la estructura de 4 capas del PNPN en dos estructuras transistorizadas de tres capas y posteriormente considerando el circuito resultante de la figura siguiente.Note que el dispositivo de la figura 10 es un transistor PNP y un transistor NPN.

47

Page 48: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

Estado de no conducción del SCR (circuito abierto)

La señal que se muestra en la figura (a) será aplicada a la compuerta del circuito de la figura (b), durante el intervalo 0 – t1, Vcompuerta = 0V, es equivalente a que el terminal de compuerta se haya puesto a tierra como se muestra en la figura (b) Para VBE2 = Vcompuerta = 0V, la corriente

de la base IB2 = 0 e IC2 será aproximadamente igual a ICO (corriente de circuito abierto): la

corriente de base de Q1, IB1 = IC2= ICO, es demasiado pequeña para hacer conducir Q1. Ambos transistores están por consiguiente en el estado de corte, obteniéndose una aalta impedancia entre el colector y el emisor de cada transistor y la representación el circuito abierto para el rectificador controlado de silicio que se muestra en la figura (c).

48

Page 49: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

Estado de conducción del scr.

En t = t1 un pulso de VG volts aparecerá en la compuerta del SCR. Las condiciones del circuito establecidas con esta entrada son las que se muestran en la figura (12ª). El potencial VG fue elegido suficientemente grande para llevar a conducción a Q2 (VBE2 = VG).

La corriente de colector de Q2 se elevara entonces a un valor suficiente alto para hacer conducir Q1 (B1 = IC2). Cuando Q1 conduce IC1 se aumentara, traduciéndose en un incremento correspondiente a IB2, el incremento en la corriente de base de Q2 se traducirá en un incremento posterior en IC2 . el resultado neto es un incremento regenerativo en la corriente del colector de cada transistor.

La resistencia ánodo – cátodo resultante SCR = V / (IA algo grande) es entonces muy pequeña, resultado en una representación de corto circuito para el SCR como se indica en la figura 11(b).

La acción regenerativa descrita antes es la causa de que el SCR tenga tiempo de encendido en el rango de 0.1 a 1 microsegundo, sin embargo, los dispositivos de potencia mas alta en el rango de 100 a 400 pueden tener tiempo de encendido de 10 a 25 microsegundos

Interruptor apagado por compuerta (GTO)

El interruptor apagado por compuerta (GTO) es un dispositivo PNPN como el SCR, sin embargo, tiene solamente tres terminales externos, como se indica en la figura (13 a), su símbolo grafico se muestra en la figura (13 b). aunque el símbolo grafico es diferente del SCR, el circuito equivalente transistorizado es exactamente el mismo y las características son similares.

49

Page 50: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

Fig.13 interruptor apagado por compuerta (GTO): a) construcción básica : b) símbolo.

La ventaja más obvia del GTO sobre el SCR es el hecho de que puede ser encendido o apagado aplicando el uso adecuado a la compuerta cátodo.

.una consecuencia de esta capacidad de encendido es un aumento de la magnitud de la corriente compuerta requerida por el disparo. Para un SCR y un GTO de especificaciones de

corriente rms máximas similares, la corriente de compuerta – disparo de un SCR particular es de 30 microsegundos, mientras que la corriente disparo del GTO es 20 miliamperios. La corriente de apagado del GTO es ligeramente más grande que la que se requiere para encenderla. La corriente máxima rms y la especificación de disipación de los GTOs fabricados hoy en día está limitado a alrededor de 3ª y 20W respectivamente. Una segunda características muy importante del GTO es la característica de conmutación mejorada.

Es tiempo de encendido es similar al del SCR que es típicamente (1 microsegundo), pero el tiempo de apagado es alrededor de la misma duración (1 microsegundo) que es mucho menor que el tiempo típico de apagado de un SCR (5 a 30 microsegundos). El hecho de que el tiempo de apagado sea similar al tiempo de encendido es vez de que sea considerablemente mayor permite el uso de este dispositivo en aplicaciones de alta velocidad.

Un GTO típico y su identificación de terminales se muestra en la figura 14. La característica de entrada de compuerta del GTO y los circuitos de apagado pueden encontrarse en un manual o en una hoja de especificaciones. La mayoría de los circuitos de apagado del SCR también pueden utilizarse para los GTOs.

Algunas áreas de aplicación de los GTO comprenden contadores, generadores de pulso multivibradores, y reguladoras de voltaje. La figura 15 ilustra un generador en diente dde sierra que emplea un GTO y un diodo zener.

Cuando la fuente de suministro se energiza, el GTO se enciende, resultando un corto circuito equivalente del ánodo y el cátodo.

El condensador C1 comenzara a cargarse hacia el voltaje de suministro como se muestra en la figura 15. Cuando el voltaje a través del condensador C1 se carga sobre el potencial zener, se obtendrá una inversión en el voltaje compuerta a cátodo, estableciendo una inversión en la corriente de compuerta. Eventualmente, la corriente negativa de compuerta será lo suficientemente

50

Page 51: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

alta para apagar el GTO. Una vez que el GTO se apaga, se obtiene la representación del circuito abierto. El condensador C1 se descargara a través de la resistencia R3.

El tiempo de descarga será determinado por la constante de tiempo del circuito T = R3C1.La elección adecuada de R3 y C1 se traducirá en la forma de onda de diente de sierra de la figura 15. Una vez que el potencial V0 cae por debajo de V Z , el GTO se encenderá y el proceso se repetirá.

51

Page 52: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

GLOSARIO

Ánodo Terminal positiva de una pila o batería. EnUn dispositivo semiconductor solidoel ánodo el elemento a cual se le aplicaun voltaje positivo.

Cátodo Terminal negativa de una pila. Parte de undispositivo semiconductor electrónico desdeel cual se emiten los electrones.

Circuito Sistema de conductores y dispositivos através de los cuales los electrones puedenmoverse.

Circuito abierto circuito que se encuentra interrumpido

Circuito cerrado Circuito completo que cierra su trayectoria

Compuerta Electrodo de mando para disparar un SCR.

Corriente Movimiento de los electrones libres a lo largo de un Conductor.

Corriente alterna Movimiento de electrones atreves de un conductor,primero en un sentido y después en el

sentido contrario.

Corriente directa Movimiento de electrones atreves de conductor en un en un solo sentido.

Diodo Dispositivo de estado sólido de germanio o silicio empleado para rectificar una corriente alterna, que conduce la corriente en un solo sentido.

Electrónica Estudio del flujo de los electrones y de su movimiento a través del espacio y de materiales conductores especiales.

Energía Capacidad para realizar trabajo.

52

Page 53: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

IGT Corriente de compuerta o corriente de encendido.

IH Corriente de retención o sostenimiento.

Impedancia Oposición total de un circuito a una corriente alterna.

Juntura Sección donde se unen dos tipos de Materiales.

PIV Voltaje inverso pico.

Polaridad Condición eléctrica que determina la dirección de la corriente. En un circuito, los electrones Se mueven desde un punto de polaridad negativa a un punto de polaridad positiva. Polarización Proceso mediante el cual el gas hidrogeno se deposita en el electrodo positivo de una pila seca.

Potencia Energía eléctrica latente.

Rectificación Cambio de la corriente alterna o corriente continua.

Resistencia La posición que presenta un dispositivo o substancia al movimiento de la corriente

eléctrica.

SCR

Materiales sólidos que en su estado puro y a temperatura ambiente normal, no es buen conductor ni buen aislador.

53

Page 54: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

Dispositivo semiconductor unidireccional formado por cuatro capas PNPN y sirve como rectificador o como amplificador.

Dispositivo semiconductor sólido empleado para amplificar señales eléctricas.

Fuerza electromotriz que mueve a los electrones a través de un circuito.

54

Page 55: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

CUESTIONARIO

1.- Para la construcción del rectificador puente con transformador se debe utilizar: ( )

a) polaridad positivab) polaridad negativac) los dos casosd) Ninguno de los casos

2.-De la pregunta anterior el voltaje medio es: ( )

a) 0.318 Vmax.b) 0.633 Vmax.c) 0.450Vef.d) 0.900Vef.

3.- ¿Cómo conducen los rectificadores en el puente mixto? ( )

a) La mita d de los rectificadores son controlables y la otra mitad no.b) Conducen primero una pareja de diodos y después la pareja de tiristores.c) Conducen primero la pareja de tiristores y después la pareja de diodos.d) Ninguno de los incisos son ciertos.

4.- En el puente Graetz en cada dirección de la corriente se encuentran siempre la mitad de los rectificadores en: ( )

a) Serieb) Paraleloc) Mixtod) Ninguno de los tres pasose)

5.- La técnica para la amplificación de corrientes directas y alternas de relativamente bajas frecuencias es el amplificador: ( )

a) Graetzb) Chopperc) Thevenind) Ninguno de los tres

55

Page 56: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

Evaluación

1.- Con base en un esquema del puente de diodos que usted represente explique su funcionamiento.

_________________________________________________________________________________________________________________________________________________________________________________________________________________________________

2.- explique que entiende por voltaje máximo o pico y voltaje eficaz.

______________________________________________________________________________________________________________________________________________________

3.- Explique que es el voltaje medio.

______________________________________________________________________________________________________________________________________________________

4.- Del punto 2 y 3 escriba las fórmulas matemáticas.

______________________________________________________________________________________________________________________________________________________

5.- Escriba los distintos tipos de montajes de circuitos rectificadores.

______________________________________________________________________________________________________________________________________________________

56

Page 57: Libro de electronica de potencia s

ELECTRONICA DE POTENCIA

BLIBLIOGRAFIA

Electrónica

J.M. Calvert

M.A.H. Mc Causland

Editorial Limusa

Instrumentación

Electrónica moderna y Técnica de Medición

William D. Cooper

Albert D. Helfrick

Aplicaciones del diodo

Editorial Marcombo

oplado donde se pierde la componente de cd.

57