lesson 2: space mission geometry

20
Lesson 2: Space Mission Geometry Dr. Andrew Ketsdever MAE 5595

Upload: others

Post on 04-Feb-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lesson 2: Space Mission Geometry

Lesson 2: Space Mission

Geometry

Dr. Andrew KetsdeverMAE 5595

Page 2: Lesson 2: Space Mission Geometry

Space Mission Geometry

• Must specify an appropriate coordinate system– Earth fixed– Spacecraft fixed– Other

• Coordinate system must have a specified– Origin– Fixed point

Page 3: Lesson 2: Space Mission Geometry
Page 4: Lesson 2: Space Mission Geometry
Page 5: Lesson 2: Space Mission Geometry

Earth Geometry Viewed from Space

Page 6: Lesson 2: Space Mission Geometry

Mission Viewing Geometry

angle. grazingor angleelevation satellitesatelliteby seen angleearth maximum

footprint) ofboundary (defines radiusearth angular n)combinatioany or Long, (Lat, angle centralearth

nadir from angle target torangeslant

satellite of altitudeearth of radius

0

========

ελρληDHRE

Page 7: Lesson 2: Space Mission Geometry

λρλρη

cossin1sinsintan

−=

ρηε

sinsincos =

2πελη =++

ηλ sinsin DRE =

( ) 22max ⊕⊕ −+= RHRD

( ) ( ) λcos222 HRRHRRD +−++= ⊕⊕⊕⊕

HRR+

==⊕

⊕0cossin λρ

Page 8: Lesson 2: Space Mission Geometry

Special Cases

Note,- If point of interest is SSP: 0 ,90 ,0 === λεη o

- If point of interest is true outer horizon: ρλερη −=== o90 ,0 ,

λ

λ0 ε D

H

ρ η

R⊕

Dmax

SSP

True outer horizon

Page 9: Lesson 2: Space Mission Geometry

Satellite Motion for an Earth Observer

Circular, LEO

Page 10: Lesson 2: Space Mission Geometry

Total Time in ViewFor a LEO satellite, assume brief pass (ignore Earth’s rotation). The time in view, T, for the satellite is given by:

( )180/coscoscos

180

maxmax

min

max1

λλλ

PeriodT

PeriodT o

=

= −

maxminmax 90 ηελ −−= o

minmax cossinsin ερη =

( ) ( ) ( ) ( ) ( )longlatlatlatlat GSpoleGSpole ∆+= coscoscossinsinsin minλ

pass of at time node ascendingorbit whereinertial)not c,(geographiEarth of longitude

90station ground and poleorbit between longitudein difference

station ground of latitude

90

=

−=

=∆=

−=

node

nodepole

GS

pole

L

Llonglong

lat

ilat

o

o

where:

Page 11: Lesson 2: Space Mission Geometry

Satellite Slew Rate

• Maximum Slew Rate for a Satellite

( )minmin

max2PeriodD

HRDV Esat +

==• πθ

=

min

minmin sin

sinηλ

ERD

Page 12: Lesson 2: Space Mission Geometry

Satellite Motion for an Earth Observer

Dominant factor:

(a) Inclination

(b) Eccentricity

center of ground track

(a) (b)

h

ω

GEO

Page 13: Lesson 2: Space Mission Geometry

GEO Ground Track

equator

28.50 N

10 km rectenna array—beamwidth

0.8×10-2 deg

ground track—maximum latitude

SPS in 28.50 inclined orbit

Page 14: Lesson 2: Space Mission Geometry

Sirius Radio Satellite Constellation

• Mission: – Continuous radio broadcasts over North

America– Radio reception to remote areas

• What mission geometry would you choose?

Page 15: Lesson 2: Space Mission Geometry

• Geosynchronous• 60 deg inclination• Highly eccentric• Apogee over N.

Hemisphere

Page 16: Lesson 2: Space Mission Geometry

Sirius Constellation

Page 17: Lesson 2: Space Mission Geometry

How Did XM Do It?• Named "Rock" and "Roll,"

XM Radio’s two Boeing HS 702 satellites were placed in parallel geostationary orbit (GEO), 35,764 km above Earth.

• The first XM satellite, "Rock," was launched on March 18, 2001, with "Roll" following on May 8th.

Page 18: Lesson 2: Space Mission Geometry

Sirius and XM Constellations

http://www.dogstarradios.com/sirasasecoma.html

Page 19: Lesson 2: Space Mission Geometry

Swath Width

Page 20: Lesson 2: Space Mission Geometry

Eclipse

• Knowing the mission geometry leads to a simple calculation for the eclipse time for a satellite (SMAD has a more complicated analysis)

+

= −

HRR

E

E1sinρ

xPeriodTEo360

2ρ=