leds and lighting controls: the second tsunami

58
LEDs and Lighting Controls: The Second Tsunami On behalf of the U.S. Department of Energy and NETL Morgantown LEDs and Lighting Controls: The Second Tsunami The Second Tsunami Dr. John W. Curran, Dr. John W. Curran, President, LED Transformations, LLC This session is eligible for 2 Contact Hours. To earn a certificate you must: Have your badge scanned at the door – Attend 90% of this presentation Fill out the online evaluation for this session Fill out the online evaluation for this session

Upload: lyquynh

Post on 28-Dec-2016

237 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: LEDs and Lighting Controls: The Second Tsunami

LEDs and Lighting Controls: The Second Tsunami

On behalf of the U.S. Department of Energy and NETL Morgantown

LEDs and Lighting Controls: The Second TsunamiThe Second Tsunami

Dr. John W. Curran,Dr. John W. Curran,President, LED Transformations, LLC

This session is eligible for 2 Contact Hours.

To earn a certificate you must:– Have your badge scanned at the door– Attend 90% of this presentation

Fill out the online evaluation for this session– Fill out the online evaluation for this session

Page 2: LEDs and Lighting Controls: The Second Tsunami

Copyright  Materials

This presentation is protected by US and International copyright laws.  Reproduction, 

distribution, display and use of the presentation without written permission of 

f i C i hibi dLED Transformations, LLC is prohibited.

© 2014 LED Transformations, LLC

3

Course DescriptionCourse DescriptionLEDs and Lighting Controls: The Second Tsunami

This presentation will examine the future of the lighting industry, as LEDs become the dominant light 

d li h i l b l isource and lighting controls become commonplace in almost all applications. The new age of “personal lighting ” will forever change how lighting is usedlighting,  will forever change how lighting is used, allowing occupants to set personal preferences for their environment while the use of color and visual clues will allow the environment to communicate with building occupants in new and exciting ways.

4

Page 3: LEDs and Lighting Controls: The Second Tsunami

Learning ObjectivesLearning ObjectivesLEDs and Lighting Controls: The Second Tsunami

• Discuss how lighting controls will expand to include all lighting environments and what attendees must do to prepare for that expansion

• Examine the implications to business as the ability of LEDs to provide almost unlimited color choices vastly expands the use of color to affect mood and health of building goccupants

• Explain what the new lighting paradigm of "personal lighting" controls will mean as controls and LEDs blend intolighting  controls will mean as controls and LEDs blend into one comprehensive offering

• Determine how to support new lighting applications which will allow building elements to communicate withwill allow building elements to communicate with occupants

5

Course Outline

1. LED Technology – Where are we?

2. Color and the Eye – How the optic system senses C y p ycolor

3. LEDs & Lighting Control – A natural synergy

4. Lighting Control Systems – LED light, data and communications

5 Th F t LED OLED d th d fi iti f5. The Future – LEDs, OLEDs and the definition of a "luminaire"

6. Preparing for the Future – What6. Preparing for the Future What businesses should be doing now

6

Page 4: LEDs and Lighting Controls: The Second Tsunami

LED TechnologyLEDs Lighting Market Share G i i ll t

100

2010

LEDs Lighting Market Share – Growing in all segments

020406080

Incandescent

Halogen

HID

Linear Fluorescent 2016Resid

ential

Office

Industrial

Shopping

Hospitality 

Outdoor

Arch

itectu

ral

Compact Fluorescent

LED

406080100

2016

Incandescent

Halogen

020

Resid

ent

Office

Industri a

Shopping

Hospitali

Outdoor

Arch

itect

HID

Linear Fluorescent

Compact Fluorescent

LED

6080

100

2020

Incandescent

Data Source:  McKinsey & Company ‐ Lighting the way:  Perspectives on the global lighting market, McKinsey & 

tial

al g ity 

tural

0204060

Resid

Offic e

Indus

Shopp

Hospi

Outdo

Arch

it

Halogen

HID

Linear Fluorescent

Compact Fluorescentp g g g , y

Company, July 2011

ential

e strial

ping

itality 

oor

tectu

LED

7

LED TechnologyPerformance LED ffi j tiPerformance – LED efficacy projections

SSL R&D Multi‐Year Program Plan, May g , y

2014

8

Page 5: LEDs and Lighting Controls: The Second Tsunami

DesignLights Consortium It i h t l kiLED Technology

DesignLights Consortium – It is where customers are looking

53,991 products listed as of 8‐13‐14

Source:  DesignLights Consortium Data Base

9

LED TechnologyTerminology S h t t i d fi iti

One photon has energy Ep() = hc/pwhere h is Planks' constanti h d f li h

Terminology – Some photometric definitions

c is the speed of lightand p is the photon's wavelength

Spectral Power P() {in watts} = n Ep()/sec   which is just the number of photons (n} emitted           j p ( }by the light source per second times the energy    per photon

Intensity () {in candela} = 683 P() V() / where P() is the spectral powerwhere P() is the spectral power,  V() is the eye response (luminosity) function, is the solid angle {in steradians} into which the light is emittedand 683 is a correction factor 

If the light source has multiple  wave‐lengths, the total luminous intensity is found by integrating over all wavelengthsy g g g

= 683  P() V() d 

10

Page 6: LEDs and Lighting Controls: The Second Tsunami

LED TechnologyTerminology S h t t i d fi iti

Luminous Flux (lumen) is proportional to the number of photons emitted per 

Terminology – Some photometric definitions

Asecond corrected for the eye's response

Luminous Intensity (candela) is 

A

By ( )

proportional to the density of photons emitted per second into a specific solid angle (corrected for the eye's response)

Illumination (ft‐cd / lux) is proportional to the density of photons per second falling on a given surface (corrected for the eye'sNote that anywhere within the solid angle on a given surface (corrected for the eye s response) with the surface having dimensions of square feet (ft‐cd) or square meters (lux)

Note that anywhere within the solid angle (cone), the luminous intensity is the same.  However, if surface A is twice the radius of surface B, the illumination on surface A will be ¼ the illumination on surface B

11

LED TechnologyEnergy Reduction Requirements ASHRAE 90 1

2.5ASHRAE 90.1

Energy Reduction Requirements – ASHRAE 90.1

2

/ft2)

Office

Manufacturing

School/University

Retail

Warehouse

1.5

er Density (W/

Parking Garage

Healthcare Clinic

1

Lumen Powe

0.5

0

1999 2001 2004 2007 2010 2013

12

Page 7: LEDs and Lighting Controls: The Second Tsunami

LED TechnologySemi Conductor Heritage I d f d l t

LEDs follow a development rule known as Haitz’s Law

Semi‐Conductor Heritage – Improved performance and lower cost

100 000

1,000.000Red Output (in lumens/device)

White Output (in lumens/device)

Red Cost (in $/lumen)

Haitz’s Law

ens) C

10.000

100.000White Cost (in $/lumen)

Output Trend

Cost Trend

ge (in lume

Cost / Lu

me

0.100

1.000

put / packag en

 ($ / lu

me

0 001

0.010

Light outp

en)

Data Source:  Roland Haitz & Lumileds

0.001

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

13

LED Device Trends H it L t kLED Technology

LED Prices in $/klum

Data Source:  Vrinda Bhandarkar, Strategies Unlimited

LED Device Trends – Haitzs Law at work

$300

$350

in $/klum

9/3/12

$200

$250

4/19/13

$

$100

$150 5/9/14

5/9/14

$0

$50

2000 2002 2004 2006 2008 2010 2012

YYear

14

Page 8: LEDs and Lighting Controls: The Second Tsunami

LED TechnologyEfficacy of Color LEDs I i llEfficacy of Color LEDs – Improving as well

120

Efficacy vs. Color(Cree XP‐E2 LEDs)

60

80

100

cacy (in lum/W

)

0

20

40

Red Red‐Orange Amber Green Blue

Effic

350 mA

700 mA

100

120

W)

Efficacy vs. Color(Philips Lumiled Rebel LEDs)

20

40

60

80

Efficacy (in lum/W

0

20

Red Red‐Orange PC Amber Green Cyan Blue

15

Standards H l th i kLED Technology

• LM‐79‐08 Approved Method:  Electrical and Photometric Measurements of Solid‐State Lighting Products

Standards – Help manage the risks

– Describes testing procedure for evaluating light

distribution from LED‐based luminaires

• LM‐80‐08 Approved Method for Measuring Lumen pp f gDepreciation of LED Light Sources– Describes testing procedure for measuring lumen

depreciation of LED devices– Does not describe how to evaluate data taken 

• TM‐21‐11 Projecting Long Term Lumen                                                          Maintenance of LED Light Sources

P id th th d f d t i i h th

• ANSI C78.377‐2008 A Specifications for the Chromaticity                            of Solid‐State Lighting Products for Electric Lamps

– Provides the method for determining when the “useful lifetime” of an LED is reached

of Solid State Lighting Products for Electric Lamps

– Describes binning structure to specify LED device colors

16

Page 9: LEDs and Lighting Controls: The Second Tsunami

Standards Th tiLED Technology

Timeline for a new LED‐based product

Standards – The generation gap

LM 80 Testing (minimum)

LM‐80 Testing (To claim 50k hours) LDL

LF = Lighting Facts

Design Tooling Pilot

LM‐80 Testing (minimum)

LF LDL

LF   Lighting Facts

LDL = Lighting Design Lab,Energy Star orDesign Lights Consortium

= Market ReleaseAgency

= Market Release

LED MfgIntroduces

LED

LED MfgIntroduces

LED MfgIntroduces

new LED new LED new LED

17

Testing Time/Temperature C h d ti ll diff t ff tLED Technology

Testing Time/Temperature – Can have a drastically different effect

21 days at 37.5OC

3 minutes at 70OC

18

Page 10: LEDs and Lighting Controls: The Second Tsunami

Light Loss Factors (LLF) Still lit ft ll thLED Technology

How to maintain h ifi d

Light Loss Factors (LLF) – Still lit after all these years

the specified illuminance over the lifetime of the luminaires?

Avoiding ZombieLED luminaires

19

LED TechnologyLight Loss Factors (LLF) T t

• Lighting systems (luminaires and lamps) will decrease in

Light Loss Factors (LLF) – Two types

g g y ( p )light output over time due to reduction in lumen output of the source and changing surface properties of the luminaire, source and even environment

• In design of lighting systems, this loss is typically accounted for by employing a reduction factor known as the Light Loss Factor (LLF) which is typically caused bythe Light Loss Factor (LLF), which is typically caused by four things:– Ballast factor– Lamp lumen depreciation (LLD)– Lamp lumen depreciation (LLD)– Luminaire dirt depreciation (LDD)– Lamp burnout

20

Page 11: LEDs and Lighting Controls: The Second Tsunami

LED TechnologyLight Loss Factors (LLF) I fl d b f t

• Light Loss factors are estimates of system performance and can

Light Loss Factors (LLF) – Influenced by many factors

be affected by many things:– Operating cycle – depends on occupants– Environment cleanliness – depends on maintenance staff– Thermal characteristics – often ignoredThermal characteristics often ignored– Relamping schedule – spot versus group

• Effects of using an LLF closer to 1.0 during the design process:– System may not provide enough light near end of life (negative)y y g g ( g )– Fewer luminaires can be used, reducing energy usage and cost

(positive)

• Effects of using an LLF much less than 1.0:Excessive energy use (negative)– Excessive energy use (negative)

– Overlit spaces (negative)– Glare (negative)– Light trespass (negative)

21

Lumen Depreciation Examples T diti l li htLED Technology

Lumen Depreciation Examples – Traditional light sources

For conventional lamps, LLD is commonly calculated as the expected lumen output at a given point in time (mean lumens) p p g p ( )divided by the initial lumen output (initial lumens)• The point in time for measuring                                                                                              the mean lumens is given as a                                                                                         gpercentage of the rated life                                                                                                 (e.g. 40% fluorescent and                                                                                                    metal halide, 50% all others)

Incandescent / Halogen High Pressure Sodium• Rated life is the point at which50% of the lamps in a testsample failU f l i• Use of mean lumens is commonpractice, but can result in lightlevels lower than target design

S M R L M i t d Li ht L

T8 FluorescentMetal Halide

Source: M Royer, Lumen Maintenance and Light Loss Factors: Consequences of Current Design Practices for LEDs, LEUKOS, 12/13

22

Page 12: LEDs and Lighting Controls: The Second Tsunami

Lumen Depreciation A li d t LEDLED Technology

Lumen Depreciation – Applied to LED sources

Five different light sources: 2 LED; 2 fluorescent; L Prize and their associated lumen depreciation ratesassociated lumen depreciation rates

Source: M Royer, Lumen Maintenance and Light Loss Factors: Consequences of Current Design Practices for LEDs, LEUKOS, 12/13

23

Color Shifts C h i di tiLED Technology

Color Shifts – Can change in many directions

Results of DOE CALiPER testing from 2008 thru 2010 shows color shifts after 6000 hours of operation (black)                                                                                              p ( )and 12,000 hours (red)

Shift to blue

Shift to yellow Source:  Michael Royer, PNNL

24

Page 13: LEDs and Lighting Controls: The Second Tsunami

Color Shifts C h i di tiLED Technology

Color Shifts – Can change in many directions

Even worse, the color shift can move in different directions over those time periods as shownp

Shift to blue

Shift to yellow Source:  Michael Royer, PNNL

25

Color Shifts Wh th h ?LED Technology

Color Shifts – Why the changes?

A number of different mechanisms can be responsible for color shifts

In some older LEDs that use soft silicon coverings, the phosphor can settle to the bottom

Low/mid power LED housings can yellow, affecting the reflection of light from the sides of the cavity

Edges of phosphor plates can curl with a shift to blue (left image)     or delaminate with a shift to yellow (right image) 

26

Page 14: LEDs and Lighting Controls: The Second Tsunami

Color Shifts R t f hLED Technology

Color Shifts – Rate of change

Earlier high power LED results

Some mid‐power LED results

Source DOE Gateway Report

Recent high power LED results

Source:  DOE Gateway Report Color Maintenance of LEDs in Laboratory and Field ApplicationsSeptember 2013 

27

LED TechnologyAdditional Standards Still i i b f i t t

• Driver lifetime and reliability

Additional Standards – Still missing a number of important ones

Driver lifetime and reliability

• Luminaire lifetime

L i i l hift• Luminaire color shift

• Dimming for luminaires

• Flicker tolerances

• Transient protectionTransient protection

• Power quality

28

Page 15: LEDs and Lighting Controls: The Second Tsunami

Course Outline

1. LED Technology – Where are we?

2 Color and the Eye – How the optic system senses2. Color and the Eye  How the optic system senses color

3. LEDs & Lighting Control – A natural synergy3. LEDs & Lighting Control  A natural synergy

4. Lighting Control Systems – LED light, data and communications

5. The Future – LEDs, OLEDs and the definition of a "luminaire"

6. Preparing for the Future – What                                           businesses should be doing now

29

Color and the EyeAn Experiment Wh t l i th b ll?An Experiment – What color is the ball?

30

Page 16: LEDs and Lighting Controls: The Second Tsunami

Color and the EyeAn Experiment Wh t l i th b ll?An Experiment – What color is the ball?

Without light objects have NO Color

Red object – Absorbs blue & green

31

Color and the EyeAn Experiment Wh t l i th b ll?An Experiment – What color is the ball?

32

Page 17: LEDs and Lighting Controls: The Second Tsunami

Color and the EyeLight Terminology Th tLight Terminology – The eye receptors

Cone cell

Rod cellImage Source:  Ivo Kruusamagi, Wiki di

Some differences:1. Three types of cone cells (long, medium and short wavelengths); one type of rod cell2. Rods are about 100 times more sensitive to light than cones

Wikipedia

3. Multiple rod cells terminate on one interneuron amplifying the signal but giving them less image resolution4. Cones have a faster response time to light stimuli making them more sensitive to temporal changes

33

Color and the EyeLight Terminology Th tLight Terminology – The eye receptors

Response difference between rods and cones

34

Page 18: LEDs and Lighting Controls: The Second Tsunami

Color and the EyeLight Terminology Th tLight Terminology – The eye receptors

low light sensitivityhi h it

high light sensitivityit

Rod vision and night vision are not the same thing!

high acuitycolor vision 

poor acuityno color vision

No moon Full Moon Twilight Office Full Sun

Cones Dominant

Scotopic Regime

Mesopic Regime

Photopic Regime It can take 45 minutes to 

Rods Dominant

10‐6

10‐5

10‐4

10‐3

10‐2

10‐1

101

102

103

104

105

1 106

dark adapt

Luminance (cd/m2)

35

Light Terminology – The Color Matching FunctionsColor and the Eye

Each of the three cone cells responds differently to light depending on wavelength.  A single cone’s response is ambiguous.  To determine color, multiple cones must be triggered and the brain compares responses to determine color Color matching functions for the eye response

Light Terminology  The Color Matching Functions

1.80E+00

Eye Response Functions(CIE 1931)

brain compares responses to determine color.  Color matching functions for the eye response are shown here.

N t Th Y i d fi d t

1.20E+00

1.40E+00

1.60E+00

unction

Y  (Medium Wavelength)

Z  (Short Wavelength)

Note:  The Y curve is defined to be identical to the Eye Sensitivity 

Function V(λ)

6.00E‐01

8.00E‐01

1.00E+00

r Matching Fu

Red (X)

X  (Long Wavelength)

0.00E+00

2.00E‐01

4.00E‐01Color ( )

Green (Y)

Blue (Z)

0.00E+00

350 450 550 650 750 850Wavelength

36

Page 19: LEDs and Lighting Controls: The Second Tsunami

Color and the EyeLight Terminology Th ’ t l

1Photopic Eye Response

Light Terminology – The eye’s response to color

0 7

0.8

0.9

0.5

0.6

0.7

0.2

0.3

0.4

0

0.1

400 450 500 550 600 650 700

Wavelength (nm)

37

Color and the EyePhotometric Considerations M Ad Elli

How much must two colors differ in order for an observer to distinguish then

Photometric Considerations – MacAdam Ellipses

order for an observer to distinguish then as different?David MacAdam in 1942 published what is still h d f k h bthe major definitive work on this subject

He found that any two points must have a pminimum geometrical distance to yield a per‐ceptible difference in color.  These distances, called steps, actually represent standard ddeviations.

38

Page 20: LEDs and Lighting Controls: The Second Tsunami

MacAdam Ellipses A l l kColor and the Eye

50% of the general  population can distinguish a color difference of one

MacAdam Ellipses – A closer look

distinguish a color difference of one MacAdam ellipse

Source:  Gerard Harbers, Xicato

39

ANSI C78 377 2011 Ch ti it St d dColor and the Eye

ANSI C78.377‐2011 – Chromaticity Standards

Radius of amber circleRadius of amber circle shows the EnergyStar color shift tolerance at 6000 hrs 

of  Δ u’v’ = 0.007

Specifies 8 different standard color bins for LEDs based on a 7 stepLEDs, based on a 7‐step MacAdam ellipse

But this still leaves a very wide range in each “bin” which is not acceptable in many li hti li ti

Source:  ANSI C78.377‐2011

lighting applications

40

Page 21: LEDs and Lighting Controls: The Second Tsunami

Light Terminology Th tColor and the Eye

Light Terminology – The eye receptors

Opponent Colors

Fovea

Ab l t Q titi

Color Perception

M C

L Cone

Chan 1 (R – G) R (+), G (‐)Vi

Absolute QuantitiesBrightness(Chan 3)

HueM Cone

S Cone

Chan 2 (Y – B) Y (+), B (‐)

sible Ligh

t

(Ratio Ch1 to Ch2)

Colorfulness (Strength of Ch1 & Ch2)

Relative Quantities

Rod

Chan 3  Brightness

t Q• Lightness• Chroma• Saturation

Retina Neurons Nerve Fiber Visual Cortex

41

Color and the EyeLight Terminology Th t

Equilibrium

Light Terminology – The eye receptors

• The eyes are most stable when the primary colors (red, green, blue) are within their field of view

• Combinations of complimentary colors also sufficeCombinations of complimentary colors also suffice• The colors do not have to be present in equal amounts

Simultaneous ContrastSimultaneous Contrast• If only a single color is present,                                                                   the eye will try to generate the                                                                   missing complement in any                                                                          nearby achromatic (gray or                                                                          colorless) areacolorless) area

42

Page 22: LEDs and Lighting Controls: The Second Tsunami

Color and the EyeBlue Light Issues C f i

What may be beneficial for an occupant during the

Blue Light Issues – Confusion

y p gday may be harmful for an occupant at night, and may vary significantly between individuals in a given space. Even more complicated is the need to p pbalance the desire for alertness with preservation of normal circadian rhythms among night-shift medical staff, for example. Therefore, even if a prescription , p , p pfor effective nonvisual stimulation is developed, implementing the solution may not be straightforward, especially if there are users with g , p ydifferent histories and needs occupying the space at the same time.

DOE Publication: Lighting for Health: LEDs in the New Age of Illumination, May 2014 

43

Color and the EyeBlue Light Issues C f iBlue Light Issues – Confusion

The cool white (Cool LED and D65) and warm white sources (Warm LED and Halogen) have

DOE Publication: Optical Safety of LEDs, June 2013 

white sources (Warm LED and Halogen) have comparable areas under the B() curve

44

Page 23: LEDs and Lighting Controls: The Second Tsunami

Color and the EyeLight Terminology Th tLight Terminology – The eye receptors

H b t th t d th i b k d ?How about the two orange squares and their gray backgrounds?

45

Course Outline

1. LED Technology – Where are we?

2 Color and the Eye – How the optic system senses2. Color and the Eye  How the optic system senses color

3. LEDs & Lighting Control – A natural synergy3. LEDs & Lighting Control  A natural synergy

4. Lighting Control Systems – LED light, data and communications

5. The Future – LEDs, OLEDs and the definition of a "luminaire"

6. Preparing for the Future – What                                           businesses should be doing now

46

Page 24: LEDs and Lighting Controls: The Second Tsunami

The EyeAn Experiment Wh t l i th b ll?

LEDs & Lighting ControlsThe LED Advantage U i h t i tiAn Experiment – What color is the ball?The LED Advantage – Unique characteristics

• LEDs can be turned on an off with d l f l kno reduction in lifetime, unlike 

other light sources– This is often how LED luminaires are dimmed by rapidly turning them on and off

• There is no restrike time with LEDs so they are come on at full brightness 

©  2014 LED Transformations, LLC 47

LEDs & Lighting ControlsThe LED Advantage U i h t i tiThe LED Advantage – Unique characteristics

Area Type Percent (%) Reduction

Locker room 65

Potential energy savings using sensors Locker room 65

Large work room/office 55

Rest room 50

savings using sensors to turn‐off or reduce light in area when then are not in use Rest room 50

File room 45

Small work 40

then are not in use

Required more often room 40

Corridors 25

Small offices 22

by latest building codes

Small offices 22

48

Page 25: LEDs and Lighting Controls: The Second Tsunami

LEDs & Lighting ControlsLighting Controls N l ti f f th i

• CA Title 24 – new requirements for photosensors, d lti l l li hti t l b th

Lighting Controls – New regulations for further energy savings

occupancy sensors and multi-level lighting controls, both indoors and outdoor (effective 1/1/14)– Aisles in warehouses and libraries

– Parking lots and garages

– Outdoor lighting requires photocells and automated controls

Vacancy sensors and controls in residential bathrooms– Vacancy sensors and controls in residential bathrooms

• NYC LL48 – Requires vacancy sensors in many areas (effective 12/28/10)– Classrooms

– Break rooms

– Conference roomsConference rooms

– Offices less than 200 ft sq

49

New Rules for Lighting P i i l f T k A bi t Li htiLEDs & Lighting Controls

• Daylighting with glare control

New Rules for Lighting – Principles of Task‐Ambient Lighting

• Daylighting with glare control

• Ambient lighting that delivers ~300‐500 lux (30‐50 fc) on workplaneworkplane

• Task lighting that delivers ~200‐750 lux (20‐75 fc) evenly across desk areaacross desk area 

• Accent lighting or wallwashingto provide perception of brightness/cheerfulnessbrightness/cheerfulness

• Light finishes to bounce light and make faces attractive and save lighting energysave lighting energy

Source:  Naomi Miller, PNNL

50

Page 26: LEDs and Lighting Controls: The Second Tsunami

NREL Research Facility Effi i t li hti i i t t l tLEDs & Lighting Controls

NREL Research Facility – Efficient lighting is an important element

LED task lightswith sensor control use 15 wattswith sensor control use 15 wattsversus previous fluorescents at 35 watts

51

NREL Research Facility D li hti h l dLEDs & Lighting Controls

NREL Research Facility – Daylighting helps reduce energy usage

52

Page 27: LEDs and Lighting Controls: The Second Tsunami

A Typical MR 16 Issue C tibilit ith i ti i tLEDs & Lighting Controls

A Typical MR‐16 Issue – Compatibility with existing equipment

A demonstration of various                                                        LED l i dLED lamps was carried out at                                                            the Intercontinental Hotel in                                                                  San Francisco under the                                                                            DOE’s Gateway program

During the testing, one manufacturer’s LED lamps began to flash and flicker at night.  Subsequently it was removed from the test program

Later the problem was traced to the legacy lighting controlLater the problem was traced to the legacy lighting control system that was programmed to reduce the voltage late at night (which no one involved at the time was aware of)

53

A Typical MR 16 Issue C tibilit ith i ti i tLEDs & Lighting Controls

A Typical MR‐16 Issue – Compatibility with existing equipment

Two types of transformers used to step-down the voltage to 12V t MR 16 l12V to power MR-16 lamps• Magnetic transformers• Electronic Low Voltage Transformers (ELVT)

N h d d hNote the dead zone at the start of each cycle

A 35W halogen presents a large resistive load to the ELVT which allows the transformer to easily start‐up

Typical output of a low‐cost, self‐oscillating 

The DC‐DC driver in an LED MR‐16, by contrast presents a negative load to the ELVT resulting in potential flickering or even complete failure of the ELVT to startyp p , g

ELVT driving a single 35W halogen MR‐16 (current – green; voltage – yellow)

54

Page 28: LEDs and Lighting Controls: The Second Tsunami

LEDs & Lighting ControlsSome Concerns D h k

Lighting Controlsa) System Compatibility

Some Concerns – Do your homework

a) System Compatibilityi. Performance can be unpredictableii. Proprietary systems can create future issuesiii. More features; more problems

b) Legacy wiringc) Lower power draw means potentially more luminaires per circuitd) In retrofit applications, control architecture may not match

c) Electronic transformersc) Electronic transformersi. Older systems designed for incandescent electrical characteristicsii. Impedance mismatch can create flicker,

dimming and failured) Software Issuesd) Software Issues

i. Often poorly documented similar to “as-built” drawings

ii. Unconstrained by any laws of physics

55

LEDs & Lighting ControlsLots of Issues Remain NEMA SSL 7A lLots of Issues Remain – NEMA SSL‐7A example

Poor User Experiencesp

• Dimming range• Dead travel

• Dimming smoothness• Dimming monotonicity

• Pop‐on• Drop‐out• Popcorn

• Dimming up/down symmetry

• Dimmer loadingp• Ghosting• Flashing/Strobing• Induced Flicker

Dimmer loading• Dimmer ‐ LED light engine inoperability

• Premature failure of• Induced Flicker• Audible noise

• Premature failure of dimmer and/or LED light engine

Source:  Michael Poplawski, PNNL

56

Page 29: LEDs and Lighting Controls: The Second Tsunami

LEDs & Lighting ControlsLighting Control Di i i li

Types of Line Voltage

Lighting Control – Dimming using power line

Types of Line Voltage• Leading Edge

– Incandescent

– Magnetic low voltage transformers

• Trailing Edge– Electronic low voltage transformers

• When using this type of controlg yp– Make sure product conforms to existing standards

– Verify compatibility with manufacturers

57

Lighting Control Diff t bi ti i ld diff t ltLEDs & Lighting Controls

Lighting Control – Different combinations yield different results

58

Page 30: LEDs and Lighting Controls: The Second Tsunami

LEDs & Lighting ControlsNEMA SSL 7a 2013 S ifi ti f di i t l

• Defines design specifications for LED sources and dimmers

NEMA SSL‐7a‐2013 – Specifications for dimming controls

• Defines compliance test procedures for LED sources and dimmers

• Predicable, specified performance , p p– Minimum definition for dimmable – Room for product differentiation

• Compliant dimmers will have performance ratings that will be valid with all compliant LED sources – Full-featured operation – Load ratings (maximum and minimum, if necessary)

C li t LED ill h f• Compliant LED sources will have performance ratings that will be valid with all compliant dimmers – Dimmer loading characteristics

Dimming range (relative maximum output minimum output)– Dimming range (relative maximum output, minimum output) Source:  DOE Mkt Workshop ‐ Managing Risks: DimmingMichael Poplawski, November 2013

59

Time Scheduling Th i l t t l hLEDs & Lighting Controls

6 am 6 pm12 am 12 amNoon

Time Scheduling – The simplest control scheme

p

kW

Lights off Lights on Lights off

Time of day

Turn off lights after hours or when a space is not normally used. Source: Steven Mesh

Lighting Education & Design 

60

Page 31: LEDs and Lighting Controls: The Second Tsunami

Time Scheduling S dditi l iLEDs & Lighting Controls

6 am 6 pm12 am 12 amNoon

Time Scheduling – Some additional energy savings

p

kW

Lights off Lights on Lights off

Time of day

Reduce the maximum light level for an entire space or building. Source: Steven Mesh

Lighting Education & Design 

61

Daylight Harvesting T ki d t f t l li htLEDs & Lighting Controls

6 am 6 pm12 am 12 amNoon

Daylight Harvesting – Taking advantage of natural light

p

kW

Lights off Lights on Lights off

Time of day

Dim or turn off lights based on available natural light. Source: Steven Mesh

Lighting Education & Design 

62

Page 32: LEDs and Lighting Controls: The Second Tsunami

Occupancy/Vacancy Sensing T ki t i t tLEDs & Lighting Controls

6 am 6 pm12 am 12 amNoon

Occupancy/Vacancy Sensing – Taking occupants into account

p

kW

Time of day

Turn off lights when the space is unoccupied (vacant). Source: Steven Mesh

Lighting Education & Design 

63

Personal Control Gi i t i th i li htiLEDs & Lighting Controls

6 am 6 pm12 am 12 amNoon

Personal Control – Giving occupants a say in their lighting

p

kW

Lights off Lights on Lights off

Time of day

Dim or turn off lights based on personal preference or needs. Source: Steven Mesh

Lighting Education & Design 

64

Page 33: LEDs and Lighting Controls: The Second Tsunami

Demand Response W ki ith th l t i tilitLEDs & Lighting Controls

6 am 6 pm12 am 12 amNoon

Demand Response – Working with the electric utility

Also known as Variable Load Sheddingp

kW

Lights off Lights on Lights off

Time of day

Dim or turn off lights during periods of peak demand. Source: Steven Mesh

Lighting Education & Design 

65

The Net Result C bi i th hLEDs & Lighting Controls

6 am 6 pm12 am 12 amNoon

The Net Result – Combining the approaches

p

kW

Time of day

Aggregate strategies for that space, and its resulting energy use. Source: Steven Mesh

Lighting Education & Design 

66

Page 34: LEDs and Lighting Controls: The Second Tsunami

Comparison N t l bi d d ti th dLEDs & Lighting Controls

Comparison – No controls versus combined reduction methods

Ab t 75% d ti iAbout 75% reduction in energy usage Source: Steven MeshLighting Education & Design 

67

Course Outline

1. LED Technology – Where are we?

2 Color and the Eye – How the optic system senses2. Color and the Eye  How the optic system senses color

3. LEDs & Lighting Control – A natural synergy3. LEDs & Lighting Control  A natural synergy

4. Lighting Control Systems – LED light, data and communications

5. The Future – LEDs, OLEDs and the definition of a "luminaire"

6. Preparing for the Future – What                                           businesses should be doing now

68

Page 35: LEDs and Lighting Controls: The Second Tsunami

Lighting Control SystemsLighting Control Topologies C ti hit tLighting Control Topologies – Connection architecture

StarBus

Fully Connected

Daisy Chain

Ring MeshRing

Tree

Mesh

Source:  IES TM‐23‐11

69

Lighting Control SystemsLighting Control Physical Layer El t i l h t i ti

RS‐232 (currently TIA‐232) – electrical characteristics and timing of signals, and the physical size and pinout of connectors for serial binary single‐ended data 

Lighting Control Physical Layer – Electrical characteristics

and control signals for point to point connections

RS‐485 (currently TIA‐485) – a network designed to handle                                           communications to a series of devices in a system – fast over a                                      short distance or slower over a long distance

Ethernet – a network technology on which data may be sent and received from each connected unit (frequently called a node). It defines wiring and connection ( q y ) gmethods as well as basic communication rules for carrying data

USB – developed by a consortium of computer manufacturers to establish communication between devices and a host controller                                                    (such as personal computers). The technology was                                                            intended to replace a variety of serial and parallel ports                                                   used to connect computer peripherals. USB can also                                                        serve as the power connection.

Source:  IES‐TM‐23‐2011

70

Page 36: LEDs and Lighting Controls: The Second Tsunami

Lighting Control SystemsLighting Control Protocols A id f i

0‐10 VDC – front end/user driven method of 

controlling equipment by means of a current source analog control voltage in the nominal

building control

LonWorks – platform used for automation of 

building systems including HVAC and lighting

Lighting Control Protocols – A wide range from various sources

source analog control voltage in the nominal range from 0 to 10 volts positive

ACN – a bi‐directional protocol that controls 

theatrical lighting, audio and  effects

building systems including HVAC and lighting

MIDI – Musical Instrument Digital Interface

Modbus – an industrial control protocol

RDM – extension of DMX512 allowing bi‐ASCII – American National Standard Code for 

Information Interchange  

BACnet – a communication protocol that is 

specifically designed for the needs of building

RDM  extension of DMX512 allowing bi

directional communications

SMPTE – time code synchronization protocol

TCP/IP – Transmission Control Protocol  / 

lspecifically designed for the needs of building automation and control systems

DALI – Digital Addressable Lighting Interface is a 

non‐proprietary lighting control protocol

DMX512 A h S i l D

Internet Protocol

XML – Extensible Markup  Language is a 

standard for document markup

ZigBee – suite of specifications for high level DMX512 – Asynchronous Serial Data 

Transmission Standard for Controlling Lighting Equipment and Accessories

EnOcean – standard for self‐powered sensor 

g ee su te o spec cat o s o g e e

communication protocols using small, low‐power digital radios based on the IEEE 802.15.4 standard for wireless personal area networks

Z‐Wave – designed for low‐power and low‐modules operating over unlicensed frequencies

Konnex – European open standard for home & 

Z‐Wave designed for low‐power and low‐

bandwidth appliances  Source:  IES‐TM‐23‐2011

71

Lighting Control SystemsWired vs Wireless Control Systems Wi d b fit

Central control – with an area having many lighting circuits, a centralized system allows a single keypad rather than banks of

Wired vs. Wireless Control Systems – Wired benefits

centralized system allows a single keypad rather than banks of switches on the wall

Reliability of signal transmission – hard wiring of system eliminates the potential for communication issues due to interference or signal propagation limitations

Greater control ‐ A wired system can give more sophisticatedGreater control  A wired system can give more sophisticated control and flexibility

Security – ability to gain unauthorized access to hard wired control systems is more difficult (although not impossible)

Fault detection – hard wiring allows easier troubleshooting using equipment such as time domain reflectometer tools which canequipment such as time domain reflectometer tools which can pinpoint the location of faults along wire runs

72

Page 37: LEDs and Lighting Controls: The Second Tsunami

Lighting Control SystemsWired vs Wireless Control Systems Wi l b fit

Lower installation cost – with no need to cut open walls, run cable etc wireless systems typically have much lower

Wired vs. Wireless Control Systems – Wireless benefits

cable, etc., wireless systems typically have much lower installation costs, particularly for retrofit applications

Less planning – since there are no in‐wall requirements, advanced planning for controls is minimized

Flexibility – the lack of in‐wall wiring also allows greater flexibility in changing control configurations in the futureflexibility in changing control configurations in the future

Reliability – while typically less reliable than wired systems, some wireless systems use architectures that allow multiple y ppathways for communications which can accommodate for individual point failures (e.g. fully connected, ring, mesh configurations)configurations)

73

Lighting Control SystemsStand Alone Sensing/Control Si l /i i

Pros & Cons

+ S b ilt i t th l i i

Stand‐Alone Sensing/Control – Simple/inexpensive

+ Sensors are built into the luminaires

+ No wiring required (except for power)

+ Simplest installationp

+ Some manufacturers offer RF capability to allow luminaires to provide a minimal grouping function via wireless 

Mi i i i i ff t+ Minimum commissioning effort

– Limited control capabilities

– Limited sensor selection (those provided and installed by the– Limited sensor selection (those provided and installed by the luminaire manufacturer)

– No building integration

74

Page 38: LEDs and Lighting Controls: The Second Tsunami

Lighting Control SystemsSystem Sensing/Control E d d f t t hi h t

Pros & Cons+ Sensors are located based on building structure/control needs

System Sensing/Control – Expanded features at higher cost

+ Sensors are located based on building structure/control needs+ Minimum restrictions on types of sensors used+ Complete control of lighting system which can be tailored to 

building occupancy and usebuilding occupancy and use+ System can be integrated into a complete building control 

system (e.g. HVAC, security, etc.)f l d b l+ Software control and remote monitoring capabilities

+ Communication with electric utility for load shedding which can provide rate reductions

– Higher installation costs

– Extensive commissioning recommended/required

Often "closed" systems which limits future expansion to one mfg– Often  closed  systems which limits future expansion to one mfg

75

Lighting Control SystemsLighting Controls C bi i LED ith

Types of Sensors

Lighting Controls – Combining LEDs with sensors

• Occupancy/Vacancy Sensors– Passive IR – use thermal image to                                                                                      

detect activity– Microwave – transmits microwaveMicrowave  transmits microwave                                                                                    

pulses and measures reflections                                                                                        to detect activity

– Ultrasonic – similar to sonar, uses reflections from bursts of high frequency sound to detect activity

– Acoustic – microphones which listen for activity

• Photocells/Daylight Sensors – measure ambient light to either turn / ff i l di i l lsystem on/off or set particular dimming level

• Video cameras – uses change in scenes to detect activity

• Timing – sets on/off or dimming level based on time of day

76

Page 39: LEDs and Lighting Controls: The Second Tsunami

Lighting Control SystemsOccupancy vs Vacancy Sensors Wh t i th diff ?

• Occupancy sensors turn lights on when someone enters an area and turns them off a set time after the person leaves

Occupancy vs. Vacancy Sensors – What is the difference?

area and turns them off a set time after the person leaves– preferred for areas where someone entering the area may not be

able to turn on the lighting control (e.g. playrooms for small children, laundry rooms where arms may typically be carrying items, etc.)y y yp y y g )

• Vacancy sensors do not turn lights on. Someone entering an area controlled by a vacancy sensor must manually turn the lights on. However, the vacancy sensor will turn the lights off g , y gwhen it senses that person has left the area– preferred in areas where the lights should not come on automatically

should someone enter the area. For example, children's bedrooms, areas where pets are free to roam, etc. Some building codes require the use of vacancy sensors whenever sensors are used

77

New CombinationsNew Features; New Issues S b i t t

Lighting Control SystemsNew Features; New Issues – Sensors become important

Now besides concerns about b iobstructions to the lighting, specifiers and 

installers will also need to consider line of sight forline of sight for the sensors

Source:  Gateway Report, “Use of Occupancy Sensors in LED Parking Lotand Garage Applications: Early Experiences” 10/12 

78

Page 40: LEDs and Lighting Controls: The Second Tsunami

New CombinationsNew Features; New Issues S b i t t

Lighting Control Systems

Energy savings will be a function of:

New Features; New Issues – Sensors become important

• Time delay until turn‐off– Longer time delays decrease energy savings– Shorter time delays can increase the                                                           annoyance factor for facility occupants

• Low illumination setting– Decreasing the low level setting increases                                                              

Low Level

the potential energy savings

• Exogenous factors such as amount of                                                       vehicular and pedestrian traffic the                                              psensor detects– Heavy traffic can negate the overall usefulness of an occupancy or motion sensor (e.g. it is on all the time)

High Level

o o se so (e g s o a e e)

79

Lighting Controls Off thLighting Control Systems

Annual Energy Usage(in kWh/yr/fixture)

Lighting Controls – Off saves more than on

1000

1200

1400

600

800

1000

0

200

400

0

Original HPS (w/ballast)

LED Product      (no controls)

LED Product          10 minute            

turn‐off delay

LED Product          2.5 minute           

turn‐off delay

Source:  Gateway Report, “Use of Occupancy Sensors in LED Parking Lotand Garage Applications: Early Experiences” 10/12 

80

Page 41: LEDs and Lighting Controls: The Second Tsunami

Lighting Control SystemsLighting Control 0 t 10 V lt

• Two analog standardsCurrent source (theatrical standard) covered by ESTA E1 3

Lighting Control – 0 to 10 Volt

– Current source (theatrical standard) covered by ESTA E1.3

– Current sink (lighting standard) covered  by IEC Standard 60929 Annex E

• IEC Standard 60929– Provide full light output when control voltage is 10V (or above) 

– Minimum output or off at 1V (or below)

– Standard also requires that ballast/driver limit maximum control current t 2 0 Ato 2.0 mA

• Output many be linear based on                                                           voltage output, actual light output,                                                           power output, or perceived light                                                               output.

81

Lighting Control SystemsLighting Control DALI di it l t l

• Digital Addressable Lighting Interface (DALI) is an International Standard (IEC 62386) lighting control system providing a single interface for all

Lighting Control – DALI digital control

(IEC 62386) lighting control system providing a single interface for all Electronic Control Gears (light sources) and Electronic Control Devices (lighting controllers)

• Enables components from different manufacturers to be used togetherEnables components from different manufacturers to be used together– Dimmable ballasts

– Transformers

– Relay modules

– Controllers

– Emergency Fittings (e.g. Exit Signs)

• Allows addressing of 64 individual components per DALI line as well as status reporting of lamps and ballasts

• Originally designed for fluorescent control, standard has been expanded to include LED modules as well (Part 207)

82

Page 42: LEDs and Lighting Controls: The Second Tsunami

Lighting Control SystemsLighting Control DMX di it l t l

• DMX512 is a digital control lighting standard developed by the US Institute of Theater Technology Now known as ANSI standard

Lighting Control – DMX digital control

Institute of Theater Technology. Now known as ANSI standard E1.11-2008 “DMX512-A - Asynchronous Serial Digital Data Transmission Standard for Controlling Lighting Equipment and Accessories”

• The DMX protocol consists of a stream of data which is sent over a balanced cable system connected between the data transmitter (usually consoles) and a data receiver such as(usually consoles) and a data receiver such as

– Dimmers– Intelligent lights– Color changers– Lasers– Strobes– Other theatrical devices such as smoke and confetti

machines

83

Lighting Control SystemsHacking Li t i li ht b lbHacking – Listening light bulbs

Hackers were able to connect to lamp communication network, becoming part of the system without any indication that they had connected

Master Lamp

WiFi 802.11

Master Lamp

WiFi 802.11

802.15.4 6LoWPAN wireless mesh networkwireless mesh network

84

Page 43: LEDs and Lighting Controls: The Second Tsunami

Lighting Control SystemsHacking Li t i li ht b lbHacking – Listening light bulbs

Romantic evening or high security site for mobile banking?

85

Now you have heard everything h k d i l

New CombinationsLighting Control SystemsNow you have heard everything – hackers and wireless

Trustwave Holdings, an e‐security firm, published an advisory notice last week warning Satis smart toilet owners that their toilets could potentially get hacked.potentially get hacked.

“Attackers could cause the unit to unexpectedly open/close the lid, 

i bid i d f iactivate bidet or air‐dry functions, causing discomfort or distress to user,” Trustwave Holdings said in its notice.

Source: Trustwave SpiderLabs

Source:  inax

Source:  Trustwave SpiderLabsSecurity Advisory TWSL2013‐020

86

Page 44: LEDs and Lighting Controls: The Second Tsunami

Lighting Control SystemsSuccessful Lighting Control A tt f h k

• Designed properly –With rapidly accelerating technology, most specifiers and designers are no longer able to design lighting controls without

Successful Lighting Control – A matter of homework

and designers are no longer able to design lighting controls without significant assistance from factory‐trained sales agents

• Installed properly – Training such as the California Advanced LightingInstalled properly  Training such as the California Advanced Lighting Controls Training Program (CALCTP) or the National Advanced Lighting Controls Training Program (NALCTP) has proven it makes a significant difference, and a regional program should be mandatory or highly encouraged for installers. 

• Commissioned properly – At present, the only “commissioners” of lighting should be factory trained – consider making “factory certified” a requirement for system start‐up, programming and operator education. 

Source: http://e3tnw.org/Documents/pre%20confirmation%20ALCS%20FlashTAG%20Recommendations%20wo%20appendices.pdf

87

Lighting Control SystemsSuccessful Lighting Control A tt f h k

• Evaluated for cost‐effectiveness – The most cost‐effective applications available at the present time are outdoor indoor parking industrial high

Successful Lighting Control – A matter of homework

available at the present time are outdoor, indoor parking, industrial high‐bay and library lighting – large areas with continuous lighting and infrequent occupancy. In many indoor applications, it is difficult to justify installing a sophisticated control system on energy payback alone, partlyinstalling a sophisticated control system on energy payback alone, partly because the great advances in luminaire efficiency and luminaire‐level controls have reduced the potential savings from advanced centralized control systems considerably. Cost‐

A l E Ueffective controls may consist of a                                                                                      simple timer or controller for the                                                                                        lighting circuit(s) at the electrical                                                                                     

15 0%20.0%25.0%30.0%

Annual Energy Usage(in kWh/yr/fixture)

panel. 

0.0%5.0%

10.0%15.0%

Power Supply/Driver Components

LED failures (shorts, 

connections

Moisture ingress, corrosion

Power quality (surge, noise, 

etc )

Source: http://e3tnw.org/Documents/pre%20confirmation%20ALCS%20FlashTAG%20Recommendations%20wo%20appendices.pdf Components connections, 

board)corrosion etc.)ces.pdf

88

Page 45: LEDs and Lighting Controls: The Second Tsunami

Lighting Control SystemsBuilding Occupants D 't di t th i bilit t d

Strategy Definition ExamplesAverage Savings

Adj t t f li ht l l di t th O

Building Occupants – Don't discount their ability to reduce usage

OccupancyAdjustment of light levels according to the presence of occupants

Occupancy sensors, timeclocks, energy management system

24%

Personal Tuning

Adjustment of individual light levels by occupants according to their personal preferences; applies, for example to private offices workstation‐specific

Dimmers, wireless on‐off switches, bi‐level switches, computerbased controls pre‐ 31%g for example, to private offices, workstation specific 

lighting in open‐plan offices, and classroomscomputerbased controls, preset scene selection

Daylight              Harvesting

Adjustment of light levels automatically in response to the presence of natural light

Photosensors, time clocks28%

(1) Adj f li h l l h h

Institutional           Tuning

(1) Adjustment of light levels through commissioning and technology to meet location‐specific needs or building policies; or (2) provision of switches or controls for areas or groups of occupants; examples of the former include high‐end trim dimming (also known as ballast tuning or

Dimmable ballasts, on‐off or dimmer switches for    non‐personal lighting

36%

end trim dimming (also known as ballast tuning or reduction of ballast factor), task tuning, and lumen maintenance

Multiple Strategies Any combination of the above 38%

Data source: Alison Williams, Barbara Atkinson PE, Karina Garbesi PhD, Erik Page PE & Francis Rubinstein FIES (2012) Lighting Controls in Commercial Buildings, LEUKOS: The Journal of the Illuminating Engineering Society of North America, 8:3, 161‐180

89

Course Outline

1. LED Technology – Where are we?

2 Color and the Eye – How the optic system senses2. Color and the Eye  How the optic system senses color

3. LEDs & Lighting Control – A natural synergy3. LEDs & Lighting Control  A natural synergy

4. Lighting Control Systems – LED light, data and communications

5. The Future – LEDs, OLEDs and the definition of a "luminaire"

6. Preparing for the Future – What                                           businesses should be doing now

90

Page 46: LEDs and Lighting Controls: The Second Tsunami

The FutureOLEDs Wh t th ?

•An OLED or organic light‐emitting diode is a semiconductor device which 

OLEDs – What are they?

consists of an electroluminescent organic layer(s) sandwiched between two electrodes, one of which is transparent

Reflective cathodeOrganic layer(s)

transparent.• The device is fabricated by sequentially depositing organic layers on a conducting substrate followed by another conducting electrode.

• A common device structure comprises a glass substrate coated with indium tin oxide (ITO) aswith indium tin oxide (ITO) as transparent anode and a thin, opaque metal film as cathode.

• Typical separation between layers is  Direction of light output100 nm or less Transparent anode

g p

91

OLEDs Wh t th ?The Future

OLEDs – What are they?

Electron Transport Layer

Hole Blocking Layer

{Emission Layers

Electron Blocking Layer

Hole Transport Layer

92

Page 47: LEDs and Lighting Controls: The Second Tsunami

The FutureOLEDs C i f th t SSL t h l iOLEDs – Comparison of the two SSL technologies

OLED efficacy projectionsOLED efficacy projections

LED efficacy projections

SSL R&D Multi‐Year ProgramSSL R&D Multi Year Program Plan, May 2014

93

The FutureOLEDs C i f th t SSL t h l i

Comparison of present state of LED versus OLED technologies

OLEDs – Comparison of the two SSL technologies

LED OLED

Device efficacy (lumens/watt) 120 ‐ 180 60 ‐ 80

Luminaire efficacy 60 ‐ 80

CRI 70 ‐ 90 80 ‐ 90

CCT 2200 ‐ 7000 1500 ‐ 10,000

Heat sink required Yes NoHeat sink required Yes No

Cost ($/klumen) $10 $200

Lifetime (in 1000 hrs) 50 ‐ 100+ 30 ‐ 50

fi i iConfiguration Point source Area source

Market Applications Replacement Unique

Development Stage Compared to LEDs *** 5 ‐ 7 years behind

94

Page 48: LEDs and Lighting Controls: The Second Tsunami

The FutureOLED Unique Features Fl ibilitOLED Unique Features – Flexibility

Source:  Michael Hack, Universal Display Corporation

95

The FutureOLED Unique Features TOLED Unique Features – Transparency

Source: Universal Display CorporationSource:  Universal Display Corporation

Source:  Yuan‐Sheng Tyan, Kodak

96

Page 49: LEDs and Lighting Controls: The Second Tsunami

The FutureNiche Products N f f t b t hi h tNiche Products – New form factors but high cost

Source:  Universal Display Corporation

Source:  Philips Lumiblade Source:  Osram

97

The FutureThe Major Issues L t f bl i t b l d

Issue Problem Solution

Work needed to develop efficient

The Major Issues – Lots of problems remain to be solved

EfficacySome lab devices can compete with conventional technologies,early products have low efficacy

Work needed to develop efficient, long‐lasting blue emitter; next 

generation products reaching levels that compete with conventional 

lighting sources

LifetimeShort lifetimes for blue materials; susceptibility to moisture intrusion

Work needed on high current density, more stable materials, better and low 

cost encapsulation OLED defects caused by moisture1

Light Output

Current OLED packages produce “dim” light

Work needed to improve light extraction, high current density 

CToo high; lower cost device and Infrastructure investment needed to

CostToo high; lower cost device and luminaire materials are needed 

Infrastructure investment needed to develop commercial OLED products 

Testing Standards

No standards presently available for testing OLED products

Need for reliable test methods standards to establish consistency and  1Source: Yuan‐Sheng TyanStandards for testing OLED products

reduce uncertainty Source: Yuan Sheng Tyan, Kodak

98

Page 50: LEDs and Lighting Controls: The Second Tsunami

The FuturePersonal Lighting Control It i h ith h tPersonal Lighting Control – It is here with much more to come

Comcast/Sylvania Control your home lighting from 

anywhere in the world

Color to suit your mood and your 

wardrobe

Philips Hue

©  2014 LED Transformations, LLC 99

Personal Lighting Control Ill i ti d tifi ti bi d

The FutureThe FuturePersonal Lighting Control – Illumination and notification combined

d

Lighting Control Systems interfaced with internet, WiFi, etc.

Warnings:  Fire, tornados, storms

Alarms:  Appointments, Chores, TV shows Other activitiesTV shows, Other activities

Notifications:  Critical emails,    Bills dueBills due,

Security:  Intruders, unset alarm systemssystems

Convenience:  Move laundry to dryer; Appliance malfunctions

100

Page 51: LEDs and Lighting Controls: The Second Tsunami

Personal Lighting Li hti f ti iti

The FutureThe Future

P l diSlM l S iR l iC iB diB di C i R l i M l S i Sl P l di

Personal Lighting – Lighting for activities

Lighting Scenes from the Boeing 787 Dreamliner

PrelandingSleepMeal ServiceRelaxationCruiseBoardingBoarding Cruise Relaxation Meal Service Sleep Prelanding

Source:  Boeing

101

Lighting For Safety P idi i l i t ti l f i

The FutureThe FutureLighting For Safety – Providing visual orientation clues for seniors

Visual and perceptual systems intercept cues from the environment that affect postural control

Source:  Mariana G. Figueiro, LRC

from the environment that affect postural control and stability 

102

Page 52: LEDs and Lighting Controls: The Second Tsunami

New Rules for Lighting Wh t i l i i ?

The FutureThe Future

l b l f ll

New Rules for Lighting – What is a luminaire?

• Spectral tunability of LEDs will allow lighting systems to adapt to the natural light available or guser preference

• Tunable spectrums will enable• Tunable spectrums will enable fewer SKUs, less binning and less inventory—all of which 

bl lenable lower cost

Source:  Fraunhofer Institute for Industrial Engineering IAO

103

The FutureNew Rules for Lighting Wh t i l i i ?

• New and innovative product designs will redefine the

New Rules for Lighting – What is a luminaire?

designs will redefine the traditional luminaire, and in some cases, the look and purpose of lightinglighting

• Flexibility in form will allow designs based on user’s needs rather than being limited by mechanical constraints

• Color requirements will become more critical as new types of luminaires that take advantage of LED i h t i tiLED unique characteristics become more common

104

Page 53: LEDs and Lighting Controls: The Second Tsunami

The FutureNew Rules for Lighting Wh t i l i i ?

The future of office lighting?

New Rules for Lighting – What is a luminaire?

The future of office lighting?

Source:  GE

105

Course Outline

1. LED Technology – Where are we?

2 Color and the Eye – How the optic system senses2. Color and the Eye  How the optic system senses color

3. LEDs & Lighting Control – A natural synergy3. LEDs & Lighting Control  A natural synergy

4. Lighting Control Systems – LED light, data and communications

5. The Future – LEDs, OLEDs and the definition of a "luminaire"

6. Preparing for the Future – What                                          businesses should be doing now

106

Page 54: LEDs and Lighting Controls: The Second Tsunami

Preparing for the FutureFacing Reality LED h t t

• Lamp replacement and servicing business will decrease as 

Facing Reality – LEDs are here to stay

p p gLEDs become the predominant light source

• LED lamps reach commodity pricing status

• Ballast replacement business will transition to driver replacement business

• Recycling transitions from fluorescent tubes to LED heat sinksRecycling transitions from fluorescent tubes to LED heat sinks– Growth will taper as LED efficacy improves

• Daylight harvesting techniques combine more often with LEDs

107

Preparing for the FutureLighting Controls Li hti b IT d t t

• Lighting Control Systems become ubiquitous

Lighting Controls – Lighting run by IT departments

g g y q

• Every lamp and luminaire have controls and/or communications built in

• Digital control becomes the norm and wiring architectures take on the characteristics of computer network systems

• The Internet of Everything captures lighting as wellThe Internet of Everything captures lighting as well

• Programming and commissioning of the lighting control system becomes a more important and more complex task– California is requiring certification of those responsible for 

commissioning

108

Page 55: LEDs and Lighting Controls: The Second Tsunami

Preparing for the FuturePersonal Lighting H i it

• Individuals gain much more control on lighting environments

Personal Lighting – Having it your way

g g g– Having control provides a less stressful atmosphere for employees

• Seamless integration between lighting control systems and HVAC b ildi t ti d it tHVAC, building automation and security systems

• Use of smartphone technology to allow lighting control systems to recognize who is entering an area and what their y g glighting level and color pallet preferences are

• Ability to match color with activities

• Much more emphasis on health and light characteristic for the  environment

109

Preparing for the FutureLighting and Health U f li hti t i ll b i

• Blue wavelength light and its affect on melatonin levels –

Lighting and Health – Use of lighting to improve well being

g gcircadian rhythms– Many research programs underway to understand the phenomenon

Li hti t ff t d d f• Lighting to affect moods and performance– Calming influences

– Alertness influences

– Rest inducing

• Lighting to assist with vision impaired seniorsC ti f d d i l it– Compensating for reduced visual acuity

• More use of natural light (e.g. daylight harvesting) combined with LED technology to provide consistent illumination

110

Page 56: LEDs and Lighting Controls: The Second Tsunami

Preparing for the FutureSpecialty Lighting N ti l f li ht

• Architainment – using the color capabilities of LED and OLED 

Specialty Lighting – Non‐conventional uses of light

g ptechnologies to provide new and unique lighting environments

• Plant growth – tailoring light spectra to plant needs at various t f thstages of growth

• Productivity of farm animals – improving milk and egg production p

• Combining photovoltaic and LED lighting for off‐grid systems

111

Preparing for the FutureChanging Roles A t f th li hti k l

• The use of color – in new and unanticipated ways

Changing Roles – Across many aspects of the lighting markeplace

• Data communications – understanding protocol layers

• Distribution channels – which player in the lighting market has the largest market cap?the largest market cap?

• Service and troubleshooting – diagnostic subroutines replacing continuity checkers

• Programming 

• Human psychology – becomes a necessary lighting specifier skill

• Changing building codes – continuous push for lower energy• Changing building codes  continuous push for lower energy usage per square foot while requiring adequate illumination levels will present increasing challenges to the lighting designer

112

Page 57: LEDs and Lighting Controls: The Second Tsunami

Preparing for the FutureTomorrow's Lighting System C ld b lik thiTomorrow s Lighting System – Could be like this

113

Acknowledgements

Support for the development and presentation of this educational seminar was provided by the

fUS Department of Energy                    and NETL Morgantown

114

Page 58: LEDs and Lighting Controls: The Second Tsunami

Thank YouContact Information:

Dr. John (Jack) W. Curran US Department of EnergyPresident, LED Transformations, LLC www.ssl.energy.gov PO Box 224, Stanton, NJ  08885(908) 437‐[email protected] 

115