lecture slides - week 8-2

Upload: mohan

Post on 03-Jun-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 Lecture Slides - Week 8-2

    1/9

    M(x)+dM(x)

    top=0

    The Shear Formula

    t(y)

    dA=t(y)dy

    A

    yx (y)

    xy(x)

    Force Equilibrium =0+

  • 8/12/2019 Lecture Slides - Week 8-2

    2/9

    The Shear Formula

    t(y)

    M(x)+dM(x)

    top=0

    dx

    y

    z

    x

    V

    V: the internal resultant shear force at the point

    I: the moment of inertia of entirecross-sectional area

    t: the width of the members cross-sectional area at the point

    Q: , where A is the top portion of the members cross sectional area, and y

    is the distance to centroid of A measured from neutral axis.

    A

  • 8/12/2019 Lecture Slides - Week 8-2

    3/9

    Shear Stresses Distribution in Beams

    The Shear Formula

    (y=0)

  • 8/12/2019 Lecture Slides - Week 8-2

    4/9

    Analysing Bending Test

    N.A.

    Shear Stress

    M

    LP/4

    V

    P/2

    -P/2

    PL x t x ha

    a

    Step 1. Shear and moment diagrams

    a. Equilibrium condition (support reactions)

    b. Draw shear and moment diagram

    ;

    c. Maximum shear force and bending moment

    Tensile Stress

  • 8/12/2019 Lecture Slides - Week 8-2

    5/9

    Step 2. Maximum normal and shear stresses in the beam

    Analysing Bending Test

    a

    a

    PL x t x h

    a. Neutral axis

    b. Inertial moment

    c. Stress distribution:

    d. Maximum normal stress

    e. Maximum shear stress

    t

    h

    N. A.

  • 8/12/2019 Lecture Slides - Week 8-2

    6/9

  • 8/12/2019 Lecture Slides - Week 8-2

    7/9

    300 mm

    20 mm

    20 mm

    20 mm

    200 mm

    1. Neutral axis

    2. Moment of inertia: I= 2.5 x 10-4m4

    N.A.

    A

    B

    C

    Shear Stresses Distribution in Beams

    3. Shear stress distribution

    B

    Point A: A= 0

    Point B:

    Point B:

    QB= QB

    = 0.16 x (0.02 x 0.2) = 6.4 x 10-4m4

    = 2.56 MPa

    = 0.256 MPa

    7-2 If the wide-flange beam is subjected to a shear of V = 20 kN, (a)plot the shear-stress

    distribution acting over the cross-sectional area, and (b) determine the maximum shearstress in the beam. (p. 374)

  • 8/12/2019 Lecture Slides - Week 8-2

    8/9

    1. Neutral axis

    2. Moment of inertia: I= 2.5 x 10-4m4

    Shear Stresses Distribution in Beams

    3. Shear stress distribution 300 mm

    20 mm

    20 mm

    20 mm

    200 mm

    N.A.

    A

    B

    C

    B

    Point A: A= 0

    Point B:

    Point B:

    B= 0.256 MPa

    Point C:

    = [0.16 x (0.02 x 0.2) + 0.075 x (0.02 x 0.15) = 8.65 x 10 -4m4

    B= 2.56 MPa

    = 3.46 MPa

    7-2 If the wide-flange beam is subjected to a shear of V = 20 kN, (a)plot the shear-stress

    distribution acting over the cross-sectional area, and (b) determine the maximum shear stressin the beam. (p. 374)

  • 8/12/2019 Lecture Slides - Week 8-2

    9/9

    Shear Stresses Distribution in Beams

    Point A: A= 0

    Point B:

    Point B:

    B= 0.256 MPa

    Point C:

    B= 2.56 MPa

    C= 3.46 MPa

    a) shear-stress distribution

    b) The maximum shear stress

    C= 3.46 MPa

    A

    B B

    C

    0.256 MPa

    2.56 MPa

    3.46 MPa

    7-2 If the wide-flange beam is subjected to a shear of V = 20 kN, (a)plot the shear-stress

    distribution acting over the cross-sectional area, and (b) determine the maximum shear stressin the beam. (p. 374)

    300 mm

    20 mm

    20 mm

    20 mm

    200 mm

    N.A.

    A

    B

    C

    B