lecture #5 transfer matrix method using …emlab.utep.edu/ee5390cem/lecture 5b -- tmm...

21
1/8/2018 1 Lecture 5b Slide 1 EE 5337 Computational Electromagnetics Lecture #5 Transfer Matrix Method Using Scattering Matrices These notes may contain copyrighted material obtained under fair use rules. Distribution of these materials is strictly prohibited Instructor Dr. Raymond Rumpf (915) 747‐6958 [email protected] Outline Review Calculating reflected and transmitted power Simplifications for 1D transfer matrix method Notes on implementation Parameter Sweeps Lecture 5b Slide 2

Upload: dangdien

Post on 18-Jul-2019

222 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Lecture #5 Transfer Matrix Method Using …emlab.utep.edu/ee5390cem/Lecture 5b -- TMM Using...Transfer Matrix Method Using Scattering Matrices These notes may contain copyrighted material

1/8/2018

1

Lecture 5b Slide 1

EE 5337

Computational Electromagnetics

Lecture #5

Transfer Matrix Method Using Scattering Matrices These notes may contain copyrighted material obtained under fair use rules.  Distribution of these materials is strictly prohibited  

InstructorDr. Raymond Rumpf(915) 747‐[email protected]

Outline

• Review

• Calculating reflected and transmitted power

• Simplifications for 1D transfer matrix method

• Notes on implementation

• Parameter Sweeps

Lecture 5b Slide 2

Page 2: Lecture #5 Transfer Matrix Method Using …emlab.utep.edu/ee5390cem/Lecture 5b -- TMM Using...Transfer Matrix Method Using Scattering Matrices These notes may contain copyrighted material

1/8/2018

2

Lecture 5b Slide 3

Review

Lecture 5b Slide 4

Two Paths to Combined Solution

0

0

r

r

E k H

H k E

Maxwell’s Equations Field Solution

2

2

ˆyz yz zy x y yz zx yz zyzx x

y x x yx yyzz zz zz zz zz zz zz zz

zy yxz zx xzxy x y

zz zz zz zz zzy

x

y

k k kj k k jk k

kE jk j k kE

Hz

H

2

2

x y xz zyxz zxxx xy

zz zz zz

x y yz zx yz zy yz yz zyx zxyx yy y x x

zz zz zz zz zz zz zz zz

y x yxz zxxx

zz zz z

k k

k k kj k k jk

k k k

x

y

x

y

xz zy zyxz zx xzxy y x y

z zz zz zz zz zz

E

E

H

H

jk j k k

2

2

2

2

1

1

x y r r x

r y r r x y

x y r r x

r y r r x y

k k k

k k k

k k k

k k k

P

Q

2×2 Matrices

Sort Eigen‐Modes

PQ Method

No sorting!  

Isotropic or diagonally anisotropic

Anisotropic

E E

H H

zz

z

ee

e

λλ

λ

W WW

W W

0

0

x

y

x

y

E

E

H

H

zE E

zH H

z

z

ez

e

ez

e

λ

λ

λ

λ

0W W cψ

V V c0

W W 0 cψ

V V 0 c

4×4 Matrix

Page 3: Lecture #5 Transfer Matrix Method Using …emlab.utep.edu/ee5390cem/Lecture 5b -- TMM Using...Transfer Matrix Method Using Scattering Matrices These notes may contain copyrighted material

1/8/2018

3

Lecture 5b Slide 5

Definition of A Scattering Matrix

11 121 1

21 222 2

S Sc c

S Sc c11

21

reflection

transmission

S

S

This is consistent with network theory and experimental convention.

Lecture 5b Slide 6

Scattering Matrix for a Single Layer

The scattering matrix Si of the ith

layer is still defined as:

But the equations to calculate the elements reduce to

1 1

2 2

i

c cS

c c

11 12

21 22

i ii

i i

S SS

S S

1 1g g

1 1g g

i i i

i i i

A W W V V

B W W V V

0i ik Li e λX

11 111

11 112

21 12

22 11

ii i i i i i i i i i i i

ii i i i i i i i i i i

i i

i i

S A X B A X B X B A X A B

S A X B A X B X A B A B

S S

S S

• Layers are symmetric so the scattering matrix elements have redundancy.• Scattering matrix equations are simplified.• Fewer calculations.• Less memory storage.

iS

Page 4: Lecture #5 Transfer Matrix Method Using …emlab.utep.edu/ee5390cem/Lecture 5b -- TMM Using...Transfer Matrix Method Using Scattering Matrices These notes may contain copyrighted material

1/8/2018

4

Lecture 5b Slide 7

Reflection/Transmission Side Scattering Matrices

The reflection‐side scattering matrix is

ref 111 ref ref

ref 112 ref

ref 121 ref ref ref ref

ref 122 ref ref

2

0.5

S A B

S A

S A B A B

S B A

1 1ref g ref g ref

1 1ref g ref g ref

A W W V V

B W W V V

trn 111 trn trn

trn 112 trn trn trn trn

trn 121 trn

trn 122 trn trn

0.5

2

S B A

S A B A B

S A

S A B

1 1trn g trn g trn

1 1trn g trn g trn

A W W V V

B W W V V

The transmission‐side scattering matrix is

,I

,I

r

r

r,g

r,g

0limL

,II

,II

r

r

r,g

r,g

refs

trns

0limL

Lecture 5b Slide 8

Summary of Using Scattering Matrices

1S 2S 3S NS

1L 2L 3L NL

0 0

refS

0

0

trnS

0

0

ref tgl l rnoba 1 2

device

N

S

S S SS SS

Device in gap medium

deviceS

Page 5: Lecture #5 Transfer Matrix Method Using …emlab.utep.edu/ee5390cem/Lecture 5b -- TMM Using...Transfer Matrix Method Using Scattering Matrices These notes may contain copyrighted material

1/8/2018

5

Lecture 5b Slide 9

Redheffer Star Product

Two scattering matrices may be combined into a single scattering matrix using Redheffer’s star product.

A A11 12

A A21 22

A

S SS

S S

B B11 12

B B21 22

B

S SS

S S AB A B S S S

The combined scattering matrix is then

AB AB11 12

AB AB21 22

AB

S SS

S S

1AB A A B A B A

11 11 12 11 22 11 21

1AB A B A B

12 12 11 22 12

1AB B A B A

21 21 22 11 21

1AB B B A B A B

22 22 21 22 11 22 12

S S S I S S S S

S S I S S S

S S I S S S

S S S I S S S S

R. Redheffer, “Difference equations and functional equations in transmission-line theory,” Modern Mathematics for the Engineer, Vol. 12, pp. 282-337, McGraw-Hill, New York, 1961.

Lecture 5b Slide 10

Calculating Transmitted and Reflected Power

Page 6: Lecture #5 Transfer Matrix Method Using …emlab.utep.edu/ee5390cem/Lecture 5b -- TMM Using...Transfer Matrix Method Using Scattering Matrices These notes may contain copyrighted material

1/8/2018

6

Lecture 5b Slide 11

Recall How to Calculate Source Parameters 

inc 0 inc

sin cos

sin sin

cos

k k n

0

ˆ ˆ 0

1zn a

incTE

inc

ˆ 0

ˆˆ 0

ˆ

ya

n ka

n k

TE incTM

TE inc

ˆˆ

ˆ

a ka

a k

Incident Wave Vector Surface Normal Unit Vectors in Direction of TE & TM

Composite Polarization Vector

TE TMTE TMˆ ˆP p p aa

Right‐handedcoordinate system

1P

In CEM, we usually make

ˆxa

ˆyaˆza

Unit vectors along x, y, and z axes.

Can be any direction in the x‐y plane

Lecture 5b Slide 12

Solution Using Scattering Matrices

The external fields (i.e. incident wave, reflected wave, transmitted wave) are related through the global transfer matrix.

globalref inc

trn

c cS

c 0

This matrix equation can be solved to calculate the mode coefficients of the reflected and transmitted fields.

global globalref 11 12 inc

global globaltrn 21 22

c S S c

c 0S S

globalref 11 inc

globaltrn 21 inc

c S c

c S c

,inc1inc ref

,inc

x

y

E

E

c W

rightinc not typically usedc

,inc

,inc

,inc

x x

y y

z z

E P

E P

E P

We get Ex,inc and Ey,inc from the polarization vector P.

Note that Ez,inc is not needed.

Page 7: Lecture #5 Transfer Matrix Method Using …emlab.utep.edu/ee5390cem/Lecture 5b -- TMM Using...Transfer Matrix Method Using Scattering Matrices These notes may contain copyrighted material

1/8/2018

7

Lecture 5b Slide 13

Calculation of Transmitted and Reflected Fields

The procedure described thus far calculated cref and ctrn.  

The transmitted and reflected fields are then

ref incglobal global 1

ref ref ref 11 inc ref 11 refref inc

trn incglobal global 1

trn trn trn 21 inc trn 21 reftrn inc

x x

y y

x x

y y

E E

E E

E E

E E

W c W S c W S W

W c W S c W S W

Lecture 5b Slide 14

Calculation of the Longitudinal Components

We are still missing the longitudinal field component Ez on the reflection and transmission sides.

These are calculated using Maxwell’s divergence equation. 

0, 0, 0,

0, 0, 0,

0, 0, 0,

0, 0, 0,

0, 0,0,

0

0

0

0

jk r jk r jk rx y z

jk r jk r jk rx x y y z z

x x y y z z

z z x x y y

x x y yz

z

E

E e E e E ex y z

jk E e jk E e jk E e

k E k E k E

k E k E k E

k E k EE

k

ref refref

ref

trn trntrn

trn

x x y yz

z

x x y yz

z

k E k EE

k

k E k EE

k

Note:

0 reduces to

0 when is homogeneous.

E

E

Page 8: Lecture #5 Transfer Matrix Method Using …emlab.utep.edu/ee5390cem/Lecture 5b -- TMM Using...Transfer Matrix Method Using Scattering Matrices These notes may contain copyrighted material

1/8/2018

8

Lecture 5b Slide 15

Calculation of Power Flow

2trn

trn r,trn

2 incr,incinc

Re

Re

z

z

E kT

kE

1 materials have loss

1 materials have no loss and no gain

1 materials have gain

R T

Reflectance is defined as the fraction of power reflected from a device.2

ref

2

inc

ER

E

2 22 2

x y zE E E E

Transmittance is defined as the fraction of power transmitted through a device.

It is always good practice to check for conservation of power.

Note: We will derive these formulas in Lecture 7.

Note: Recall

1A R T

Lecture 5b Slide 16

Reflectance and Transmittance on a Decibel Scale

Decibel Scale

dB 1020 logP A

dB 1010 logP P

How to calculate decibels from an amplitude quantity A.

How to calculate decibels from a power quantity P.

2 2dB 10 10 10 log 20logP A P A A

Reflectance and Transmittance

Reflectance and transmittance are power quantities, so

dB 10

dB 10

10 log

10log

R R

T T

Page 9: Lecture #5 Transfer Matrix Method Using …emlab.utep.edu/ee5390cem/Lecture 5b -- TMM Using...Transfer Matrix Method Using Scattering Matrices These notes may contain copyrighted material

1/8/2018

9

Lecture 5b Slide 17

Simplifications for 1D Transfer Matrix Method

Lecture 5b Slide 18

Analytical Expressions for W and 

Using this relation, we can simplify the matrix equation for 2.

2 2 22 2

2 2 2

01

0

x y r r x x y r r x zz

r r y r r x y y r r x y z

k k k k k k kk

k k k k k k k

Ω PQ I

Since 2 is a diagonal matrix, we can conclude that

2 2

1 0

0 1

W I

λ Ω

The dispersion relation with a normalized wave vector is

2 2 2r r x y zk k k

0

0

zz

z

jkjk

jk

λ I

0

0

z

z

jk zz

jk z

ee

e

λ

1 0 identity matrix

0 1

I

For isotropic materials and diagonally anisotropic materials, we don’t actually have to solve the eigen‐value problem to obtain the eigen‐modes!  

A lot of algebra

Page 10: Lecture #5 Transfer Matrix Method Using …emlab.utep.edu/ee5390cem/Lecture 5b -- TMM Using...Transfer Matrix Method Using Scattering Matrices These notes may contain copyrighted material

1/8/2018

10

Lecture 5b Slide 19

Simplifications for TMM in LHI Media

In LHI media,

1 0

0 1i

W I ,i z ijkΩ I

1 0 identity matrix

0 1

Iand

Now we do not actually have to calculate  because

i iλ Ω

Given all of this, the eigen‐vectors for the magnetic fields can be calculated as

1 1i i i i i i

V Q W λ Q Ω

When calculating scattering matrices, the intermediate matrices Ai and Bi reduce to1 1 1

g g g

1 1 1g g g

i i i i

i i i i

A W W V V I V V

B W W V V I V V

The fields and mode coefficients are now related throughref trn

1inc ref ref 11 inc 11 inc trn 21 inc 21 incref trn

x x x x

y y y y

P P E E

P P E E

c W W S c S c W S c S c

Lecture 5b Slide 20

Simplified External S‐Matrices in LHI Media

The reflection‐side scattering matrix is

ref 111 ref ref

ref 112 ref

ref 121 ref ref ref ref

ref 122 ref ref

2

0.5

S A B

S A

S A B A B

S B A

1ref g ref

1ref g ref

A I V V

B I V V

trn 111 trn trn

trn 112 trn trn trn trn

trn 121 trn

trn 122 trn trn

0.5

2

S B A

S A B A B

S A

S A B

1trn g trn

1trn g trn

A I V V

B I V V

The transmission‐side scattering matrix is

,I

,I

r

r

r,g

r,g

0limL

,II

,II

r

r

r,g

r,g

refs

trns

0limL

Page 11: Lecture #5 Transfer Matrix Method Using …emlab.utep.edu/ee5390cem/Lecture 5b -- TMM Using...Transfer Matrix Method Using Scattering Matrices These notes may contain copyrighted material

1/8/2018

11

Lecture 5b Slide 21

Notes onImplementation

Outline

• Step 0 – Define problem

• Step 1 – Dashboard

• Step 2 – Describe device layers

• Step 3 – Compute wave vector components

• Step 4 – Compute gap medium parameters

• Step 5 – Initialize global scattering matrix

• Step 6 – Main loop through layers

• Step 7 – Compute reflection side scattering matrix

• Step 8 – Compute transmission side scattering matrix

• Step 9 – Update global scattering matrix

• Step 10 – Compute source

• Step 11 – Compute reflected and transmitted fields

• Step 12 – Compute reflectance and transmittance

• Step 13 – Verify conservation of powerLecture 5b Slide 22

• Compute P and Q• Compute eigen‐modes• Compute layer scattering matrix

• Update global scattering matrix

Step 6: Iterate through layers

human does this

computer does the rest

Page 12: Lecture #5 Transfer Matrix Method Using …emlab.utep.edu/ee5390cem/Lecture 5b -- TMM Using...Transfer Matrix Method Using Scattering Matrices These notes may contain copyrighted material

1/8/2018

12

Lecture 5b Slide 23

Storing the Problem

How is a device described and stored for TMM?

We don’t use a grid for this method!

Store the permittivity for each layer in a 1D array.Store the permeability for each layer in a 1D array.Store the thickness of each layer in a 1D array.

ER = [ 2.50 , 3.50 , 2.00 ];UR = [ 1.00 , 1.00 , 1.00 ];L = [ 0.25 , 0.75 , 0.89 ];

We will also need the external materials, and source parameters.

er1, er2, ur1, ur2, theta, phi, pte, ptm, and lam0

Input arrays for three layers

Lecture 5b Slide 24

Storing Scattering Matrices

We often talk about the scattering matrix S as a single matrix.

11 12

21 22

S SS

S S

However, we very rarely ally use the scattering matrix S this way.  We usually use the individual terms S11, S12, S21, and S22 separately.

So, scattering matrices are actually best stored as the four separate components of the scattering matrix.

11 12

21 22

S SS

S S 11 12 21 22 , , , and S S S S

Page 13: Lecture #5 Transfer Matrix Method Using …emlab.utep.edu/ee5390cem/Lecture 5b -- TMM Using...Transfer Matrix Method Using Scattering Matrices These notes may contain copyrighted material

1/8/2018

13

Lecture 5b Slide 25

Initializing the Global Scattering Matrix

Before we iterate through all the layers, we must initialize the global scattering matrix as the scattering matrix of “nothing.”

What are the ideal properties of nothing?

1. Transmits 100% of power with no phase change.

2. Does not reflect.

global global12 21 S S I

global global11 22 S S 0

We therefore initialize our global scattering matrix as

global

0 IS

I 0This is NOT an identity matrix!Look at the position of the 0’s and I’s.

Lecture 5b Slide 26

Calculating the Parameters of the Gap Media

2 2 2,g r,g r,g

g

g ,g

1g g g g

z x y

z

k k k

jk

W I

λ I

V Q W λ

Our analytical solution for a homogeneous gap medium is

2r,g r,g

g 2r,g r,g r,g

1 x y x

y x y

k k k

k k k

Q

We are free to choose any r,g andr,g that we wish.  We also wish to avoid the case of kz,g = 0.  For convenience, we choose

2 2r,g r,g1.0 and 1 x yk k

We then have

2

g 2

1

1

x y y

x x y

k k k

k k k

Q

g

g gj

W I

V Q

W not even used in TMM.

Page 14: Lecture #5 Transfer Matrix Method Using …emlab.utep.edu/ee5390cem/Lecture 5b -- TMM Using...Transfer Matrix Method Using Scattering Matrices These notes may contain copyrighted material

1/8/2018

14

WRONG

Lecture 5b Slide 27

Calculating Xi = exp(ik0Li)

0

0

0

0

0

z i

i i

z i

jk k Lk L

i jk k L

ee

e

ΩX

Recall the correct answer:

It is incorrect to use the function exp() because this calculates a point‐by‐point exponential, not a matrix exponential.

X = exp(OMEGA*k0*L);X =

0.0135 + 0.9999i 1.00001.0000 0.0135 + 0.9999i

Approach #1: expm() Approach #2: diag()

X = expm(OMEGA*k0*L);

X =0.0135 + 0.9999i 0

0 0.0135 + 0.9999i

X = diag(exp(diag(OMEGA)*k0*L));

X =0.0135 + 0.9999i 0

0 0.0135 + 0.9999i

Lecture 5b Slide 28

Efficient Calculation of Layer S‐Matrices

There are redundant calculations in the equations for the scattering matrix elements.

111 22

112 21

11

11

i ii i i i i i

i ii i i i

i i i i i i

i i i i i ii

A X B A X B

A

S

X B A

S X B A X A B

S S X A B AB BX

These are more efficiently calculated as

0

1g

1g

1

1 111 22

1 112 21

i i

i i

i i

k Li

i i i i i i

i ii i i i i i

i ii i i i i

e

λ

A I V V

B I V V

X

D A X B A X B

S S D X B A X A B

S S D X A B A B

Page 15: Lecture #5 Transfer Matrix Method Using …emlab.utep.edu/ee5390cem/Lecture 5b -- TMM Using...Transfer Matrix Method Using Scattering Matrices These notes may contain copyrighted material

1/8/2018

15

Lecture 5b Slide 29

Efficient Star Product

After observing the equations to implement the Redheffer star product, we see there are some common terms.  Calculating these multiple times is inefficient so we calculate them only once using intermediate parameters.

AB A A B A11 11 12 11 21

AB A B12 12 12

AB B A21 21 21

AB B

1B A

11 22

1

B A B22 22 21 22 1

B A11

1A B

22 11

1A B

22

2

211

2

S S S S S

S S S

S IS S S

I S S

I S S

I S S

S

S S S S S

1A B A

12 11 2

1B A B

21 22 1

2

1

F

D

S I S S

S I S S AB A B S S S

A B A11 11 11 21

B12 12

A21 21

B A B22 22 22 12

AB

AB

AB

AB

S S S S

S S

S S

S S SF S

F

D

D

Lecture 5b Slide 30

Using the Star Product as an Update

Very often we update our global scattering matrix using a star product.

When we use this equation as an update, we MUST pay close attention to the order that we implement the equations so that we don’t accidentally overwrite a value that we need.

1global

12 11 22

1global global

21 22 11

global global22 22 22

global21 21

global global12 12

global global11 11

global1

1

2

1 21

i i

i

i

i

i i

D S I S S

F S I S S

S S FS

S FS

S DS

S S DS S

S

1global global

12 11 22

1global

21 22 11

global global global11 11 11 21

global12 12

global global21 21

global global22 22 22 12

i

i i

i

i

i i

D S I S S

F S I S S

S S DS S

S DS

S FS

S S FS S

global globali S S S global global i S S S

reverse order

stan

dard order

Page 16: Lecture #5 Transfer Matrix Method Using …emlab.utep.edu/ee5390cem/Lecture 5b -- TMM Using...Transfer Matrix Method Using Scattering Matrices These notes may contain copyrighted material

1/8/2018

16

Lecture 5b Slide 31

Block Diagram of TMM Using S‐Matrices

Calculate Parameters for Layer i

2 2,

2

2

1,

1

z i i i x y

x y i i x

ii y i i x y

i z i i i i

k k k

k k k

k k k

jk

Q

Ω I V Q Ω

Calculate Scattering Matrixfor Layer i

01g

1g

1

1 111 22

1 112 21

i ik Li i i

i i

i i i i i i

i ii i i i i i

i ii i i i i

e

λA I V V X

B I V V

D A X B A X B

S S D X B A X A B

S S D X A B A B

Update Global Scattering Matrix

global global

1global global12 11 22

1global21 22 11

global global global11 11 11 21

global12 12

global global21 21

global global22 22 22 12

i

i

i i

i

i

i i

S S S

D S I S S

F S I S S

S S DS S

S DS

S FS

S S FS S

Done?

no

yes

Calculate Transmitted and Reflected Fields

ref

ref 11 srcref

trn

trn 21 srctrn

x

y

x

y

E

E

E

E

e S e

e S e

Calculate Longitudinal Field Components

ref refref

ref

trn trntrn

trn

x x y yz

z

x x y yz

z

k E k EE

k

k E k EE

k

Calculate Transmittance and Reflectance

2

ref

trn2 r,trn

trn incr,inc

Re

Re

z

z

R E

kT E

k

Calculate Transverse Wave Vectors

inc

inc

sin cos

sin sin

x

y

k n

k n

Initialize Global Scattering Matrix

global

0 IS

I 0

Start

Finish

Calculate Gap Medium Parameters

2

g g g2

1

1

x y y

x x y

k k kj

k k k

Q V Q

Calculate Source

TE TE TM TM

src

ˆ ˆ

1

x

y

P p a p a

P

P

P

e

Connect to External Regions

global ref global

global global trn

S S S

S S S

Loop through all layers

Lecture 5b Slide 32

How to Handle Zero Number of Layers

Follow the block diagram!!

Setup your loop this way…

NLAY = length(L);for nlay = 1 : NLAY

...end

If NLAY = 0, then the loop will not execute and the global scattering matrix will remain as it was initialized.

global

0 IS

I 0

For zero layers:

ER = [];UR = [];L = [];

Page 17: Lecture #5 Transfer Matrix Method Using …emlab.utep.edu/ee5390cem/Lecture 5b -- TMM Using...Transfer Matrix Method Using Scattering Matrices These notes may contain copyrighted material

1/8/2018

17

Lecture 5b Slide 33

Can TMM Fail?

Yes!

The TMM can fail to give an answer and behave numerically strange any time kz = 0.  This happens at a critical angle when the transmitted wave is at or very near its cutoff.

We fixed this problem in the gap medium, but this can also happen in any of the layers or in the transmission region.

2 2r r x yk k

This happens in any layer where

Lecture 5b Slide 34

Parameter Sweeps

Page 18: Lecture #5 Transfer Matrix Method Using …emlab.utep.edu/ee5390cem/Lecture 5b -- TMM Using...Transfer Matrix Method Using Scattering Matrices These notes may contain copyrighted material

1/8/2018

18

Lecture 5b Slide 35

What is a Parameter Sweep?

So far, we have learned to simulate a single device at a single frequency, or wavelength.

Suppose we calculate this data as we continuously change one or more parameters?  This is called a parameter sweep.

Sim

Parameter

Device Beh

avior

Sim R = 81%T = 19%

Lecture 5b Slide 36

Block Diagrams of Common Parameter Sweeps

Dashboard

Compute Params.

Build Device

Perform Sim

Show Results

Conventional Sim(No Sweep)

Dashboard

Compute Params.

Build Device

Perform Sim

Record Results

0

Show Results

Set  or frequency

Wavelength or Frequency Sweep

Dashboard

Compute Params.

Set Parameter

Perform Sim

Record Results

d

Show Results

Build Device

Device Parameter Sweep

Dashboard

Compute Params

Build Device

Perform Sim

Record Results

NRES

Show Results

Set NRES

Convergence Sweep for NRES

Good idea to visualize your results during simulation.  You can abort early if something is wrong.

Page 19: Lecture #5 Transfer Matrix Method Using …emlab.utep.edu/ee5390cem/Lecture 5b -- TMM Using...Transfer Matrix Method Using Scattering Matrices These notes may contain copyrighted material

1/8/2018

19

Lecture 5b Slide 37

Make a Generic TMM Function

A great way to simplify programming your parameter sweeps is to first make a generic function out of your TMM code.

The basic TMM simulation will take as input arguments:

Source:  0, , , polarization, etc.Device:  UR, ER, L, etc.

Given these input arguments, your TMM function will simulate the device and calculate reflectance, transmittance, fields, etc.  

It may return REF, TRN, or whatever else you wish.

Lecture 5b Slide 38

Example Header for a Generic TMM Function

function DAT = tmm1d(DEV,SRC)% TMM1D One-Dimensional Transfer Matrix Method%% DAT = tmm1d(DEV,SRC);%% INPUT ARGUMENTS% ================% DEV Device Parameters% .er1 relative permittivity in reflection region% .ur1 relative permeability in reflection region% .er2 relative permittivity in transmission region% .ur2 relative permeability in transmission region% .ER array containing permittivity of each layer% .UR array containing permeability of each layer% .L array containing thickness of each layer%% SRC Source Parameters% .lam0 free space wavelength% .theta elevation angle of incidence (radians)% .phi azimuthal angle of incidence (radians)% .ate amplitude of TE polarization% .atm amplitude of TM polarization%% OUTPUT ARGUMENTS% ================% DAT Output Data% .REF Reflectance% .TRN Transmittance

These comments are displayed at the command prompt by typing

>>help tmm1d

It is always a good idea to include a help section at the start of your codes.

Page 20: Lecture #5 Transfer Matrix Method Using …emlab.utep.edu/ee5390cem/Lecture 5b -- TMM Using...Transfer Matrix Method Using Scattering Matrices These notes may contain copyrighted material

1/8/2018

20

What Steps are Performed by TMM1D()

• Step 0 – Define problem

• Step 1 – Dashboard

• Step 2 – Describe device layers

• Step 3 – Compute wave vector components

• Step 4 – Compute gap medium parameters

• Step 5 – Initialize global scattering matrix

• Step 6 – Main loop through layers

• Step 7 – Compute reflection side scattering matrix

• Step 8 – Compute transmission side scattering matrix

• Step 9 – Update global scattering matrix

• Step 10 – Compute source

• Step 11 – Compute reflected and transmitted fields

• Step 12 – Compute reflectance and transmittance

• Step 13 – Verify conservation of powerLecture 5b Slide 39

• Compute P and Q• Compute eigen‐modes• Compute layer scattering matrix

• Update global scattering matrix

Step 6: Iterate through layers

human does this

computer does the rest

Lecture 5b Slide 40

Wavelength or Frequency Parameter Sweep

By far, the most common parameter sweep is calculating the device behavior as a function of frequency or wavelength.

UR = [ 1 1 1 ];ER = [ 2.5 6.0 2.0 ];L = [ 0.5 0.78 0.25 ];

Dashboard

Build Device

Perform Sim

Record Results

0

Show Results

Set Wavelength

for nlam = 1 : NLAMSRC.lam0 = LAMBDA(nlam);DAT = tmm1d(DEV,SRC);REF(nlam) = DAT.REF;

end

Page 21: Lecture #5 Transfer Matrix Method Using …emlab.utep.edu/ee5390cem/Lecture 5b -- TMM Using...Transfer Matrix Method Using Scattering Matrices These notes may contain copyrighted material

1/8/2018

21

Lecture 5b Slide 41

Incorporating Material Dispersion in a Parameter Sweep

Sometimes the material properties change significantly as a function of frequency, or wavelength.  

This is called dispersion.

Dispersion can be incorporated into your parameter sweep by:

(1) Calculate the material properties at the given wavelength or frequency.

(2) Rebuild the device each iteration with the material properties that were just calculated.

Dashboard

Build Device from  and 

Perform Sim

Record Results

0

Show Results

Set Wavelength

Determine  and 

Lecture 5b Slide 42

Bad Vs. Good Parameter Sweeps

WHITESPACE

WHITESPACE

WHITE SPACE

LABEL

LABEL

SCALE

LINE THICKNESS

TRIANGLES

CONSERVATION?

# DIGITS FONT SIZE