lecture 409.317 2013.f n07(before class version)

45
Physical Chemistry for Energy Engineering (7 th : 2013/10/8) Takuji Oda Assistant Professor, Department of Nuclear Engineering Seoul National University

Upload: minho-david-park

Post on 23-Oct-2015

36 views

Category:

Documents


3 download

DESCRIPTION

ef

TRANSCRIPT

Page 1: Lecture 409.317 2013.F N07(Before Class Version)

Physical Chemistry

for Energy Engineering

(7th: 2013/10/8)

Takuji Oda

Assistant Professor, Department of Nuclear Engineering

Seoul National University

Page 2: Lecture 409.317 2013.F N07(Before Class Version)

II-2. Phase equilibria- $23-3: The chemical potentials of a pure substance in two phases in equilibrium

are equal -

We consider a system consisting of two phases of a pure substance

in equilibrium each other. (liquid and gas, for example here)

The Gibbs energy of this system is given by

๐บ = ๐บ๐‘™ + ๐บ๐‘”

where ๐บ๐‘™ and ๐บ๐‘” are the Gibbs energies of the liquid and the gas phase.

Now, suppose ๐‘‘๐‘› mole are transferred from the liquid to the solid phase,

where T and P are kept constant. The infinitesimal change in Gibbs energy

for this process is:

๐‘‘๐บ =๐œ•๐บ๐‘”

๐œ•๐‘›๐‘” ๐‘ƒ,๐‘‡๐‘‘๐‘›๐‘” +

๐œ•๐บ๐‘™

๐œ•๐‘›๐‘™ ๐‘ƒ,๐‘‡๐‘‘๐‘›๐‘™

As ๐‘‘๐‘›๐‘™ = โˆ’๐‘‘๐‘›๐‘”, then

๐‘‘๐บ =๐œ•๐บ๐‘”

๐œ•๐‘›๐‘” ๐‘ƒ,๐‘‡โˆ’

๐œ•๐บ๐‘™

๐œ•๐‘›๐‘™ ๐‘ƒ,๐‘‡๐‘‘๐‘›๐‘”

Here, we define chemical potentials, ๐œ‡๐‘” =๐œ•๐บ๐‘”

๐œ•๐‘›๐‘” ๐‘ƒ,๐‘‡and ๐œ‡๐‘™ =

๐œ•๐บ๐‘™

๐œ•๐‘›๐‘™ ๐‘ƒ,๐‘‡, then

๐‘‘๐บ = ๐œ‡๐‘” โˆ’ ๐œ‡๐‘™ ๐‘‘๐‘›๐‘” (constant T and P)

Page 3: Lecture 409.317 2013.F N07(Before Class Version)

II-2. Phase equilibria- $23-3: The chemical potentials of a pure substance in two phases in equilibrium

are equal -

We consider a system consisting of two phases of a pure substance

in equilibrium each other. (liquid and gas, for example here)

๐‘‘๐บ = ๐œ‡๐‘” โˆ’ ๐œ‡๐‘™ ๐‘‘๐‘›๐‘” (constant T and P)

where chemical potentials are ๐œ‡๐‘” =๐œ•๐บ๐‘”

๐œ•๐‘›๐‘” ๐‘ƒ,๐‘‡and ๐œ‡๐‘™ =

๐œ•๐บ๐‘™

๐œ•๐‘›๐‘™ ๐‘ƒ,๐‘‡.

If the two phases are in equilibrium with each other, then ๐‘‘๐บ = 0.

And because we suppose some amount of the liquid phase is

transferred to the gas phase (๐‘‘๐‘›๐‘”) here, to make ๐‘‘๐บ = 0 in this

condition, ๐œ‡๐‘” = ๐œ‡๐‘™ is needed.

If ๐œ‡๐‘” < ๐œ‡๐‘™, [๐œ‡๐‘” โˆ’ ๐œ‡๐‘™] < 0. Thus, the process of ๐‘‘๐‘›๐‘” > 0 (transfer

from the liquid phase to the gas phase) spontaneously takes place

as it holds ๐‘‘๐บ < 0.

Likewise, if ๐œ‡๐‘” > ๐œ‡๐‘™, ๐‘‘๐‘›๐‘” < 0.

Hence, in general, the transfer occurs from the phase with higher

chemical potential to the phase with lower chemical potential.

Page 4: Lecture 409.317 2013.F N07(Before Class Version)

II-2. Phase equilibria- $23-3: The chemical potentials of a pure substance in two phases in equilibrium

are equal -

In general, the chemical potential is defined as:

ฮผ =๐œ•๐บ

๐œ•๐‘› ๐‘ƒ,๐‘‡

Because ๐บ is proportional to the size/amount of a system ๐บ โˆ ๐‘›,

namely an extensive thermodynamic function, we can express it as:

๐บ = ๐‘›๐œ‡ ๐‘‡, ๐‘ƒ Here, this equation is consistent with the definition of chemical

potential:

ฮผ =๐œ•๐บ

๐œ•๐‘› ๐‘ƒ,๐‘‡=

๐œ• ๐‘›๐œ‡ ๐‘‡,๐‘ƒ

๐œ•๐‘› ๐‘ƒ,๐‘‡= ๐œ‡ ๐‘‡, ๐‘ƒ

which means ๐œ‡ ๐‘‡, ๐‘ƒ , the chemical potential, is the same quantity as

the molar Gibbs energy and it is an intensive quantity.

Page 5: Lecture 409.317 2013.F N07(Before Class Version)

II-2. Phase equilibria- $23-3: The chemical potentials of a pure substance in two phases in equilibrium

are equal -

As they are in equilibrium,

ฮผ๐›ผ(๐‘‡, ๐‘ƒ) = ฮผ๐›ฝ(๐‘‡, ๐‘ƒ)Now take the total derivatives of both sides

๐œ•ฮผ๐›ผ

๐œ•๐‘ƒ ๐‘‡๐‘‘๐‘ƒ +

๐œ•ฮผ๐›ผ

๐œ•๐‘‡ ๐‘ƒ๐‘‘๐‘‡ =

๐œ•ฮผ๐›ฝ

๐œ•๐‘ƒ ๐‘‡๐‘‘๐‘ƒ +

๐œ•ฮผ๐›ฝ

๐œ•๐‘‡ ๐‘ƒ๐‘‘๐‘‡

Since ๐œ‡ is simply the molar Gibbs energy for a single substance, utilizing ๐œ•๐บ

๐œ•๐‘ƒ ๐‘‡= ๐‘‰ and

๐œ•๐บ

๐œ•๐‘‡ ๐‘ƒ= โˆ’๐‘† (*these were previously derived along Maxwell

relations)๐œ•ฮผ

๐œ•๐‘ƒ ๐‘‡=

๐œ• ๐บ

๐œ•๐‘ƒ ๐‘‡= ๐‘‰ and

๐œ•ฮผ

๐œ•๐‘‡ ๐‘ƒ=

๐œ• ๐บ

๐œ•๐‘‡ ๐‘ƒ= โˆ’ ๐‘†

where ๐‘‰ and ๐‘† are the molar volume and the molar entropy. Then, ๐‘‰๐›ผ๐‘‘๐‘ƒ โˆ’ ๐‘†๐›ผ๐‘‘๐‘‡ = ๐‘‰๐›ฝ๐‘‘๐‘ƒ โˆ’ ๐‘†๐›ฝ๐‘‘๐‘‡

Since we consider the two phases are in equilibrium each other๐‘‘๐‘ƒ

๐‘‘๐‘‡=

๐‘†๐›ฝโˆ’ ๐‘†๐›ผ

๐‘‰๐›ฝโˆ’ ๐‘‰๐›ผ=โˆ†๐‘ก๐‘Ÿ๐‘  ๐‘†

โˆ†๐‘ก๐‘Ÿ๐‘  ๐‘‰=

โˆ†๐‘ก๐‘Ÿ๐‘  ๐ป ๐‘‡

โˆ†๐‘ก๐‘Ÿ๐‘  ๐‘‰=

โˆ†๐‘ก๐‘Ÿ๐‘  ๐ป

๐‘‡โˆ†๐‘ก๐‘Ÿ๐‘  ๐‘‰

We consider two phases (ฮฑ and ฮฒ) are in equilibrium each other.

Page 6: Lecture 409.317 2013.F N07(Before Class Version)

II-2. Phase equilibria- $23-3: The chemical potentials of a pure substance in two phases in equilibrium

are equal -

In the previous slide, we obtain for two phases in equilibrium each other:

๐‘‘๐‘ƒ

๐‘‘๐‘‡=โˆ†๐‘ก๐‘Ÿ๐‘  ๐ป

๐‘‡โˆ†๐‘ก๐‘Ÿ๐‘  ๐‘‰

This equation is called the Clapeyron equation, and relates โ€œthe slope

of the two-phase boundary line in a phase diagram with the values of

โˆ†๐‘ก๐‘Ÿ๐‘  ๐ป and โˆ†๐‘ก๐‘Ÿ๐‘  ๐‘‰ for a transition between these two phasesโ€.

Page 7: Lecture 409.317 2013.F N07(Before Class Version)

II-2. Phase equilibria- $23-3: The chemical potentials of a pure substance in two phases in equilibrium

are equal -

Exampe-1) Solid-liquid coexistence curve at around 1 atm for Benzene

โˆ†๐‘“๐‘ข๐‘  ๐ป = 9.95 kJ mol-1 and โˆ†๐‘“๐‘ข๐‘  ๐‘‰ = 10.3 cm3 mol-1 at the normal

melting point (278.7 K).

Thus, ๐‘‘๐‘ƒ ๐‘‘๐‘‡ at the normal melting point of benzene is:๐‘‘๐‘ƒ

๐‘‘๐‘‡=

โˆ†๐‘ก๐‘Ÿ๐‘  ๐ป

๐‘‡โˆ†๐‘ก๐‘Ÿ๐‘  ๐‘‰=

9.95 ๐‘˜๐ฝ ๐‘š๐‘œ๐‘™โˆ’1

278.7 ๐พ (10.3 ๐‘๐‘š3๐‘š๐‘œ๐‘™โˆ’1)= 34.2 ๐‘Ž๐‘ก๐‘š ๐พโˆ’1

Here, by taking the reciprocal of this result:๐‘‘๐‘‡

๐‘‘๐‘ƒ= 0.0292 ๐พ ๐‘Ž๐‘ก๐‘šโˆ’1

Using the above result (0.0292 K atm-1) and

assuming โˆ†๐‘“๐‘ข๐‘  ๐ป and โˆ†๐‘“๐‘ข๐‘  ๐‘‰ are independent

of pressure, we predict the melting point as:

308 K at 1000 atom (experimental value

is 306 K)

570 K at 10000 atom (exp. value ~ 460 K)

*as clearly in the left figure, โˆ†๐‘“๐‘ข๐‘  ๐ป and

โˆ†๐‘“๐‘ข๐‘  ๐‘‰ are not independent of pressure at

high-pressure region

Page 8: Lecture 409.317 2013.F N07(Before Class Version)

II-2. Phase equilibria- $23-3: The chemical potentials of a pure substance in two phases in equilibrium

are equal -

Exampe-2) Solid-liquid coexistence curve at around 1 atm for water

โˆ†๐‘“๐‘ข๐‘  ๐ป = 6.01 kJ mol-1 and โˆ†๐‘“๐‘ข๐‘  ๐‘‰ = -1.63 cm3 mol-1 at the normal

melting point (273.15 K).

Thus, ๐‘‘๐‘ƒ ๐‘‘๐‘‡ at the normal melting point of water is:๐‘‘๐‘‡

๐‘‘๐‘ƒ=๐‘‡โˆ†๐‘ก๐‘Ÿ๐‘  ๐‘‰

โˆ†๐‘ก๐‘Ÿ๐‘  ๐ป=

273.15 ๐พ (โˆ’1.63 ๐‘๐‘š3๐‘š๐‘œ๐‘™โˆ’1)

6.01 ๐‘˜๐ฝ ๐‘š๐‘œ๐‘™โˆ’1= โˆ’0.00751 ๐พ ๐‘Ž๐‘ก๐‘šโˆ’1

As already mentioned, the melting point of

ice decreases with increasing pressure.

Hence, the solid-liquid coexistence curve in

P-T phase diagram has a negative slope.

This clearly comes from the fact that

โˆ†๐‘“๐‘ข๐‘  ๐‘‰ < 0 (the molar volume is larger in

solid than that in liquid at around melting

point, 1atm), because โˆ†๐‘“๐‘ข๐‘  ๐ป = ๐‘‡โˆ†๐‘“๐‘ข๐‘  ๐‘† must

be larger than 0 as โˆ†๐‘“๐‘ข๐‘  ๐‘† must be positive

(liquid is more disordered than solid)

Page 9: Lecture 409.317 2013.F N07(Before Class Version)

II-2. Phase equilibria- $23-4: The Clausius-Clapeyron equation gives the vapor pressure of a substance

as a function of temperature -

The assumption we made for benzene two slides ago that โ€œโˆ†๐‘“๐‘ข๐‘  ๐ป and

โˆ†๐‘“๐‘ข๐‘  ๐‘‰ are independent of pressureโ€ is indeed satisfactory for solid-liquid

and solid-solid transitions over a small โˆ† ๐‘‡.

However, it is not satisfactory for liquid-gas and solid-gas transitions

because the molar volume of a gas varies strongly with pressure.

But, if the temperature is not too near the critical point, ๐‘‘๐‘ƒ

๐‘‘๐‘‡=

โˆ†๐‘ก๐‘Ÿ๐‘  ๐ป

๐‘‡โˆ†๐‘ก๐‘Ÿ๐‘  ๐‘‰can

be cast into a useful form for condensed phase-gas phase transitions.

Page 10: Lecture 409.317 2013.F N07(Before Class Version)

II-2. Phase equilibria- $23-4: The Clausius-Clapeyron equation gives the vapor pressure of a substance

as a function of temperature -

We consider the Clapeyron equation in liquid-gas equilibrium.

First, we rewrite the equation:๐‘‘๐‘ƒ

๐‘‘๐‘‡=

โˆ†๐‘ก๐‘Ÿ๐‘  ๐ป

๐‘‡(โˆ†๐‘ก๐‘Ÿ๐‘  ๐‘‰)=

โˆ†๐‘ฃ๐‘Ž๐‘ ๐ป

๐‘‡( ๐‘‰๐‘”โˆ’ ๐‘‰๐‘™)

Here, if (1) the system is not too near the critical point (thus, ๐‘‰๐‘” โ‰ซ ๐‘‰๐‘™ and ๐‘‰๐‘™

in the denominator is negligible) and (2) the pressure is not too high (thus, we

can assume the vapor is an ideal gas and ๐‘‰๐‘” = ๐‘…๐‘‡ ๐‘ƒ) ๐‘‘๐‘ƒ

๐‘ƒ๐‘‘๐‘‡=๐‘‘ ln ๐‘ƒ

๐‘‘๐‘‡=

โˆ†๐‘ฃ๐‘Ž๐‘ ๐ป

๐‘ƒ๐‘‡( ๐‘‰๐‘”โˆ’ ๐‘‰๐‘™)~โˆ†๐‘ฃ๐‘Ž๐‘ ๐ป

๐‘ƒ๐‘‡( ๐‘‰๐‘”)~

โˆ†๐‘ฃ๐‘Ž๐‘ ๐ป

๐‘ƒ๐‘‡( ๐‘…๐‘‡ ๐‘ƒ)=โˆ†๐‘ฃ๐‘Ž๐‘ ๐ป

๐‘…๐‘‡2

which is know as Clausius-Clapeyron equation (derived by Clausius in 1850).

If โˆ†๐‘ฃ๐‘Ž๐‘ ๐ป does not vary with temperature over integration limits of T, then

ln๐‘ƒ2

๐‘ƒ1= โˆ’

โˆ†๐‘ฃ๐‘Ž๐‘ ๐ป

๐‘…

1

๐‘‡2โˆ’1

๐‘‡1=โˆ†๐‘ฃ๐‘Ž๐‘ ๐ป

๐‘…

๐‘‡2โˆ’๐‘‡1

๐‘‡1๐‘‡2

which can be used to calculate the vapor pressure at some temperature

given the molar enthalpy of vaporization and the vapor pressure at some

other temperature.

Page 11: Lecture 409.317 2013.F N07(Before Class Version)

II-2. Phase equilibria- $23-4: The Clausius-Clapeyron equation gives the vapor pressure of a substance

as a function of temperature -

Example-1) Vapor pressure of benzene at 373.2 K

We obtain an integral form of Clausius-Clapeyron equation as

ln๐‘ƒ2

๐‘ƒ1=โˆ†๐‘ฃ๐‘Ž๐‘ ๐ป

๐‘…

๐‘‡2โˆ’๐‘‡1

๐‘‡1๐‘‡2

Note that we assume โˆ†๐‘ฃ๐‘Ž๐‘ ๐ป does not (largely) vary with temperature.

โˆ†๐‘ฃ๐‘Ž๐‘ ๐ป = 30.8 kJ mol-1 for benzene at the normal boiling point (353.2 K),

and assume it is not so dependent on temperature.

The vapor pressure of benzene is 760 torr = 1 atm at 353.2 K (as the

definition of boiling point).

Then, using the above equation:

ln๐‘ƒ

760=30.8ร— 103

8.31

373.2โˆ’353.2

373.2ร—353.2

This gives us P=1330 torr, close to the experimental value,1360 torr.

Page 12: Lecture 409.317 2013.F N07(Before Class Version)

II-2. Phase equilibria- $23-4: The Clausius-Clapeyron equation gives the vapor pressure of a substance

as a function of temperature -

If we take an integral of Clausius-Clapeyron equation indefinitely rather

than between definite limits, we obtain (still assuming โˆ†๐‘ฃ๐‘Ž๐‘ ๐ป is constant) ๐‘‘๐‘ƒ

๐‘ƒ๐‘‘๐‘‡=๐‘‘ ln ๐‘ƒ

๐‘‘๐‘‡=โˆ†๐‘ฃ๐‘Ž๐‘ ๐ป

๐‘…๐‘‡2โ†’ ln ๐‘ƒ = โˆ’

โˆ†๐‘ฃ๐‘Ž๐‘ ๐ป

๐‘…๐‘‡+ constant

This means that a plot of the logarithm of the vapor pressure against the

reciprocal of temperature is a straight line with a slope of โˆ’โˆ†๐‘ฃ๐‘Ž๐‘ ๐ป ๐‘….

The slope of line for

benzene (left figure) over

313-353 K gives us

โˆ†๐‘ฃ๐‘Ž๐‘ ๐ป = 32.3 ๐‘˜๐ฝ ๐‘š๐‘œ๐‘™โˆ’1,

close to 30.8 kJ mol-1

which is the experimental

value at the normal boiling

point (353 K).

<Benzene case>

Page 13: Lecture 409.317 2013.F N07(Before Class Version)

II-2. Phase equilibria- $23-4: The Clausius-Clapeyron equation gives the vapor pressure of a substance

as a function of temperature -

If we consider the temperature dependence of โˆ†๐‘ฃ๐‘Ž๐‘ ๐ป, for example, as

โˆ†๐‘ฃ๐‘Ž๐‘ ๐ป = ๐ด + ๐ต๐‘‡ + ๐ถ๐‘‡2 +โ‹ฏ

where A, B, C are constants.

Then, Clausius-Clapeyron equation, ๐‘‘๐‘ƒ

๐‘ƒ๐‘‘๐‘‡=๐‘‘ ln ๐‘ƒ

๐‘‘๐‘‡=โˆ†๐‘ฃ๐‘Ž๐‘ ๐ป

๐‘…๐‘‡2, gives us

ln ๐‘ƒ = โˆ’๐ด

๐‘…๐‘‡+๐ต

๐‘…ln ๐‘‡ +

๐ถ

๐‘…๐‘‡ + ๐‘˜ + ๐‘‚ ๐‘‡2

This equation works a wider range accurately, more than the equation that

we obtain assuming โˆ†๐‘ฃ๐‘Ž๐‘ ๐ป is constant.

For example, for the vapor pressure of solid ammonia over 146-195 K is:

ln ๐‘ƒ ๐‘ก๐‘œ๐‘Ÿ๐‘Ÿ = โˆ’4124.4 ๐พ

๐‘‡+ 1.8163 ln

๐‘‡

๐พ+ 34.4834

Page 14: Lecture 409.317 2013.F N07(Before Class Version)

II-2. Phase equilibria- $23-4: The Clausius-Clapeyron equation gives the vapor pressure of a substance

as a function of temperature -

The Clausius-Clapeyron equation also proves that the slope of the solid-gas

coexistence curve must be greater than the slope of the liquid-gas coexistence

curve near the triple pint (where these curves meet), as follows.

The Clausius-Clapeyron eq. gives the solid-gas and liquid-gas curve slopes as๐‘‘๐‘ƒ๐‘ 

๐‘‘๐‘‡= ๐‘ƒ๐‘ 

โˆ†๐‘ ๐‘ข๐‘ ๐ป

๐‘…๐‘‡2and

๐‘‘๐‘ƒ๐‘™

๐‘‘๐‘‡= ๐‘ƒ๐‘™

โˆ†๐‘ฃ๐‘Ž๐‘ ๐ป

๐‘…๐‘‡2

here ๐‘ƒ๐‘  and ๐‘ƒ๐‘™ are the vapor pressure of the solid and the liquid, respectively.

Because ๐‘ƒ๐‘  = ๐‘ƒ๐‘  at the triple point, ๐‘‘๐‘ƒ๐‘  ๐‘‘๐‘‡

๐‘‘๐‘ƒ๐‘™ ๐‘‘๐‘‡=โˆ†๐‘ ๐‘ข๐‘ ๐ป

โˆ†๐‘ฃ๐‘Ž๐‘ ๐ป

Since enthalpy is a state function, the transition between โ€œsโ†’gโ€ and โ€œโ€œsโ†’lโ†’gโ€

having the same initial and final states should hold the same โˆ†๐‘ก๐‘Ÿ๐‘Ž ๐ป. Thus,

โˆ†๐‘ ๐‘ข๐‘ ๐ป = โˆ†๐‘“๐‘ข๐‘  ๐ป + โˆ†๐‘ฃ๐‘Ž๐‘ ๐ป ๐‘‘๐‘ƒ๐‘  ๐‘‘๐‘‡

๐‘‘๐‘ƒ๐‘™ ๐‘‘๐‘‡=โˆ†๐‘ ๐‘ข๐‘ ๐ป

โˆ†๐‘ฃ๐‘Ž๐‘ ๐ป= 1 +

โˆ†๐‘“๐‘ข๐‘  ๐ป

โˆ†๐‘ฃ๐‘Ž๐‘ ๐ป

which indicates the slope of the solid-gas curve is greater than that of the

liquid-gas curve at the triple point.

*the subscription โ€œsubโ€

stand for sublimation.

Page 15: Lecture 409.317 2013.F N07(Before Class Version)

II-3. Chemical Equilibrium- $26: Introduction -

Thermodynamics enables us to predict the equilibrium pressures or

concentrations of reaction mixtures.

In this chapter, we will derive a relation between the standard Gibbs

energy change and the equilibrium constant for a chemical reaction.

We will also learn how to predict the direction in which a chemical reaction

will proceed if we start with arbitrary concentrations (thus, not equilibrium)

of reactants and products.

Page 16: Lecture 409.317 2013.F N07(Before Class Version)

II-3. Chemical Equilibrium- $26-1: Chemical equilibrium results when the Gibbs energy is a minimum with

respect to the extent of reaction -

Consider a general gas phase reaction, described by a balanced equation.

๐œˆ๐ดA(g) + ๐œˆ๐ตB(g) โ‡Œ ๐œˆ๐‘ŒY(g) + ๐œˆ๐‘Z(g)

The amount of species ๐‘– is ๐‘›๐‘– [mol]. The Gibbs energy for this multi-component

system is a function of ๐‘‡, ๐‘ƒ, ๐‘›๐ด, ๐‘›๐ต , ๐‘›๐‘Œ ๐‘Ž๐‘›๐‘‘ ๐‘›๐‘, then the total derivative is:

dG =๐œ•๐บ

๐œ•๐‘‡๐‘ƒ,๐‘›๐ด,๐‘›๐ต,๐‘›๐‘Œ,๐‘›๐‘

๐‘‘๐‘‡ +๐œ•๐บ

๐œ•๐‘ƒ๐‘‡,๐‘›๐ด,๐‘›๐ต,๐‘›๐‘Œ,๐‘›๐‘

๐‘‘๐‘ƒ +๐œ•๐บ

๐œ•๐‘›๐ด ๐‘‡,๐‘ƒ,๐‘›๐ต,๐‘›๐‘Œ,๐‘›๐‘

๐‘‘๐‘›๐ด

+๐œ•๐บ

๐œ•๐‘›๐ต ๐‘‡,๐‘ƒ,๐‘›๐ด,๐‘›๐‘Œ,๐‘›๐‘

๐‘‘๐‘›๐ต +๐œ•๐บ

๐œ•๐‘›๐‘Œ ๐‘‡,๐‘ƒ,๐‘›๐ด,๐‘›๐ต,๐‘›๐‘

๐‘‘๐‘›๐‘Œ +๐œ•๐บ

๐œ•๐‘›๐‘ ๐‘‡,๐‘ƒ,๐‘›๐ด,๐‘›๐ต,๐‘›๐‘Œ

๐‘‘๐‘›๐‘

Using some equations derived around the Maxwell relation derivation (of ๐บ):

๐‘‘๐บ = โˆ’๐‘†๐‘‘๐‘‡ + ๐‘‰๐‘‘๐‘ƒ + ๐œ‡๐ด๐‘‘๐‘›๐ด + ๐œ‡๐ต๐‘‘๐‘›๐ต + ๐œ‡๐‘Œ๐‘‘๐‘›๐‘Œ + ๐œ‡๐‘๐‘‘๐‘›๐‘

๐œ‡๐ด =๐œ•๐บ

๐œ•๐‘›๐ด ๐‘‡,๐‘ƒ,๐‘›๐ต,๐‘›๐‘Œ,๐‘›๐‘

, ๐‘’๐‘ก๐‘

If the reaction takes place in constant T and P,

dG = ๐œ‡๐ด๐‘‘๐‘›๐ด + ๐œ‡๐ต๐‘‘๐‘›๐ต + ๐œ‡๐‘Œ๐‘‘๐‘›๐‘Œ + ๐œ‡๐‘๐‘‘๐‘›๐‘ (constant T and P)

Page 17: Lecture 409.317 2013.F N07(Before Class Version)

II-3. Chemical Equilibrium- $26-1: Chemical equilibrium results when the Gibbs energy is a minimum with

respect to the extent of reaction -

Consider a general gas phase reaction, described by a balanced equation.

๐œˆ๐ดA(g) + ๐œˆ๐ตB(g) โ‡Œ ๐œˆ๐‘ŒY(g) + ๐œˆ๐‘Z(g)

We define a quantity ๐œ‰, called as the โ€œextent of reactionโ€. Here ๐‘›๐‘–0 is the

initial number of moles for species ๐‘–, then :

๐‘›๐ด = ๐‘›๐ด0 โˆ’ ๐œˆ๐ด๐œ‰ ๐‘›๐ต = ๐‘›๐ต0 โˆ’ ๐œˆ๐ต๐œ‰

๐‘›๐‘Œ = ๐‘›๐‘Œ0 โˆ’ ๐œˆ๐‘Œ๐œ‰ ๐‘›๐‘ = ๐‘›๐‘0 โˆ’ ๐œˆ๐‘๐œ‰

(reactants)

(products)

In this case, ๐œ‰ has units of moles. Then, the variations of ๐‘›๐‘– is:

๐‘‘๐‘›๐ด = โˆ’๐œˆ๐ด๐‘‘๐œ‰ ๐‘‘๐‘›๐ต = ๐œˆ๐ต๐‘‘๐œ‰

๐‘‘๐‘›๐‘Œ = โˆ’๐œˆ๐‘Œ๐‘‘๐œ‰ ๐‘‘๐‘›๐‘ = ๐œˆ๐‘๐‘‘๐œ‰

(reactants)

(products)

which means that as the reaction (left to right) proceeds, the reactants

decrease and the products increase according to the stoichiometry.

Using these equations:

dG = ๐œ‡๐ด๐‘‘๐‘›๐ด + ๐œ‡๐ต๐‘‘๐‘›๐ต + ๐œ‡๐‘Œ๐‘‘๐‘›๐‘Œ + ๐œ‡๐‘๐‘‘๐‘›๐‘= โˆ’๐œˆ๐ด๐œ‡๐ด โˆ’ ๐œˆ๐ต๐œ‡๐ต + ๐œˆ๐‘Œ๐œ‡๐‘Œ + ๐œˆ๐‘๐œ‡๐‘ ๐‘‘๐œ‰ (constant T and P)

Page 18: Lecture 409.317 2013.F N07(Before Class Version)

II-3. Chemical Equilibrium- $26-1: Chemical equilibrium results when the Gibbs energy is a minimum with

respect to the extent of reaction -

Consider a general gas phase reaction, described by a balanced equation.

๐œˆ๐ดA(g) + ๐œˆ๐ตB(g) โ‡Œ ๐œˆ๐‘ŒY(g) + ๐œˆ๐‘Z(g)

dG = โˆ’๐œˆ๐ด๐œ‡๐ด โˆ’ ๐œˆ๐ต๐œ‡๐ต + ๐œˆ๐‘Œ๐œ‡๐‘Œ + ๐œˆ๐‘๐œ‡๐‘ ๐‘‘๐œ‰ (constant T and P)

๐œ•๐บ

๐œ•๐œ‰๐‘‡,๐‘ƒ

= ๐œˆ๐‘Œ๐œ‡๐‘Œ + ๐œˆ๐‘๐œ‡๐‘ โˆ’ ๐œˆ๐ด๐œ‡๐ด โˆ’ ๐œˆ๐ต๐œ‡๐ต

Here, we define ๐œ•๐บ

๐œ•๐œ‰ ๐‘‡,๐‘ƒ= โˆ†๐‘Ÿ๐บ, which is the change in Gibbs energy

when the extent of reaction changes by one mole, and its unit is ๐ฝ ๐‘š๐‘œ๐‘™โˆ’1.

Assuming each species behaves as ideal gas, as the pressure dependence

of chemical potential is written as ๐œ‡๐‘— ๐‘‡, ๐‘ƒ = ๐œ‡ยฐ๐‘— ๐‘‡ + ๐‘…๐‘‡ ln ๐‘ƒ๐‘— ๐‘ƒยฐ , then:

โˆ†๐‘Ÿ๐บ = โˆ†๐‘Ÿ๐บยฐ + ๐‘…๐‘‡ ln๐‘„

โˆ†๐‘Ÿ๐บยฐ = ๐œˆ๐‘Œ๐œ‡ยฐ๐‘Œ(๐‘‡) + ๐œˆ๐‘๐œ‡ยฐ๐‘(๐‘‡) โˆ’ ๐œˆ๐ด๐œ‡ยฐ๐ด(๐‘‡) โˆ’ ๐œˆ๐ต๐œ‡ยฐ๐ต(๐‘‡)

๐‘„ = ๐‘ƒ๐‘Œ ๐‘ƒยฐ

๐œˆ๐‘Œ ๐‘ƒ๐‘ ๐‘ƒยฐ๐œˆ๐‘

๐‘ƒ๐ด ๐‘ƒยฐ๐œˆ๐ด ๐‘ƒ๐ต ๐‘ƒยฐ

๐œˆ๐ต

๐‘ƒยฐ is the pressure of standard

state (1 bar) and ๐‘ƒ๐ด is the

partial pressure of species A.

Page 19: Lecture 409.317 2013.F N07(Before Class Version)

II-3. Chemical Equilibrium- $26-1: Chemical equilibrium results when the Gibbs energy is a minimum with

respect to the extent of reaction -

Consider a general gas phase reaction, described by a balanced equation.

๐œˆ๐ดA(g) + ๐œˆ๐ตB(g) โ‡Œ ๐œˆ๐‘ŒY(g) + ๐œˆ๐‘Z(g)

(ideal gas, constant T and P)โˆ†๐‘Ÿ๐บ = โˆ†๐‘Ÿ๐บยฐ + ๐‘…๐‘‡ ln๐‘„

โˆ†๐‘Ÿ๐บยฐ = ๐œˆ๐‘Œ๐œ‡ยฐ๐‘Œ ๐‘‡ + ๐œˆ๐‘๐œ‡ยฐ๐‘ ๐‘‡โˆ’๐œˆ๐ด๐œ‡ยฐ๐ด(๐‘‡) โˆ’ ๐œˆ๐ต๐œ‡ยฐ๐ต(๐‘‡)

๐‘„ = ๐‘ƒ๐‘Œ ๐‘ƒยฐ

๐œˆ๐‘Œ ๐‘ƒ๐‘ ๐‘ƒยฐ๐œˆ๐‘

๐‘ƒ๐ด ๐‘ƒยฐ๐œˆ๐ด ๐‘ƒ๐ต ๐‘ƒยฐ

๐œˆ๐ต

Here, the quantity โˆ†๐‘Ÿ๐บยฐ is the change in standard Gibbs energy for the

reaction between unmixed reactants to form unmixed products. All

species in their standard states at ๐‘‡ and ๐‘ƒยฐ. Note that ๐‘ƒยฐ = 1 bar.

When the reaction system is equilibrium, the Gibbs energy must

minimum with respect to any change from the equilibrium state, thus ๐œ•๐บ

๐œ•๐œ‰ ๐‘‡,๐‘ƒ= โˆ†๐‘Ÿ๐บ = โˆ†๐‘Ÿ๐บยฐ + ๐‘…๐‘‡ ln๐‘„๐‘’๐‘ž = 0 at an equilibrium state. Thus:

โˆ†๐‘Ÿ๐บยฐ = โˆ’๐‘…๐‘‡ ln ๐‘ƒ๐‘Œ๐œˆ๐‘Œ๐‘ƒ๐‘

๐œˆ๐‘

๐‘ƒ๐ด๐œˆ๐ด๐‘ƒ๐ต

๐œˆ๐ต๐‘’๐‘ž

= โˆ’๐‘…๐‘‡ ln๐พ๐‘ƒ(๐‘‡)

Page 20: Lecture 409.317 2013.F N07(Before Class Version)

II-3. Chemical Equilibrium- $26-1: Chemical equilibrium results when the Gibbs energy is a minimum with

respect to the extent of reaction -

Consider a general gas phase reaction, described by a balanced equation.

๐œˆ๐ดA(g) + ๐œˆ๐ตB(g) โ‡Œ ๐œˆ๐‘ŒY(g) + ๐œˆ๐‘Z(g)

โˆ†๐‘Ÿ๐บยฐ = โˆ’๐‘…๐‘‡ ln๐พ๐‘ƒ(๐‘‡)

๐พ๐‘ƒ ๐‘‡ = ๐‘„๐‘’๐‘ž = ๐‘ƒ๐‘Œ ๐‘ƒยฐ

๐œˆ๐‘Œ ๐‘ƒ๐‘ ๐‘ƒยฐ๐œˆ๐‘

๐‘ƒ๐ด ๐‘ƒยฐ๐œˆ๐ด ๐‘ƒ๐ต ๐‘ƒยฐ

๐œˆ๐ต๐‘’๐‘ž

= ๐‘ƒ๐‘Œ๐œˆ๐‘Œ๐‘ƒ๐‘

๐œˆ๐‘

๐‘ƒ๐ด๐œˆ๐ด๐‘ƒ๐ต

๐œˆ๐ต๐‘’๐‘ž

*the subscript eq emphasizes that the

partial pressures are in an equilibrium.

๐พ๐‘ƒ ๐‘‡ is called as equilibrium constant. Be sure that ๐พ๐‘ƒ ๐‘‡ has no unit.

As seen in the definition, this constant is defined after the target equation

is given. For example, if the ๐œˆ๐ด in the equation is changed (even keeping

the same meaning of reaction, like 2๐œˆ๐ดA(g) + 2๐œˆ๐ตB(g) โ‡Œ 2๐œˆ๐‘ŒY(g) +

2๐œˆ๐‘Z(g) ), ๐พ๐‘ƒ ๐‘‡ value is changed.

๐‘ƒยฐ = 1 ๐‘๐‘Ž๐‘Ÿ

Page 21: Lecture 409.317 2013.F N07(Before Class Version)

II-3. Chemical Equilibrium- $26-1: Chemical equilibrium results when the Gibbs energy is a minimum with

respect to the extent of reaction -

(Example-1a) For reaction โ€œ3 H2(g) + N2(g) โ‡Œ 2 NH3(g)โ€, the

equilibrium pressures are given as ๐‘ƒ๐ป2, ๐‘ƒ๐‘2, and ๐‘ƒ๐‘๐ป3 .

๐พ๐‘ƒ, ๐‘‡ = ๐‘ƒ๐‘๐ป32

๐‘ƒ๐ป23 ๐‘ƒ๐‘2 ๐‘’๐‘ž

*Be sure that these pressures are

pressures at equilibrium, as in the

definition of equilibrium constant.

(Example-1b) For reaction โ€œ3/2 H2(g) + ยฝ N2(g) โ‡Œ NH3(g)โ€, the

equilibrium pressures are given as ๐‘ƒ๐ป2, ๐‘ƒ๐‘2, and ๐‘ƒ๐‘๐ป3 .

๐พ๐‘ƒ ๐‘‡ = ๐‘ƒ๐‘๐ป3

๐‘ƒ๐ป23/2๐‘ƒ๐‘21/2

๐‘’๐‘ž

โ‰  ๐พ๐‘ƒ ๐‘‡ ๐‘œ๐‘“ ๐‘’๐‘ฅ๐‘Ž๐‘š๐‘๐‘™๐‘’ โˆ’ 1๐‘Ž

Although the reactions themselves are identical, the equilibrium

constants are not the same, because the equilibrium constant

depends on the expression of chemical reaction equation.

Page 22: Lecture 409.317 2013.F N07(Before Class Version)

II-3. Chemical Equilibrium- $26-2: An equilibrium constant is a function of temperature only -

Consider a general gas phase reaction, described by a balanced equation.

PCl5(g) โ‡Œ PCl3(g) + Cl2(g)

The equilibrium-constant expression for this reaction is:

๐พ๐‘ƒ, ๐‘‡ = ๐‘ƒ๐‘ƒ๐ถ๐‘™3๐‘ƒ๐ถ๐‘™2

๐‘ƒ๐‘ƒ๐ถ๐‘™5 ๐‘’๐‘ž

Suppose we have 1 mol of PCl5 (g) and no PCl3 or Cl2 at the beginning.

When the reaction occurs to an extent ๐œ‰, PCl5: 1 mol โ†’ (1- ๐œ‰) mol

PCl3: 0 mol โ†’ ๐œ‰ mol, Cl2: 0 mol โ†’ ๐œ‰ mol

Total: 1 mol โ†’ (1+ ๐œ‰) mol

If ๐œ‰๐‘’๐‘ž is the extent of reaction at equilibrium, then the partial pressures are:

๐‘ƒ๐‘ƒ๐ถ๐‘™3 = ๐‘ƒ๐ถ๐‘™2 = ๐œ‰๐‘’๐‘ž๐‘ƒ 1 + ๐œ‰๐‘’๐‘ž , ๐‘ƒ๐‘ƒ๐ถ๐‘™5 = 1 โˆ’ ๐œ‰๐‘’๐‘ž ๐‘ƒ 1 + ๐œ‰๐‘’๐‘ž

where ๐‘ƒ is the total pressure. Then, the equilibrium constant is:

๐พ๐‘ƒ, ๐‘‡ = ๐œ‰๐‘’๐‘ž

2

1 โˆ’ ๐œ‰๐‘’๐‘ž2 ๐‘ƒ

Page 23: Lecture 409.317 2013.F N07(Before Class Version)

II-3. Chemical Equilibrium- $26-2: An equilibrium constant is a function of temperature only -

Consider a general gas phase reaction, described by a balanced equation.

PCl5(g) โ‡Œ PCl3(g) + Cl2(g)

๐พ๐‘ƒ ๐‘‡ = ๐œ‰๐‘’๐‘ž

2

1 โˆ’ ๐œ‰๐‘’๐‘ž2 ๐‘ƒ

PCl5: 1 mol โ†’ (1- ๐œ‰) mol

PCl3 , Cl2: 0 mol โ†’ ๐œ‰ mol,

Total: 1 mol โ†’ (1+ ๐œ‰) mol

๐พ๐‘ƒ ๐‘‡ only depends on ๐‘‡, but

not ๐‘ƒ. So, if ๐‘ƒ (total pressure)

is changed, ๐œ‰๐‘’๐‘ž must be

changed so that ๐พ๐‘ƒ ๐‘‡ is kept

constant. For example, ๐พ๐‘ƒ ๐‘‡of this reaction is 5.4 (no unit)

at 200ยบC.

Page 24: Lecture 409.317 2013.F N07(Before Class Version)

II-3. Chemical Equilibrium- $26-2: An equilibrium constant is a function of temperature only -

Consider a general gas phase reaction, described by a balanced equation.

๐œˆ๐ดA(g) + ๐œˆ๐ตB(g) โ‡Œ ๐œˆ๐‘ŒY(g) + ๐œˆ๐‘Z(g)

So far, we express the equilibrium constant regarding pressure. We can

also express the equilibrium constant in terms of concentrations, etc, by

using the ideal-gas relation โ€œ๐‘ƒ = ๐‘๐‘…๐‘‡โ€, where ๐‘ = ๐‘› ๐‘‰ is the concentration:

โˆ†๐‘Ÿ๐บยฐ = โˆ’๐‘…๐‘‡ ln๐พ๐‘ƒ(๐‘‡)

๐พ๐‘ƒ ๐‘‡ = ๐‘„๐‘’๐‘ž = ๐‘ƒ๐‘Œ ๐‘ƒยฐ

๐œˆ๐‘Œ ๐‘ƒ๐‘ ๐‘ƒยฐ๐œˆ๐‘

๐‘ƒ๐ด ๐‘ƒยฐ๐œˆ๐ด ๐‘ƒ๐ต ๐‘ƒยฐ

๐œˆ๐ต๐‘’๐‘ž

=๐ถ๐‘Œ๐œˆ๐‘Œ๐ถ๐‘

๐œˆ๐‘

๐ถ๐ด๐œˆ๐ด๐ถ๐ต

๐œˆ๐ต๐‘’๐‘ž

๐‘…๐‘‡

๐‘ƒยฐ

๐œˆ๐‘Œ+๐œˆ๐‘โˆ’๐œˆ๐ดโˆ’๐œˆ๐ต

*As the same with ๐พ๐‘ƒ,

๐พ๐‘ has also no unit.

Here, we consider some standard concentration ๐‘ยฐ (like ๐‘ƒยฐ ), often taken to

be โ€œ1 mol L-1โ€. Then:

๐พ๐‘ƒ ๐‘‡ = ๐พ๐ถ ๐‘‡๐‘ยฐ๐‘…๐‘‡

๐‘ƒยฐ

๐œˆ๐‘Œ+๐œˆ๐‘โˆ’๐œˆ๐ดโˆ’๐œˆ๐ต

๐พ๐‘ ๐‘‡ = ๐‘๐‘Œ ๐‘ยฐ

๐œˆ๐‘Œ ๐‘๐‘ ๐‘ยฐ๐œˆ๐‘

๐‘๐ด ๐‘ยฐ๐œˆ๐ด ๐‘๐ต ๐‘ยฐ

๐œˆ๐ต๐‘’๐‘ž

Page 25: Lecture 409.317 2013.F N07(Before Class Version)

II-3. Chemical Equilibrium- $26-2: An equilibrium constant is a function of temperature only -

(Example-2) For reaction โ€œNH3(g) โ‡Œ 3/2 H2(g) +1/2 N2(g)โ€, ๐พ๐‘ƒ ๐‘‡ =1.36 ร— 10โˆ’3 at 298.15 K. Determine the corresponding ๐พ๐ถ ๐‘‡ .

๐พ๐‘ƒ ๐‘‡ = ๐พ๐ถ ๐‘‡๐‘ยฐ๐‘…๐‘‡

๐‘ƒยฐ

3/2+1/2โˆ’1

= ๐พ๐ถ ๐‘‡๐‘ยฐ๐‘…๐‘‡

๐‘ƒยฐ

1

๐พ๐ถ ๐‘‡ = ๐พ๐‘ƒ ๐‘‡๐‘ยฐ๐‘…๐‘‡

๐‘ƒยฐ

โˆ’1

= 1.36 ร— 10โˆ’3 ร—1 ๐‘š๐‘œ๐‘™ ๐ฟโˆ’1 ร— 0.0831 ๐ฟ ๐‘๐‘Ž๐‘Ÿ ๐‘š๐‘œ๐‘™โˆ’1๐พโˆ’1 ร— 298.15 ๐พ

1 ๐‘๐‘Ž๐‘Ÿ

โˆ’1

= 5.49ร— 10โˆ’5

Page 26: Lecture 409.317 2013.F N07(Before Class Version)

II-3. Chemical Equilibrium- $26-3: Standard Gibbs energies of formation can be used to calculate

equilibrium constants -

โˆ†๐‘Ÿ๐บยฐ = ๐œˆ๐‘Œ๐œ‡ยฐ๐‘Œ ๐‘‡ + ๐œˆ๐‘๐œ‡ยฐ๐‘ ๐‘‡ โˆ’ ๐œˆ๐ด๐œ‡ยฐ๐ด(๐‘‡) โˆ’ ๐œˆ๐ต๐œ‡ยฐ๐ต(๐‘‡)

โˆ†๐‘Ÿ๐บยฐ = โˆ’๐‘…๐‘‡ ln๐พ๐‘ƒ(๐‘‡)

As already derived, ๐พ๐‘ƒ is related to the difference between the standard

chemical potentials of the products and the reactants.

Because a chemical potential is an energy (it is the molar Gibbs energy of

a pure substance), we need to define a โ€œzeroโ€ value.

As in the same manner with โ€œstandard molar enthalpy of formationโ€, we

can define โ€œthe standard molar Gibbs energy of formationโ€ according to

โˆ†๐‘Ÿ๐บยฐ = โˆ†๐‘Ÿ๐ปยฐ โˆ’ ๐‘‡โˆ†๐‘Ÿ๐‘†ยฐreferring to standard molar entropies.

So, for โ€œ๐œˆ๐ดA(g) + ๐œˆ๐ตB(g) โ†’ ๐œˆ๐‘ŒY(g) + ๐œˆ๐‘Z(g)โ€, for example, we have

โˆ†๐‘Ÿ๐บยฐ = ๐œˆ๐‘Œโˆ†๐‘“๐บยฐ ๐‘Œ + ๐œˆ๐‘โˆ†๐‘“๐บยฐ ๐‘ โˆ’ ๐œˆ๐ดโˆ†๐‘“๐บยฐ ๐ด โˆ’ ๐œˆ๐ตโˆ†๐‘“๐บยฐ[๐ต]

where โˆ†๐‘“๐บยฐ ๐‘Œ is the standard molar Gibbs energy of formation for

substance ๐‘Œ.

Page 27: Lecture 409.317 2013.F N07(Before Class Version)

II-3. Chemical Equilibrium- $26-3: Standard Gibbs energies of formation can be used to calculate

equilibrium constants -

โˆ†๐‘Ÿ๐บยฐ = ๐œˆ๐‘Œ๐œ‡ยฐ๐‘Œ ๐‘‡ + ๐œˆ๐‘๐œ‡ยฐ๐‘ ๐‘‡ โˆ’ ๐œˆ๐ด๐œ‡ยฐ๐ด(๐‘‡) โˆ’ ๐œˆ๐ต๐œ‡ยฐ๐ต(๐‘‡)

โˆ†๐‘Ÿ๐บยฐ = โˆ’๐‘…๐‘‡ ln๐พ๐‘ƒ(๐‘‡)

As already derived, ๐พ๐‘ƒ is related to the difference between the standard

chemical potentials of the products and the reactants.

Because a chemical potential is an energy (it is the molar Gibbs energy of

a pure substance), we need to define a โ€œzeroโ€ value.

As in the same manner with โ€œstandard molar enthalpy of formationโ€, we

can define โ€œthe standard molar Gibbs energy of formationโ€ according to

โˆ†๐‘Ÿ๐บยฐ = โˆ†๐‘Ÿ๐ปยฐ โˆ’ ๐‘‡โˆ†๐‘Ÿ๐‘†ยฐreferring to standard molar entropies.

So, for โ€œ๐œˆ๐ดA(g) + ๐œˆ๐ตB(g) โ†’ ๐œˆ๐‘ŒY(g) + ๐œˆ๐‘Z(g)โ€, for example, we have

โˆ†๐‘Ÿ๐บยฐ = ๐œˆ๐‘Œโˆ†๐‘“๐บยฐ ๐‘Œ + ๐œˆ๐‘โˆ†๐‘“๐บยฐ ๐‘ โˆ’ ๐œˆ๐ดโˆ†๐‘“๐บยฐ ๐ด โˆ’ ๐œˆ๐ตโˆ†๐‘“๐บยฐ[๐ต]

where โˆ†๐‘“๐บยฐ ๐‘Œ is the standard molar Gibbs energy of formation for

substance ๐‘Œ.

Page 28: Lecture 409.317 2013.F N07(Before Class Version)

II-3. Chemical Equilibrium- Appendix) how to calculate โˆ†๐’‡๐‘ฎยฐ -

We can find thermodynamic database, usually the one at 298.15 K (but not

necessarily and not limited to):

โˆ†๐‘“๐ปยฐ: Standard molar enthalpy (heat) of formation (kJ mol-1)

โˆ†๐‘“๐บยฐ: Standard molar Gibbs energy of formation (kJ mol-1)

๐‘†ยฐ: Standard molar entropy at 298.15 K in (J mol-1 K-1)

๐ถ๐‘ƒ: Molar heat capacity at constant pressure (J mol-1 K-1)

*As definition, the value is for 1 bar.

If the Gibbs energy is not available, you can calculate from enthalpy

and entropy. For example, for H2O(g) formation: "๐ป2 +1

2๐‘‚2 โ†’ ๐ป2๐‘‚โ€œ

โˆ†๐‘“๐บยฐ T K ๐ป2๐‘‚ g

= โˆ†๐‘“๐ปยฐ T K ๐ป2๐‘‚ g โˆ’ โˆ†๐‘“๐ปยฐ T K ๐ป2 g โˆ’1

2โˆ†๐‘“๐ปยฐ T K ๐‘‚2 g

โˆ’ T ๐‘†ยฐ T K ๐ป2๐‘‚ g โˆ’ ๐‘†ยฐ T K ๐ป2 g โˆ’1

2๐‘†ยฐ T K ๐‘‚2 g

By this way, as the same with the standard molar enthalpy of formation,

pure elemental substances that appear as the equilibrium phase at the

temperature have โˆ†๐‘“๐บยฐ T K = 0, and the standard molar Gibbs energies

of other chemicals are aligned to them.

Page 29: Lecture 409.317 2013.F N07(Before Class Version)

II-3. Chemical Equilibrium- Appendix) how to calculate โˆ†๐’‡๐‘ฎยฐ -

In addition, temperature dependence of โˆ†๐‘“๐บยฐ T K can be evaluated

using ๐ถ๐‘ƒ (for constant pressure process) as:

๐ปยฐ ๐‘‡2๐พ = ๐ปยฐ ๐‘‡1๐พ + ๐‘‡1

๐‘‡2

๐ถ๐‘ƒ๐‘‘๐‘‡

๐‘†ยฐ ๐‘‡2๐พ = ๐‘†ยฐ ๐‘‡1๐พ + ๐‘‡1

๐‘‡2 ๐ถ๐‘ƒ๐‘‡๐‘‘๐‘‡

๐บยฐ ๐‘‡2๐พ = ๐ปยฐ ๐‘‡2๐พ โˆ’ ๐‘‡2๐‘†ยฐ ๐‘‡2๐พ

where ๐ปยฐ, ๐‘†ยฐ and ๐บยฐ are molar enthalpy, molar entropy, and molar Gibbs

energy. For evaluation of the standard Gibbs energy of formation, they

can be replaced with โˆ†๐‘“๐ปยฐ, ๐‘†ยฐ and โˆ†๐‘“๐บยฐ.

๐ถ๐‘ƒ is molar heat capacity at constant pressure. If ๐‘‡2 is enough close to

๐‘‡1, ๐ถ๐‘ƒ can be regarded as a constant in most case.

Page 30: Lecture 409.317 2013.F N07(Before Class Version)

II-3. Chemical Equilibrium- Appendix) how to calculate โˆ†๐’‡๐‘ฎยฐ -

y = -0.1323x + 10.192

(liquid)

y = -0.2483x + 49.356

(gas)

-50

-45

-40

-35

-30

-25

-20

300 320 340 360 380

Mo

lar

Gib

bs

ener

gy /

kJ

mo

l-1

Temperature / K

y = 0.2681x + 48.961

(liquid)

y = 0.149x + 193.83

(gas)

0

50

100

150

200

250

300

300 320 340 360 380

Mo

lar

entr

op

y /

J m

ol-1

Temperature / K

y = 0.0851x - 16.241

(liquid)

y = 0.0544x + 29.463

(gas)

0

10

20

30

40

50

60

300 320 340 360 380Mo

lar

enth

alp

y /

kJ

mo

l-1

Temperature / K

Boiling pointComparison among ๐ปยฐ (a molar

enthalpy of formation), ๐‘†ยฐ (a molar

entropy) and ๐บยฐ (a molar Gibbs

energy of formation) for methanol

at 1 atm, around the boiling point.

Note that ๐บยฐ is a continuous

function, but ๐ปยฐ and ๐‘†ยฐ are not.

๐ปยฐ๐‘†ยฐ

๐บยฐ

Page 31: Lecture 409.317 2013.F N07(Before Class Version)

II-3. Chemical Equilibrium- $26-3: Standard Gibbs energies of formation can be used to calculate

equilibrium constants -

โˆ†๐‘Ÿ๐บยฐ = 3 2 โˆ†๐‘“๐บยฐ ๐ป2(๐‘”) + 1 2 โˆ†๐‘“๐บยฐ ๐‘2(๐‘”) โˆ’ 1 โˆ†๐‘“๐บยฐ ๐‘๐ป3 ๐‘”

= 3 2 0 + 1 2 0 โˆ’ 1 โˆ’16.637 ๐‘˜๐ฝ ๐‘š๐‘œ๐‘™โˆ’1 = 16.637 ๐‘˜๐ฝ ๐‘š๐‘œ๐‘™โˆ’1

(Example-3) Using the standard molar Gibbs energies of formation, calculate

โˆ†๐‘Ÿ๐บยฐ and ๐พ๐‘ƒ at 298.15 K for

NH3(g) โ‡Œ 3/2 H2(g) + 1/2 N2(g)

โˆ†๐‘“๐บยฐ ๐‘๐ป3(๐‘”) = โˆ’16.637 ๐‘˜๐ฝ ๐‘š๐‘œ๐‘™โˆ’1, โˆ†๐‘“๐บยฐ ๐ป2(๐‘”) = โˆ†๐‘“๐บยฐ ๐‘2(๐‘”) = 0 ๐‘˜๐ฝ ๐‘š๐‘œ๐‘™

โˆ’1

ln๐พ๐‘ƒ(๐‘‡) = โˆ’โˆ†๐‘Ÿ๐บยฐ

๐‘…๐‘‡= โˆ’

16.637 ร— 103 ๐ฝ ๐‘š๐‘œ๐‘™โˆ’1

8.31 ๐ฝ ๐พโˆ’1 ๐‘š๐‘œ๐‘™โˆ’1 298.15 ๐พ= โˆ’6.60

Hence, ๐พ๐‘ƒ ๐‘‡ = 1.36 ร— 10โˆ’3 at 298.15 K.

Page 32: Lecture 409.317 2013.F N07(Before Class Version)

II-3. Chemical Equilibrium- $26-4: A plot of the Gibbs energy of a reaction mixture against the extent of

reaction is a minimum at equilibrium -

Consider the thermal decomposition of N2O4 (g) at 298.15 K as an example

to treat the Gibbs energy of a reaction mixture:

N2O4 (g) โ‡Œ 2 NO2 (g)

๐บ ๐œ‰ = 1 โˆ’ ๐œ‰ ๐บ๐‘2๐‘‚4 + 2๐œ‰ ๐บ๐‘๐‘‚2

= 1 โˆ’ ๐œ‰ ๐บยฐ๐‘2๐‘‚4 + ๐‘…๐‘‡ ln๐‘ƒ๐‘2๐‘‚4 + 2๐œ‰ ๐บยฐ๐‘๐‘‚2 + ๐‘…๐‘‡ ln๐‘ƒ๐‘๐‘‚2

Suppose the initial state is โ€œN2O4 (g) = 1 mol and NO2 (g) = 0 molโ€ and the

reaction brings the system to โ€œN2O4 (g) = 1- ๐œ‰ mol and NO2 (g) = 2 ๐œ‰ molโ€.

Here we assume the reaction occurs at a constant pressure (๐‘ƒ๐‘ก๐‘œ๐‘ก๐‘Ž๐‘™ = 1 ๐‘๐‘Ž๐‘Ÿ).

Then, as the molar fraction is ๐‘ฅ๐‘2๐‘‚4 =1โˆ’๐œ‰

1+๐œ‰for N2O4 and ๐‘ฅ๐‘๐‘‚2 =

2๐œ‰

1+๐œ‰for NO2:

๐‘ƒ๐‘2๐‘‚4 = ๐‘ฅ๐‘2๐‘‚4๐‘ƒ๐‘ก๐‘œ๐‘ก๐‘Ž๐‘™ = ๐‘ฅ๐‘2๐‘‚4, ๐‘ƒ๐‘๐‘‚2 = ๐‘ฅ๐‘๐‘‚2๐‘ƒ๐‘ก๐‘œ๐‘ก๐‘Ž๐‘™ = ๐‘ฅ๐‘๐‘‚2

๐บ ๐œ‰ = 1 โˆ’ ๐œ‰ ๐บยฐ๐‘2๐‘‚4 + ๐‘…๐‘‡ ln1 โˆ’ ๐œ‰

1 + ๐œ‰+ 2๐œ‰ ๐บยฐ๐‘๐‘‚2 + ๐‘…๐‘‡ ln

2๐œ‰

1 + ๐œ‰

= 1 โˆ’ ๐œ‰ โˆ†๐‘“๐บยฐ๐‘2๐‘‚4 + ๐‘…๐‘‡ ln1 โˆ’ ๐œ‰

1 + ๐œ‰+ 2๐œ‰ โˆ†๐‘“๐บยฐ๐‘๐‘‚2 + ๐‘…๐‘‡ ln

2๐œ‰

1 + ๐œ‰

Page 33: Lecture 409.317 2013.F N07(Before Class Version)

II-3. Chemical Equilibrium- $26-4: A plot of the Gibbs energy of a reaction mixture against the extent of

reaction is a minimum at equilibrium -

Consider the thermal decomposition of N2O4 (g) at 298.15 K as an example

to treat the Gibbs energy of a reaction mixture:

N2O4 (g) โ‡Œ 2 NO2 (g)

๐บ ๐œ‰ = 1 โˆ’ ๐œ‰ โˆ†๐‘“๐บยฐ๐‘2๐‘‚4 + ๐‘…๐‘‡ ln1 โˆ’ ๐œ‰

1 + ๐œ‰+ 2๐œ‰ โˆ†๐‘“๐บยฐ๐‘๐‘‚2 + ๐‘…๐‘‡ ln

2๐œ‰

1 + ๐œ‰

This equation gives the Gibbs energy of the reaction mixture, ๐บ, as a

function of the extent of the reaction, ๐œ‰. Substituting the values for โˆ†๐‘“๐บยฐ:

๐บ ๐œ‰ = 1 โˆ’ ๐œ‰ 97.8 ๐‘˜๐ฝ ๐‘š๐‘œ๐‘™โˆ’1 + ๐‘…๐‘‡ ln1 โˆ’ ๐œ‰

1 + ๐œ‰+ 2๐œ‰ 51.3 ๐‘˜๐ฝ ๐‘š๐‘œ๐‘™โˆ’1 + ๐‘…๐‘‡ ln

2๐œ‰

1 + ๐œ‰

Page 34: Lecture 409.317 2013.F N07(Before Class Version)

II-3. Chemical Equilibrium- $26-4: A plot of the Gibbs energy of a reaction mixture against the extent of

reaction is a minimum at equilibrium -

Consider the thermal decomposition of N2O4 (g) at 298.15 K as an example

to treat the Gibbs energy of a reaction mixture:

N2O4 (g) โ‡Œ 2 NO2 (g)

๐บ ๐œ‰ = 1 โˆ’ ๐œ‰ 97.8 ๐‘˜๐ฝ ๐‘š๐‘œ๐‘™โˆ’1 + ๐‘…๐‘‡ ln1 โˆ’ ๐œ‰

1 + ๐œ‰+ 2๐œ‰ 51.3 ๐‘˜๐ฝ ๐‘š๐‘œ๐‘™โˆ’1 + ๐‘…๐‘‡ ln

2๐œ‰

1 + ๐œ‰

Page 35: Lecture 409.317 2013.F N07(Before Class Version)

II-3. Chemical Equilibrium- $26-4: A plot of the Gibbs energy of a reaction mixture against the extent of

reaction is a minimum at equilibrium -

Consider the thermal decomposition of N2O4 (g) at 298.15 K as an example

to treat the Gibbs energy of a reaction mixture:

N2O4 (g) โ‡Œ 2 NO2 (g)

๐บ ๐œ‰ = 1 โˆ’ ๐œ‰ 97.8 ๐‘˜๐ฝ ๐‘š๐‘œ๐‘™โˆ’1 + ๐‘…๐‘‡ ln1 โˆ’ ๐œ‰

1 + ๐œ‰+ 2๐œ‰ 51.3 ๐‘˜๐ฝ ๐‘š๐‘œ๐‘™โˆ’1 + ๐‘…๐‘‡ ln

2๐œ‰

1 + ๐œ‰

๐บ ๐œ‰ is minimized at ๐œ‰ = 0.1892 ๐‘š๐‘œ๐‘™, corresponding to the equilibrium state,

thus ๐œ‰ = ๐œ‰๐‘’๐‘ž = 0.1892 ๐‘š๐‘œ๐‘™.

Then, the equilibrium constant is:

๐พ๐‘ƒ =๐‘ƒ๐‘๐‘‚2

2

๐‘ƒ๐‘2๐‘‚4=

2๐œ‰๐‘’๐‘ž 1 + ๐œ‰๐‘’๐‘ž2

1 โˆ’ ๐œ‰๐‘’๐‘ž 1 + ๐œ‰๐‘’๐‘ž= 0.148

We can also calculate it from โˆ†๐‘Ÿ๐บยฐ:

ln๐พ๐‘ƒ = โˆ’โˆ†๐‘Ÿ๐บยฐ

๐‘…๐‘‡= โˆ’

2 โˆ†๐‘“๐บยฐ ๐‘๐‘‚2 ๐‘” โˆ’ 1 โˆ†๐‘“๐บยฐ ๐‘2๐‘‚4 ๐‘”

8.31 ๐ฝ ๐พโˆ’1 ๐‘š๐‘œ๐‘™โˆ’1 298.15 ๐พ= โˆ’1.908

Hence, ๐พ๐‘ƒ = 0.148

Page 36: Lecture 409.317 2013.F N07(Before Class Version)

II-3. Chemical Equilibrium- $26-4: A plot of the Gibbs energy of a reaction mixture against the extent of

reaction is a minimum at equilibrium -

Consider the thermal decomposition of N2O4 (g) at 298.15 K as an example

to treat the Gibbs energy of a reaction mixture:

N2O4 (g) โ‡Œ 2 NO2 (g)

๐บ ๐œ‰ = 1 โˆ’ ๐œ‰ 97.8 ๐‘˜๐ฝ ๐‘š๐‘œ๐‘™โˆ’1 + ๐‘…๐‘‡ ln1 โˆ’ ๐œ‰

1 + ๐œ‰+ 2๐œ‰ 51.3 ๐‘˜๐ฝ ๐‘š๐‘œ๐‘™โˆ’1 + ๐‘…๐‘‡ ln

2๐œ‰

1 + ๐œ‰

We may also differentiate this equation with respect to ๐œ‰, then finally obtain:

๐œ•๐บ

๐œ•๐œ‰๐‘‡,๐‘ƒ

= โˆ†๐‘Ÿ๐บยฐ + ๐‘…๐‘‡ ln๐‘ƒ๐‘๐‘‚2

2

๐‘ƒ๐‘2๐‘‚4

Since ๐œ•๐บ

๐œ•๐œ‰ ๐‘‡,๐‘ƒ= 0 at equilibrium,

โˆ†๐‘Ÿ๐บยฐ = โˆ’๐‘…๐‘‡ ln๐‘ƒ๐‘๐‘‚2

2

๐‘ƒ๐‘2๐‘‚4 ๐‘’๐‘ž

= โˆ’๐‘…๐‘‡ ln๐พ๐‘ƒ

which is the same equation that we have derived several slides ago.

In addition, solving ๐œ•๐บ

๐œ•๐œ‰ ๐‘‡,๐‘ƒ= 0 explicitly, ๐œ‰๐‘’๐‘ž = 0.1892 ๐‘š๐‘œ๐‘™ is obtained as well.

Page 37: Lecture 409.317 2013.F N07(Before Class Version)

II-3. Chemical Equilibrium- $26-5: The ratio of the reaction quotient to the equilibrium constant determines

the direction in which a reaction will proceed -

Consider a general reaction: ๐œˆ๐ดA(g) + ๐œˆ๐ตB(g) โ‡Œ ๐œˆ๐‘ŒY(g) + ๐œˆ๐‘Z(g)

โˆ†๐‘Ÿ๐บ ๐‘‡ = โˆ†๐‘Ÿ๐บยฐ ๐‘‡ + ๐‘…๐‘‡ ln๐‘ƒ๐‘Œ๐œˆ๐‘Œ๐‘ƒ๐‘

๐œˆ๐‘

๐‘ƒ๐ด๐œˆ๐ด๐‘ƒ๐ต

๐œˆ๐ต

Realize that this equation is a general equation, so pressures are not

necessarily the equilibrium pressures, but are arbitrary.

Generally, this equation gives the value of โˆ†๐‘Ÿ๐บ when

โ€œA(g) of [๐œˆ๐ด mol at ๐‘ƒ๐ด bar] react with B(g) of [๐œˆ๐ต mol at ๐‘ƒ๐ต bar] to produce

Y(g) of [๐œˆ๐ด mol at ๐‘ƒ๐ด bar] and Z(g) of [๐œˆ๐‘ mol at ๐‘ƒ๐‘ bar] โ€.

1) If all the partial pressures are equl to 1 bar, โˆ†๐‘Ÿ๐บ ๐‘‡ = โˆ†๐‘Ÿ๐บยฐ ๐‘‡ . In

other words, the Gibbs energy change will be equal to the standard

Gibbs energy change.

2) If the pressures are the equilibrium pressures, โˆ†๐‘Ÿ๐บ ๐‘‡ = 0 and then

we obtain results that were derived in previous slides.

Page 38: Lecture 409.317 2013.F N07(Before Class Version)

II-3. Chemical Equilibrium- $26-5: The ratio of the reaction quotient to the equilibrium constant determines

the direction in which a reaction will proceed -

Consider a general reaction: ๐œˆ๐ดA(g) + ๐œˆ๐ตB(g) โ‡Œ ๐œˆ๐‘ŒY(g) + ๐œˆ๐‘Z(g)

โˆ†๐‘Ÿ๐บ ๐‘‡ = โˆ†๐‘Ÿ๐บยฐ ๐‘‡ + ๐‘…๐‘‡ ln๐‘ƒ๐‘Œ๐œˆ๐‘Œ๐‘ƒ๐‘

๐œˆ๐‘

๐‘ƒ๐ด๐œˆ๐ด๐‘ƒ๐ต

๐œˆ๐ต

By introducing a quantity called the โ€œreaction quotientโ€ ๐‘„๐‘ƒ =๐‘ƒ๐‘Œ๐œˆ๐‘Œ๐‘ƒ๐‘

๐œˆ๐‘

๐‘ƒ๐ด๐œˆ๐ด๐‘ƒ๐ต

๐œˆ๐ต, and

using an equation to correlate โˆ†๐‘Ÿ๐บยฐ with ๐พ๐‘ƒ, โˆ†๐‘Ÿ๐บยฐ = โˆ’๐‘…๐‘‡ ln๐พ๐‘ƒ, then

โˆ†๐‘Ÿ๐บ ๐‘‡ = โˆ’๐‘…๐‘‡ ln๐พ๐‘ƒ + ๐‘…๐‘‡ ln๐‘„๐‘ƒ = ๐‘…๐‘‡ ln ๐‘„๐‘ƒ ๐พ๐‘ƒ

Note that this is not for the equilibrium; โˆ†๐‘Ÿ๐บ ๐‘‡ = 0 at equilibrium.

With this equation,

At equilibrium, โˆ†๐‘Ÿ๐บ ๐‘‡ = 0 and thus ๐‘„๐‘ƒ = ๐พ๐‘ƒ.

If ๐‘„๐‘ƒ < ๐พ๐‘ƒ, then ๐‘„๐‘ƒ must increase (because ๐พ๐‘ƒ is a constant) as the

system proceeds toward equilibrium.

This is achieved by increasing the partial pressures of the

products and decreasing those of the reactants. Hence, the

reaction spontaneously proceeds from left to right.

If ๐‘„๐‘ƒ > ๐พ๐‘ƒ, ๐‘„๐‘ƒ decrease as the system proceeds toward equilibrium.

In the same though, the reaction is spontaneous from right to left.

Page 39: Lecture 409.317 2013.F N07(Before Class Version)

II-3. Chemical Equilibrium- $26-5: The ratio of the reaction quotient to the equilibrium constant determines

the direction in which a reaction will proceed -

(Example-4: #26-5) Consider โ€œ 2SO2(g) + O2(g) โ‡Œ 2SO3(g) โ€. The

equilibrium constant ๐พ๐‘ƒ = 10 at 960 K. Calculate โˆ†๐‘Ÿ๐บ and check in which

direction the reaction will proceed spontaneously for

2 SO2 (1.0 ร— 10โˆ’3 ๐‘๐‘Ž๐‘Ÿ) + O2 (0.20 ๐‘๐‘Ž๐‘Ÿ) โ‡Œ 2 SO3(1.0 ร— 10

โˆ’4 ๐‘๐‘Ž๐‘Ÿ)

๐‘„๐‘ƒ =๐‘ƒ๐‘†๐‘‚32

๐‘ƒ๐‘†๐‘‚22 ๐‘ƒ๐‘‚2

=1.0 ร— 10โˆ’4 2

1.0 ร— 10โˆ’3 2 0.20= 5.0 ร— 10โˆ’2

Note that the value for ๐‘„๐‘ƒ is unitless because the definition of ๐‘„ is, for

example in a general form, ๐‘„ = ๐‘ƒ๐‘Œ ๐‘ƒยฐ

๐œˆ๐‘Œ ๐‘ƒ๐‘ ๐‘ƒยฐ๐œˆ๐‘

๐‘ƒ๐ด ๐‘ƒยฐ ๐œˆ๐ด ๐‘ƒ๐ต ๐‘ƒยฐ ๐œˆ๐ตwhere ๐‘ƒยฐ = 1 ๐‘๐‘Ž๐‘Ÿ.

โˆ†๐‘Ÿ๐บ ๐‘‡ = ๐‘…๐‘‡ ln ๐‘„๐‘ƒ ๐พ๐‘ƒ = ๐‘…๐‘‡ ln 5.0 ร— 10โˆ’2 10 < 0

Hence, due to โˆ†๐‘Ÿ๐บ ๐‘‡ < 0 (or due to ๐‘„๐‘ƒ < ๐พ๐‘ƒ), the reaction proceed

from left to right.

Page 40: Lecture 409.317 2013.F N07(Before Class Version)

II-3. Chemical Equilibrium- $26-6: The sign of โˆ†๐‘Ÿ๐บ and not that of โˆ†๐‘Ÿ๐บยฐ ๐‘‡ determines the direction of reaction

spontaneity -

It should be clearly understood that โˆ†๐‘Ÿ๐บยฐ is the value of โˆ†๐‘Ÿ๐บ when all the

reactants and products are unmixed at partial pressures equal to 1 bar.

Namely, โˆ†๐‘Ÿ๐บยฐ is the standard Gibbs energy changes. (recall that โ€œstandardโ€

assumes 1 bar) Hence,

If โˆ†๐‘Ÿ๐บยฐ < 0, then ๐พ๐‘ƒ > 1, meaning that the reaction will proceed from

reactants to products if all species are mixed at 1 bar (for each partial

pressure; not total pressure).

If โˆ†๐‘Ÿ๐บยฐ > 0, then ๐พ๐‘ƒ < 1, thus reaction proceeds from products to

reactants in the same condition.

So, the sing of โˆ†๐‘Ÿ๐บยฐ just indicates the spontaneous reaction direction

for the condition of ๐‘ƒ๐‘๐‘Ž๐‘Ÿ๐‘ก๐‘–๐‘Ž๐‘™ = 1 bar (for all species of both reactants

and products); not necessarily for all conditions.

Page 41: Lecture 409.317 2013.F N07(Before Class Version)

II-3. Chemical Equilibrium- $26-6: The sign of โˆ†๐‘Ÿ๐บ and not that of โˆ†๐‘Ÿ๐บยฐ ๐‘‡ determines the direction of reaction

spontaneity -

(Example-5) Consider โ€œ N2O4 (g) โ‡Œ 2 NO2 (g) โ€,

for which โˆ†๐‘Ÿ๐บยฐ = 4.729 kJ ๐‘š๐‘œ๐‘™โˆ’1 and ๐พ๐‘ƒ = 0.148 at 298.15 K.

First, make sure that this โˆ†๐‘Ÿ๐บยฐ > 0 does NOT mean โ€œno N2O4 dissociate at

298.15 K when we place some of N2O4 in a reaction vesselโ€.

To correctly consider, we have to calculate โˆ†๐‘Ÿ๐บ as:

โˆ†๐‘Ÿ๐บ = โˆ†๐‘Ÿ๐บยฐ + ๐‘…๐‘‡ ln๐‘„๐‘ƒ = 4.729 ๐‘˜๐ฝ ๐‘š๐‘œ๐‘™โˆ’1 + 2.479 ๐‘˜๐ฝ ๐‘š๐‘œ๐‘™โˆ’1 ln

๐‘ƒ๐‘๐‘‚22

๐‘ƒ๐‘2๐‘‚4

If we just โ€place some of N2O4 in a reaction vesselโ€, ln ๐‘ƒ๐‘๐‘‚22 ๐‘ƒ๐‘2๐‘‚4 has a

large negative value, thus โˆ†๐‘Ÿ๐บ < 0. Accordingly, some N2O4 dissociate.

The equilibrium state is achieved by the condition โˆ†๐‘Ÿ๐บ = 0 (note โˆ†๐‘Ÿ๐บยฐ is a

constant while โˆ†๐‘Ÿ๐บ changes depending on ๐‘ƒ๐‘๐‘‚2 and ๐‘ƒ๐‘2๐‘‚4 ), at which point

๐‘„๐‘ƒ = ๐พ๐‘ƒ. Until this point is achieved, ๐‘ƒ๐‘๐‘‚2 increases and ๐‘ƒ๐‘2๐‘‚4 decreases.

Page 42: Lecture 409.317 2013.F N07(Before Class Version)

II-3. Chemical Equilibrium- $26-6: The sign of โˆ†๐‘Ÿ๐บ and not that of โˆ†๐‘Ÿ๐บยฐ ๐‘‡ determines the direction of reaction

spontaneity -

(Example-6) Consider โ€œ H2 (g) + ยฝ O2 (g) โ‡Œ H2O (l) โ€,

for which โˆ†๐‘Ÿ๐บยฐ = โˆ’237 kJ ๐‘š๐‘œ๐‘™โˆ’1 at 298.15 K.

In this case, โˆ†๐‘Ÿ๐บยฐ has a large negative value, thus basically H2O (l) is

much more stable than the reactants at 298.15 K. However, a mixture of

H2 (g) and O2 (g) remains unchanged.

If a spark or a catalyst is introduced, then the reaction occurs explosively.

The โ€œnoโ€ of the thermodynamics is emphatic: If thermodynamics

insists that a certain process will not occur spontaneously, then it will

not occur.

On the other hand, the โ€œyesโ€ is actually โ€œmaybeโ€. The fact that a

process will occur spontaneously does not imply that it will occur at a

detectable rate.

Diamond remains its form, although a graphite is more favorable

energetically, is another example.

The speed of reaction can be analyzed in the framework

of rate theory. (next topic)

Page 43: Lecture 409.317 2013.F N07(Before Class Version)

II-3. Chemical Equilibrium- $26-7: The variation of an equilibrium constant with temperature is given by the

Vanโ€™t Hoff Equation -

We utilize the Gibbs-Helmohltz equation:

Substitute โˆ†๐‘Ÿ๐บยฐ = โˆ’๐‘…๐‘‡ ln๐พ๐‘ƒ (note this is a definition of โˆ†๐‘Ÿ๐บยฐ, not a condition

achieved at equilibrium state) for this equation:

๐œ•โˆ†๐บยฐ ๐‘‡

๐œ•๐‘‡๐‘ƒ

=โˆ†๐ปยฐ

๐‘‡2

๐œ• ln๐พ๐‘ƒ(๐‘‡)

๐œ•๐‘‡๐‘ƒ

=๐‘‘ ln๐พ๐‘ƒ(๐‘‡)

๐‘‘๐‘‡=โˆ†๐‘Ÿ๐ปยฐ

๐‘…๐‘‡2

This means that

If โˆ†๐‘Ÿ๐ปยฐ > 0 (endothermic reaction), ๐พ๐‘ƒ(๐‘‡) increases with temperature.

If โˆ†๐‘Ÿ๐ปยฐ < 0 (exothermic reaction), ๐พ๐‘ƒ(๐‘‡) decreases with temperature.

Integrate the equation:ln๐พ๐‘ƒ(๐‘‡2)

๐พ๐‘ƒ(๐‘‡1)=

๐‘‡1

๐‘‡2 โˆ†๐‘Ÿ๐ปยฐ(๐‘‡)

๐‘…๐‘‡2๐‘‘๐‘‡

If the temperature range is small enough to consider โˆ†๐‘Ÿ๐ปยฐ constant:

ln๐พ๐‘ƒ(๐‘‡2)

๐พ๐‘ƒ(๐‘‡1)= โˆ’

โˆ†๐‘Ÿ๐ปยฐ

๐‘…

1

๐‘‡2โˆ’1

๐‘‡1

Page 44: Lecture 409.317 2013.F N07(Before Class Version)

II-3. Chemical Equilibrium- $26-7: The variation of an equilibrium constant with temperature is given by the

Vanโ€™t Hoff Equation -

(Example-7) Consider โ€œ PCl3 (g) + Cl2 (g) โ‡Œ PCl2 (g) โ€.

Given that โˆ†๐‘Ÿ๐ปยฐ has an average value of -69.8 kJ mol-1 over 500-700 K and

๐พ๐‘ƒ is 0.0408 at 500K, evaluate ๐พ๐‘ƒ at 700K.

As โˆ†๐‘Ÿ๐ปยฐ can be assumed as a constant over the concerned temperatures,

ln๐พ๐‘ƒ(๐‘‡2)

๐พ๐‘ƒ(๐‘‡1)= โˆ’

โˆ†๐‘Ÿ๐ปยฐ

๐‘…

1

๐‘‡2โˆ’1

๐‘‡1

Substituting provided values gives:

ln๐พ๐‘ƒ(700 ๐พ)

๐พ๐‘ƒ(500 ๐พ)= ln

๐พ๐‘ƒ(700 ๐พ)

0.0408= โˆ’

โˆ’69.8 ร— 103

๐‘…

1

700โˆ’1

500

๐พ๐‘ƒ 700 ๐พ = 3.36 ร— 10โˆ’4

Note that since the reaction is exothermic, ๐พ๐‘ƒ 700 ๐พ is less than ๐พ๐‘ƒ 700 ๐พ ;

namely less product (PCl2) at higher temperatures as ๐พ๐‘ƒ = ๐‘ƒ๐‘ƒ๐ถ๐‘™2

๐‘ƒ๐‘ƒ๐ถ๐‘™3๐‘ƒ๐ถ๐‘™2.

Page 45: Lecture 409.317 2013.F N07(Before Class Version)

II-3. Chemical Equilibrium- $26-7: The variation of an equilibrium constant with temperature is given by the

Vanโ€™t Hoff Equation -

ln๐พ๐‘ƒ(๐‘‡2)

๐พ๐‘ƒ(๐‘‡1)=

๐‘‡1

๐‘‡2 โˆ†๐‘Ÿ๐ปยฐ(๐‘‡)

๐‘…๐‘‡2๐‘‘๐‘‡

Finally, we consider the temperature dependence of โˆ†๐‘Ÿ๐ปยฐ constant in:

This equation can write down as:

ln๐พ๐‘ƒ(๐‘‡) = ln๐พ๐‘ƒ(๐‘‡1) + ๐‘‡1

๐‘‡ โˆ†๐‘Ÿ๐ปยฐ(๐‘‡โ€ฒ)

๐‘…๐‘‡โ€ฒ2๐‘‘๐‘‡โ€ฒ

For example, as we learned, the temperature dependence of โˆ†๐‘Ÿ๐ปยฐ may

be written as:

โˆ†๐‘Ÿ๐ปยฐ ๐‘‡2 = โˆ†๐‘Ÿ๐ปยฐ ๐‘‡1 + ๐‘‡1

๐‘‡2

โˆ†๐ถยฐ๐‘ƒ ๐‘‡ ๐‘‘๐‘‡

or expanded in respect to temperature as:

โˆ†๐‘Ÿ๐ปยฐ ๐‘‡ = ๐›ผ + ๐›ฝ๐‘‡ + ๐›พ๐‘‡2 + ๐›ฟ๐‘‡3 +โ‹ฏ

In this latter case, ln๐พ๐‘ƒ(๐‘‡) becomes:

ln๐พ๐‘ƒ(๐‘‡) = โˆ’๐›ผ

๐‘…๐‘‡+๐›ฝ

๐‘…ln ๐‘‡ +

๐›พ

๐‘…๐‘‡ +

๐›ฟ

2๐‘…๐‘‡2 + (๐‘–๐‘›๐‘ก๐‘’๐‘”๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘›_๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก)โ€ฆ