lecture 4: nuclear structure 2 - inpp main...

31
Lecture 4: Ohio University PHYS7501, Fall 2017, Z. Meisel ([email protected]) Lecture 4: Nuclear Structure 2 โ€ข Independent vs collective models โ€ข Collective Model โ€ข Rotation โ€ข Vibration โ€ข Coupled excitations โ€ข Nilsson model

Upload: others

Post on 31-May-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 4: Nuclear Structure 2 - INPP Main Pagemeisel/PHYS7501/file/Lecture4_Structure2_PHYS7501_F2017_ZM.pdfโ€ข Note that the value for ๐›ฝ๐›ฝis going to depend on the specific

Lecture 4: Ohio University PHYS7501, Fall 2017, Z. Meisel ([email protected])

Lecture 4: Nuclear Structure 2โ€ข Independent vs collective modelsโ€ข Collective Model

โ€ข Rotationโ€ข Vibrationโ€ข Coupled excitations

โ€ข Nilsson model

Page 2: Lecture 4: Nuclear Structure 2 - INPP Main Pagemeisel/PHYS7501/file/Lecture4_Structure2_PHYS7501_F2017_ZM.pdfโ€ข Note that the value for ๐›ฝ๐›ฝis going to depend on the specific

Nuclear Models

โ€ข No useful fundamental & universal model exists for nucleiโ€ข E.g. based on the nuclear interaction, how do we describe all nuclear properties?โ€ข Promising approaches include โ€œab initioโ€ methods, such as Greens Function Monte Carlo,

No-core shell model, Coupled cluster model, density functional theories

โ€ข Generally one of two classes of models is used insteadโ€ข Independent particle models:

โ€ข A nucleon exists within a mean-field (maybe has a few interactions)

โ€ข E.g. Shell model, Fermi gas modelโ€ข Collective models:

โ€ข Groups of nucleons act together (maybe involves shell-model aspects)

โ€ข E.g. Liquid drop model, Collective model

2

โ€œThereโ€™s no small choice in rotten apples.โ€ Shakespeare, The Taming of the Shrew

Page 3: Lecture 4: Nuclear Structure 2 - INPP Main Pagemeisel/PHYS7501/file/Lecture4_Structure2_PHYS7501_F2017_ZM.pdfโ€ข Note that the value for ๐›ฝ๐›ฝis going to depend on the specific

Collective Modelโ€ข There are compelling reasons to think that our nucleus isnโ€™t a rigid sphere

โ€ข The liquid drop model gives a pretty successful description of some nuclear properties.โ€ฆcanโ€™t liquids slosh around?

โ€ข Many nuclei have non-zero electric quadrupole moments (charge distributions)

โ€ฆthis means thereโ€™s a non-spherical shape.โ€ฆcanโ€™t non-spherical things rotate?

โ€ข Then, we expect nuclei to be able to be excited rotationally & vibrationallyโ€ข We should (and do) see the signature in the nuclear excited states

โ€ข The relative energetics of rotation vs vibrationcan be inferred from geometry

โ€ข The rotational frequency should go as ๐œ”๐œ”๐‘Ÿ๐‘Ÿ โˆ1๐‘…๐‘…2

(because ๐ผ๐ผ โ‰ก ๐ฟ๐ฟ๐œ”๐œ” and ๐ผ๐ผ โˆ ๐‘€๐‘€๐‘…๐‘…2)

โ€ข The vibrational frequency should go as ๐œ”๐œ”๐‘ฃ๐‘ฃ โˆ1โˆ†๐‘…๐‘… 2

(because itโ€™s like an oscillator)โ€ข So ๐œ”๐œ”๐‘Ÿ๐‘Ÿ โ‰ช ๐œ”๐œ”๐‘ฃ๐‘ฃ 3

Page 4: Lecture 4: Nuclear Structure 2 - INPP Main Pagemeisel/PHYS7501/file/Lecture4_Structure2_PHYS7501_F2017_ZM.pdfโ€ข Note that the value for ๐›ฝ๐›ฝis going to depend on the specific

Rainwaterโ€™s case for deformationโ€ข A non-spherical shape allows for rotation โ€ฆbut why would a nucleus be non-spherical?โ€ข Consider the energetics of a deformed liquid drop (J. Rainwater, Phys. Rev. (1950))

โ€ข ๐ต๐ต๐ต๐ต๐‘†๐‘†๐‘†๐‘†๐‘†๐‘†๐‘†๐‘† ๐‘๐‘,๐ด๐ด = ๐‘Ž๐‘Ž๐‘ฃ๐‘ฃ๐‘œ๐‘œ๐‘œ๐‘œ๐ด๐ด โˆ’ ๐‘Ž๐‘Ž๐‘ ๐‘ ๐‘ข๐‘ข๐‘Ÿ๐‘Ÿ๐‘ข๐‘ข๐ด๐ด โ„2 3 โˆ’ ๐‘Ž๐‘Ž๐‘๐‘๐‘œ๐‘œ๐‘ข๐‘ข๐‘œ๐‘œ๐‘๐‘(๐‘๐‘โˆ’1)

๐ด๐ด ๏ฟฝ1 3โˆ’ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ 

๐‘๐‘โˆ’๐ด๐ด22

๐ด๐ดยฑ ๐‘Ž๐‘Ž๐‘๐‘๐‘Ž๐‘Ž๐‘๐‘๐‘Ÿ๐‘Ÿ๐‘–๐‘– ๐ด๐ด

โ€ข Upon deformation, only the Coulomb and Surface terms will changeโ€ข Increased penalty for enlarged surfaceโ€ข Decreased penalty for Coulomb repulsion because charges move apartโ€ข The volume remains the same because the drop is incompressible

โ€ข To change shape, but maintain the same volume, the spheroidโ€™s axes can be parameterized asโ€ข ๐‘Ž๐‘Ž = ๐‘…๐‘…(1 + ๐œ€๐œ€) ; ๐‘๐‘ = ๐‘…๐‘…

1+๐œ€๐œ€; where ๐‘‰๐‘‰ = 4

3๐œ‹๐œ‹๐‘…๐‘…3 = 4

3๐œ‹๐œ‹๐‘Ž๐‘Ž๐‘๐‘2

โ€ข It turns out (B.R. Martin, Nuclear and Particle Physics), expanding the surface and Coulomb terms in a power series yields:โ€ข ๐ต๐ต๐‘ ๐‘ โ€ฒ = ๐‘Ž๐‘Ž๐‘ ๐‘ ๐‘ข๐‘ข๐‘Ÿ๐‘Ÿ๐‘ข๐‘ข๐ด๐ด โ„2 3 1 + 2

5๐œ€๐œ€2 + โ‹ฏ ; ๐ต๐ต๐‘๐‘โ€ฒ = ๐‘Ž๐‘Ž๐‘๐‘๐‘œ๐‘œ๐‘ข๐‘ข๐‘œ๐‘œ

๐‘๐‘(๐‘๐‘โˆ’1)

๐ด๐ด ๏ฟฝ1 31 โˆ’ 1

5๐œ€๐œ€2 + โ‹ฏ

โ€ข Therefore, the change in energy for deformation is:โ€ข โˆ†๐ต๐ต = ๐ต๐ต๐‘ ๐‘ โ€ฒ + ๐ต๐ต๐‘๐‘โ€ฒ โˆ’ ๐ต๐ต๐‘ ๐‘  + ๐ต๐ต๐‘๐‘ = ๐œ€๐œ€2

52๐‘Ž๐‘Ž๐‘ ๐‘ ๐‘ข๐‘ข๐‘Ÿ๐‘Ÿ๐‘ข๐‘ข๐ด๐ด โ„2 3 โˆ’ ๐‘Ž๐‘Ž๐‘๐‘๐‘œ๐‘œ๐‘ข๐‘ข๐‘œ๐‘œ

๐‘๐‘(๐‘๐‘โˆ’1)

๐ด๐ด ๏ฟฝ1 3(โˆ†๐ต๐ต < 0 is an energetically favorable change)

โ€ข Written more simply, โˆ†๐ต๐ต ๐‘๐‘,๐ด๐ด = โˆ’๐›ผ๐›ผ(๐‘๐‘,๐ด๐ด)๐œ€๐œ€2 4

Loveland, Morrissey, Seaborg, Modern Nuclear Chemistry (2006)

b

To get ฮ”E<0, need Z>116, A>270!So we do not expect deformation

from this effect alone.Nonetheless, heavier nuclei are going

to be more susceptible to deformation.

Page 5: Lecture 4: Nuclear Structure 2 - INPP Main Pagemeisel/PHYS7501/file/Lecture4_Structure2_PHYS7501_F2017_ZM.pdfโ€ข Note that the value for ๐›ฝ๐›ฝis going to depend on the specific

Rainwaterโ€™s case for deformation

5

โ€ข So far weโ€™ve only considered the deformation of the coreโ€ข However, we also need to consider any valence nucleons

โ€ข A non-spherical shape breaks the degeneracy in ๐‘š๐‘š for a given ๐‘™๐‘™,where the level-splitting is linear in the deformation ๐œ€๐œ€.

โ€ข The strength of the splitting is found by solving theSchrรถdinger equation for single-particle levels in a spheroidal(rather than spherical) well and comparing the spheroidal eigenvalue to the spherical one.

โ€ข The total energy change for deformation then becomes: โˆ†๐ต๐ต ๐‘๐‘,๐ด๐ด = โˆ’๐›ผ๐›ผ ๐‘๐‘,๐ด๐ด ๐œ€๐œ€2 โˆ’ ๐›ฝ๐›ฝ๐œ€๐œ€โ€ข The core deformation favors a given m, reinforcing the overall deformation

โ€ข i.e. the valence nucleon interacts with the core somewhat like the moon with the earth, inducing โ€œtidesโ€

โ€ข Taking the derivative with respect to ๐œ€๐œ€, we find there is a favored deformation: ๐œ€๐œ€๐‘ ๐‘ ๐‘๐‘๐‘š๐‘š = โˆ’๐›ฝ๐›ฝ2๐›ผ๐›ผ

โ€ข Since valence nucleons are necessary to amplify the effect,this predicts ground-state deformation occurring in between closed shells

โ€ข Note that the value for ๐›ฝ๐›ฝ is going to depend on the specific nuclear structure,which shell-model calculations are often used to estimate

S.Granger & R.Spence, Phys. Rev. (1951)

Page 6: Lecture 4: Nuclear Structure 2 - INPP Main Pagemeisel/PHYS7501/file/Lecture4_Structure2_PHYS7501_F2017_ZM.pdfโ€ข Note that the value for ๐›ฝ๐›ฝis going to depend on the specific

Predicted regions of deformation

6

P. Mรถller et al. ADNDT (2016)B. Harvey, Introduction to Nuclear Physics and Chemistry (1962)

๐›ฝ๐›ฝ2 โ‰ก ๐›ผ๐›ผ2,0 =43

๐œ‹๐œ‹5๐‘Ž๐‘Ž โˆ’ ๐‘๐‘๐‘…๐‘…๐‘ ๐‘ ๐‘๐‘๐‘ 

Loveland, Morrissey, Seaborg, Modern Nuclear Chemistry (2006)

b

Page 7: Lecture 4: Nuclear Structure 2 - INPP Main Pagemeisel/PHYS7501/file/Lecture4_Structure2_PHYS7501_F2017_ZM.pdfโ€ข Note that the value for ๐›ฝ๐›ฝis going to depend on the specific

Measured regions of deformation

7

Center for Photonuclear Experiments Data

From:Raman, Nestor, & Tikkanen, ADNDT (2001)N.J. Stone, ADNDT (2005)

Page 8: Lecture 4: Nuclear Structure 2 - INPP Main Pagemeisel/PHYS7501/file/Lecture4_Structure2_PHYS7501_F2017_ZM.pdfโ€ข Note that the value for ๐›ฝ๐›ฝis going to depend on the specific

Rotation: Rigid rotor

โ€ข The energy associated with a rotating object is: ๐ต๐ต๐‘Ÿ๐‘Ÿ๐‘œ๐‘œ๐‘Ÿ๐‘Ÿ = 12๐ผ๐ผ๐œ”๐œ”

2

โ€ข Weโ€™re working with quantum stuff, so we need angular momentum instead where ๐ฝ๐ฝ = ๐ผ๐ผ๐œ”๐œ”

โ€ข So, ๐ต๐ต๐‘Ÿ๐‘Ÿ๐‘œ๐‘œ๐‘Ÿ๐‘Ÿ = 12๐ฝ๐ฝ2

๐ผ๐ผ

โ€ข โ€ฆand ๐ฝ๐ฝ is quantized, so ๐ต๐ต๐‘Ÿ๐‘Ÿ๐‘œ๐‘œ๐‘Ÿ๐‘Ÿ = ั›2๐‘—๐‘—(๐‘—๐‘—+1)2๐ผ๐ผ

โ€ข Thus our rotating nucleus will have excited states spaced as ๐‘—๐‘—(๐‘—๐‘— + 1) corresponding to rotation

โ€ข For a solid constant-density ellipsoid, ๐ผ๐ผ๐‘Ÿ๐‘Ÿ๐‘๐‘๐‘Ÿ๐‘Ÿ๐‘๐‘๐‘Ÿ๐‘Ÿ = 25๐‘€๐‘€๐‘…๐‘…

2 1 + 0.31๐›ฝ๐›ฝ + 0.44๐›ฝ๐›ฝ2 + โ‹ฏ

where ฮฒ = 43

๐œ‹๐œ‹5

๐‘Ž๐‘Žโˆ’๐‘๐‘๐‘…๐‘…๐‘ ๐‘ ๐‘ ๐‘ ๐‘ 

(A.Bohr & B.Mottelson, Dan. Matematisk-fysiske Meddelelser (1955))

8

Page 9: Lecture 4: Nuclear Structure 2 - INPP Main Pagemeisel/PHYS7501/file/Lecture4_Structure2_PHYS7501_F2017_ZM.pdfโ€ข Note that the value for ๐›ฝ๐›ฝis going to depend on the specific

Rotation: Irrotational Motionโ€ข Rather than the whole nucleus rotating, a tide-like effect could produce something like rotationโ€ข Here nucleons just move in and out in a synchronized fashion,

kind of like people doing โ€œthe waveโ€ in a stadiumโ€ข Since nucleons arenโ€™t orbiting,

but are just bobbing in and out,this type of motion is calledโ€œirrotationalโ€

โ€ข Thankfully, Lord Rayleighworked-out the moment of inertiafor continuous, classical fluidwith a sharp surface(also in D.J. Rowe, Nuclear Collective Motion (1970))

โ€ข ๐ผ๐ผ๐‘๐‘๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘œ๐‘œ = 98๐œ‹๐œ‹๐‘€๐‘€๐‘…๐‘…

2๐›ฝ๐›ฝ2

9

B. Harvey, Introduction to Nuclear Physics and Chemistry (1962)

N. Andreacci

Page 10: Lecture 4: Nuclear Structure 2 - INPP Main Pagemeisel/PHYS7501/file/Lecture4_Structure2_PHYS7501_F2017_ZM.pdfโ€ข Note that the value for ๐›ฝ๐›ฝis going to depend on the specific

Moment of inertia comparisonโ€ข As an example, we can calculate the moment of inertia for 238Pu.

โ€ข The NNDC chart says for this nucleus ๐›ฝ๐›ฝ = 0.285โ€ข ๐ผ๐ผ๐‘Ÿ๐‘Ÿ๐‘๐‘๐‘Ÿ๐‘Ÿ๐‘๐‘๐‘Ÿ๐‘Ÿ = 2

5๐‘€๐‘€๐‘…๐‘…2 1 + 0.31๐›ฝ๐›ฝ + 0.44๐›ฝ๐›ฝ2 + โ‹ฏ โ‰ˆ 2

5๐ด๐ด ๐‘Ÿ๐‘Ÿ0๐ด๐ด1/3 2 1 + 0.31๐›ฝ๐›ฝ + 0.44๐›ฝ๐›ฝ2

= 25(1.2๐‘“๐‘“๐‘š๐‘š)2 ๐ด๐ด5/3๐‘Ž๐‘Ž๐‘š๐‘š๐‘Ž๐‘Ž 1 + 0.31๐›ฝ๐›ฝ + 0.44๐›ฝ๐›ฝ2 = 5874 ๐‘Ž๐‘Ž๐‘š๐‘š๐‘Ž๐‘Ž ๐‘“๐‘“๐‘š๐‘š2

โ€ข ๐ผ๐ผ๐‘๐‘๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘œ๐‘œ = 98๐œ‹๐œ‹๐‘€๐‘€๐‘…๐‘…

2๐›ฝ๐›ฝ2 โ‰ˆ 98๐œ‹๐œ‹๐ด๐ด ๐‘Ÿ๐‘Ÿ0๐ด๐ด1/3 2๐›ฝ๐›ฝ2

= 98๐œ‹๐œ‹(1.2๐‘“๐‘“๐‘š๐‘š)2 ๐ด๐ด5/3๐‘Ž๐‘Ž๐‘š๐‘š๐‘Ž๐‘Ž ๐›ฝ๐›ฝ2 = 3778 ๐‘Ž๐‘Ž๐‘š๐‘š๐‘Ž๐‘Ž ๐‘“๐‘“๐‘š๐‘š2

โ€ข We can obtain an empirical rotation constant for 238Puโ€ข The energy associated with excitation from the 1st 2+ excited state to the 1st 4+ state is:โˆ†๐ต๐ต = ๐ต๐ต๐‘Ÿ๐‘Ÿ๐‘œ๐‘œ๐‘Ÿ๐‘Ÿ4+ โˆ’ ๐ต๐ต๐‘Ÿ๐‘Ÿ๐‘œ๐‘œ๐‘Ÿ๐‘Ÿ2+ = ั›2

2๐ผ๐ผ4 4 + 1 โˆ’ ั›2

2๐ผ๐ผ2 2 + 1 = 7 ั›2

๐ผ๐ผโ€ข From NNDC, ๐ต๐ต 21+ = 44๐‘˜๐‘˜๐‘˜๐‘˜๐‘‰๐‘‰ & ๐ต๐ต 41+ = 146๐‘˜๐‘˜๐‘˜๐‘˜๐‘‰๐‘‰ , so ๐ผ๐ผ๐‘’๐‘’๐‘’๐‘’๐‘๐‘๐‘Ÿ๐‘Ÿ = 7

102ั›2๐‘˜๐‘˜๐‘˜๐‘˜๐‘‰๐‘‰โˆ’1

โ€ข Take advantage of fact that ั›๐‘๐‘ โ‰ˆ 197๐‘€๐‘€๐‘˜๐‘˜๐‘‰๐‘‰ ๐‘“๐‘“๐‘š๐‘š and 1๐‘Ž๐‘Ž๐‘š๐‘š๐‘Ž๐‘Ž โ‰ˆ 931.5๐‘€๐‘€๐‘˜๐‘˜๐‘‰๐‘‰/๐‘๐‘2,๐ผ๐ผ๐‘’๐‘’๐‘’๐‘’๐‘๐‘๐‘Ÿ๐‘Ÿ = 14

0.102๐‘†๐‘†๐‘’๐‘’๐‘€๐‘€ั›2 1๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž

931.5๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€/๐‘๐‘2= 0.074 ั›2๐‘๐‘2

๐‘†๐‘†๐‘’๐‘’๐‘€๐‘€2๐‘Ž๐‘Ž๐‘š๐‘š๐‘Ž๐‘Ž = 0.074 197๐‘†๐‘†๐‘’๐‘’๐‘€๐‘€ ๐‘ข๐‘ข๐‘ ๐‘  2

๐‘†๐‘†๐‘’๐‘’๐‘€๐‘€2๐‘Ž๐‘Ž๐‘š๐‘š๐‘Ž๐‘Ž

= 2859 ๐‘Ž๐‘Ž๐‘š๐‘š๐‘Ž๐‘Ž ๐‘“๐‘“๐‘š๐‘š2

10โ€ฆcloser to irrotational

Page 11: Lecture 4: Nuclear Structure 2 - INPP Main Pagemeisel/PHYS7501/file/Lecture4_Structure2_PHYS7501_F2017_ZM.pdfโ€ข Note that the value for ๐›ฝ๐›ฝis going to depend on the specific

Empirical moment of inertiaโ€ข ๐ต๐ต๐‘Ÿ๐‘Ÿ๐‘œ๐‘œ๐‘Ÿ๐‘Ÿ = ั›2๐‘—๐‘—(๐‘—๐‘—+1)

2๐ผ๐ผ, so measuring โˆ†๐ต๐ต between levels should give us ๐ผ๐ผ

โ€ข It turns out, generally: ๐ผ๐ผ๐‘๐‘๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘œ๐‘œ < ๐ผ๐ผ๐‘’๐‘’๐‘’๐‘’๐‘๐‘๐‘Ÿ๐‘Ÿ < ๐ผ๐ผ๐‘Ÿ๐‘Ÿ๐‘๐‘๐‘Ÿ๐‘Ÿ๐‘๐‘๐‘Ÿ๐‘Ÿ

11

D.J. Rowe, Nuclear Collective Motion (1970))

A.Bohr & B.Mottelson, Dan. Matematisk-fysiske Meddelelser (1955))

Page 12: Lecture 4: Nuclear Structure 2 - INPP Main Pagemeisel/PHYS7501/file/Lecture4_Structure2_PHYS7501_F2017_ZM.pdfโ€ข Note that the value for ๐›ฝ๐›ฝis going to depend on the specific

Rotational bands: sequences of excited states

โ€ข ๐ต๐ต๐‘Ÿ๐‘Ÿ๐‘œ๐‘œ๐‘Ÿ๐‘Ÿ = ั›2๐‘—๐‘—(๐‘—๐‘—+1)2๐ผ๐ผ

, so for a given ๐ผ๐ผ, โˆ†๐ต๐ต โˆ ๐‘—๐‘—(๐‘—๐‘— + 1)

โ€ข Note that parity needs to be maintained because rotation issymmetric upon reflection and so 0+ ground-states canonly have j=0,2,4,โ€ฆ (because ๐œ‹๐œ‹ = (โˆ’1)๐ฝ๐ฝ)

โ€ข Without observing the decay scheme, picking-out associated rotational states could be pretty difficult

โ€ข Experimentally, coincidence measurements allow schemes to be mapped

12

B. Harvey, Introduction to Nuclear Physics and Chemistry (1962)

L. van Dommelen, Quantum Mechanics for Engineers (2012) T.Dinoko et al. EPJ Web Conf. (2013)

158Er

Page 13: Lecture 4: Nuclear Structure 2 - INPP Main Pagemeisel/PHYS7501/file/Lecture4_Structure2_PHYS7501_F2017_ZM.pdfโ€ข Note that the value for ๐›ฝ๐›ฝis going to depend on the specific

Rotational bandsโ€ข Rotation can exist on top of other excitationsโ€ข As such, a nucleus can have several different

rotational bands and the moment of inertia๐ผ๐ผ is often different for different bands

โ€ข The different ๐ผ๐ผ lead to different energyspacings for the different bands

13

T.Dinoko et al. EPJ Web Conf. (2013)

Loveland, Morrissey, Seaborg, Modern Nuclear Chemistry (2006)

Page 14: Lecture 4: Nuclear Structure 2 - INPP Main Pagemeisel/PHYS7501/file/Lecture4_Structure2_PHYS7501_F2017_ZM.pdfโ€ข Note that the value for ๐›ฝ๐›ฝis going to depend on the specific

Rotational bands: Backbendโ€ข The different ๐ผ๐ผ for different rotational bands

creates the so-called โ€œbackbendโ€โ€ข This is when we follow the lowest-energy

state for a given spin-parity (the โ€œyrastโ€ state)belonging to a given rotational bandand plot the moment of inertia andsquare of the rotational frequency

14

160YF.Beck et al. PRL (1979)

Loveland, Morrissey, Seaborg, Modern Nuclear Chemistry (2006)

Page 15: Lecture 4: Nuclear Structure 2 - INPP Main Pagemeisel/PHYS7501/file/Lecture4_Structure2_PHYS7501_F2017_ZM.pdfโ€ข Note that the value for ๐›ฝ๐›ฝis going to depend on the specific

๐›ป๐›ป ๐ต๐ต 21+โ–ก ๐ต๐ต 41+ /๐ต๐ต 21+โ—‹ ๐›ฝ๐›ฝ2

I.Angeli et al. J.Phys.G (2009)

Zr

Inferring structure from rotational bandsโ€ข Since ๐ต๐ต๐‘Ÿ๐‘Ÿ๐‘œ๐‘œ๐‘Ÿ๐‘Ÿ = ั›2๐‘—๐‘—(๐‘—๐‘—+1)

2๐ผ๐ผand ๐ผ๐ผ โˆ ๐›ฝ๐›ฝ , we can use rotational bands to probe deformation

โ€ข More deformed nuclei have larger ๐›ฝ๐›ฝ, so excited state energies for the band should be lowโ€ข The 1st 2+ excited state energy is often used to probe this

โ€ข The rotor model for rotational bands isvalidated by the comparison of bandexcited state energy ratios to the rotorprediction

โ€ข The ratio of the yrast 4+ and 2+ excited stateenergies isgenerally closeto the rotorprediction fornuclei far fromclosed shells

15

Asaro & Perlman, Phys. Rev. (1953)

Rotor(4+/2+)

Rotor(6+/2+)

Page 16: Lecture 4: Nuclear Structure 2 - INPP Main Pagemeisel/PHYS7501/file/Lecture4_Structure2_PHYS7501_F2017_ZM.pdfโ€ข Note that the value for ๐›ฝ๐›ฝis going to depend on the specific

Inferring structure from rotational bandsโ€ข To keep life interesting, ๐ผ๐ผ can change for a single band, indicating a change in structure,

e.g. how particular nucleons or groups of nucleons are interacting

16

32MgH.Crawford et al. PRC(R) (2016)

Page 17: Lecture 4: Nuclear Structure 2 - INPP Main Pagemeisel/PHYS7501/file/Lecture4_Structure2_PHYS7501_F2017_ZM.pdfโ€ข Note that the value for ๐›ฝ๐›ฝis going to depend on the specific

Vibrational modesโ€ข Considering the nucleus as a liquid drop, the nuclear volume should be able to vibrateโ€ข Several multipoles are possible

โ€ข Monopole: in & out motion (ฮป = 0)โ€ขa.k.a the breathing mode

โ€ข Dipole: sloshing back & forth (ฮป = 1)โ€ข If all nucleons are moving together, this is just CM motion

โ€ข Quadrupole: alternately compressing & stretching (ฮป = 2)

โ€ข Octupole: alternately pinching on one end & then the other (ฮป = 3)โ€ข + Higher

โ€ข Protons and neutrons can oscillate separately (โ€œisovectorโ€ vibrations)โ€ข All nucleons need not move together

โ€ข e.g. the โ€œpygmy dipoleโ€ is the neutron skin oscillation17

Isoscalar IsovectorH.J. Wollersheim

The gifs to the right are for giant resonances,

when all protons/neutrons act collectively

Page 18: Lecture 4: Nuclear Structure 2 - INPP Main Pagemeisel/PHYS7501/file/Lecture4_Structure2_PHYS7501_F2017_ZM.pdfโ€ข Note that the value for ๐›ฝ๐›ฝis going to depend on the specific

Vibrational modesโ€ข Additionally, oscillations can be grouped by spin

โ€ฆleaving a pretty dizzying range of possibilities

18

The myriad of possible nuclear vibrations are discussed in a friendly manner here: Vibrations of the Atomic Nucleus, G. Bertsch, Scientific American (1983)

TAMU

G.Bertsch, Sci.Am. (1983)

Scattering experiments are key to identifying the vibrational properties of particular excited states

because one obtains characteristic diffraction patterns.

ฮป = 0 ฮป = 2

๐‘ ๐‘ ๐‘ ๐‘ ๐‘–๐‘–๐‘ ๐‘ , ฮป = 1

Page 19: Lecture 4: Nuclear Structure 2 - INPP Main Pagemeisel/PHYS7501/file/Lecture4_Structure2_PHYS7501_F2017_ZM.pdfโ€ข Note that the value for ๐›ฝ๐›ฝis going to depend on the specific

Rough energetics of vibrational excitationsโ€ข In essence, a nuclear vibration is like a harmonic oscillatorโ€ข There is some oscillating deviation from a default shape and a restoring force attempts to

return the situation to the default shapeโ€ข The restoring force differs for each mode and so therefore do the characteristic frequencies ๐œ”๐œ”,

which have a corresponding energy ั›๐œ”๐œ”โ€ข Nuclear matter is nearly incompressible, so the monopole oscillation takes a good bit of

energy to excite.For even-even nuclei, the monopole oscillation creates a 0+ state at โ‰ˆ 80๐ด๐ดโˆ’1/3๐‘€๐‘€๐‘˜๐‘˜๐‘‰๐‘‰

โ€ข Neutrons and protons are relatively strongly bound together, so exciting an isovector dipole also takes a good bit of energy

For even-even nuclei, the dipole oscillation creates a 1- state at โ‰ˆ 77๐ด๐ดโˆ’1/3๐‘€๐‘€๐‘˜๐‘˜๐‘‰๐‘‰โ€ข The squishiness of the liquid drop is more amenable to quadrupole excitations,

so these are the lowest-energy excitationsFor even-even nuclei, the quadrupole oscillation creates a 2+ state at ~1-2MeV.The giant quadrupole oscillation is at โ‰ˆ 63๐ด๐ดโˆ’1/3๐‘€๐‘€๐‘˜๐‘˜๐‘‰๐‘‰

โ€ข Similarly, octupolar shapes can also be accommodatedFor even-even nuclei, the octupole oscillation creates a 3- state at ~4MeV

19

Page 20: Lecture 4: Nuclear Structure 2 - INPP Main Pagemeisel/PHYS7501/file/Lecture4_Structure2_PHYS7501_F2017_ZM.pdfโ€ข Note that the value for ๐›ฝ๐›ฝis going to depend on the specific

Vibrational energy levelsโ€ข Just as the quantum harmonic oscillator eigenvalues

are quantized, so too will the energy levels for differentquanta (phonons) of a vibrational mode.

โ€ข Similarly, the energy levels have an even spacing,๐ต๐ต๐‘š๐‘š = (๐‘ ๐‘  + 1

2)ั›๐œ”๐œ”โ€ข Even-even nuclides have 0+ ground states, and thus,

for a ฮป = 2 vibration, ๐‘ ๐‘  = 2 excitations will maintain the symmetry of the wave-function (i.e. ๐‘ ๐‘  = 1 excitations would violate parity)

โ€ข Therefore, the 1st vibrational state will be 2+

โ€ข We can excite an independent quadrupole vibration by adding a second phononโ€ข The second phonon will build excitations on the first, coupling to either 0+,2+, or 4+

โ€ข Employing a nuclear potential instead winds up breaking the degeneracy for states associated with a given number of phonons

20

Loveland, Morrissey, Seaborg, Modern Nuclear Chemistry (2006)

Page 21: Lecture 4: Nuclear Structure 2 - INPP Main Pagemeisel/PHYS7501/file/Lecture4_Structure2_PHYS7501_F2017_ZM.pdfโ€ข Note that the value for ๐›ฝ๐›ฝis going to depend on the specific

Vibrational energy levels are pretty obvious for spherical nuclei

21

G. Harvey, Introduction to Nuclear Physics and Chemistry (1962)

1-ph

onon

3-ph

onon

s2-

phon

ons

Spejewski, Hopke, & Loeser, Phys. Rev. (1969)

โ€ข The typical signature for vibrating spherical nucleus is ๐ต๐ต(41+)/๐ต๐ต(21+) โ‰ˆ 2โ€ฆthough that obviously wonโ€™t be the case for a deformed nucleus

Matin, Church, & Mitchell Phys. Rev. (1966)

Page 22: Lecture 4: Nuclear Structure 2 - INPP Main Pagemeisel/PHYS7501/file/Lecture4_Structure2_PHYS7501_F2017_ZM.pdfโ€ข Note that the value for ๐›ฝ๐›ฝis going to depend on the specific

22

D. Inglis, Phys. Rev. (1955)

radware

Page 23: Lecture 4: Nuclear Structure 2 - INPP Main Pagemeisel/PHYS7501/file/Lecture4_Structure2_PHYS7501_F2017_ZM.pdfโ€ข Note that the value for ๐›ฝ๐›ฝis going to depend on the specific

Rotational bands can build on vibrational statesโ€ข Deformed nuclei can simultaneously vibrate and rotateโ€ข The coupling depends on whether the vibration maintains

axial symmetry or notโ€ข The two types, ๐›ฝ๐›ฝ and ๐›พ๐›พ, are in reference to how the

vibration deforms the shape in terms of Hill-Wheelercoordinates (Hill & Wheeler, Phys. Rev. (1953))

โ€ข Exemplary spectra:

23

Side view Top view Side view Top view

Bohr & Mottelson, Nuclear Structure Volume II (1969)

B. Harvey, Introduction to Nuclear Physics and Chemistry (1962) N. Blasi et al. Phys.Rev.C (2014)

ฮฒ

gs

ฮณ ฮฒ

gs

ฮณ

Page 24: Lecture 4: Nuclear Structure 2 - INPP Main Pagemeisel/PHYS7501/file/Lecture4_Structure2_PHYS7501_F2017_ZM.pdfโ€ข Note that the value for ๐›ฝ๐›ฝis going to depend on the specific

24

Single-particle states can build on vibrational states

B. Harvey, Introduction to Nuclear Physics and Chemistry (1962)

โ€ข For some odd-A nuclei, excited states appear to result from the unpaired nucleon to a vibrational phonon

โ€ข For 63Cu, the ground state has an unpaired p3/2 nucleon

โ€ข Coupling this to a 2+ state allows 2 โˆ’ 32 โ‰ค ๐‘—๐‘— โ‰ค 2 + 3

2 , i.e. 12

โˆ’, 32โˆ’, 52

โˆ’, 72โˆ’

โ€ข Another example:

Canada, Ellegaard, & Barnes, Phys.Rev.C (1971)

Page 25: Lecture 4: Nuclear Structure 2 - INPP Main Pagemeisel/PHYS7501/file/Lecture4_Structure2_PHYS7501_F2017_ZM.pdfโ€ข Note that the value for ๐›ฝ๐›ฝis going to depend on the specific

Recap of basic structure models discussed thus farโ€ข Schematic shell model

โ€ข Great job for ground-state ๐ฝ๐ฝ๐œ‹๐œ‹โ€ข Decent job of low-lying excited states for spherical nuclei, particularly near closed shellsโ€ข Miss collective behavior that arises away from shell closures

โ€ข Collective modelโ€ข Rotational excitations explain several ๐ฝ๐ฝ๐œ‹๐œ‹ for deformed, even-even nuclei

These are โ€œmid shellโ€ nuclei, because theyโ€™re not near a shell closureโ€ข Vibrational excitations explain several ๐ฝ๐ฝ๐œ‹๐œ‹ for spherical, even-even nuclei

These are โ€œnear shellโ€ nuclei, because theyโ€™re near a shell closureโ€ข Miss single-particle behavior that can couple to collective excitations

What do we do for collective behavior for odd-A nuclei?the Nilsson model (a.k.a. deformed shell model)

25

Page 26: Lecture 4: Nuclear Structure 2 - INPP Main Pagemeisel/PHYS7501/file/Lecture4_Structure2_PHYS7501_F2017_ZM.pdfโ€ข Note that the value for ๐›ฝ๐›ฝis going to depend on the specific

Nilsson Model: combining collective & single-particle approachesโ€ข Our schematic shell model was working perfectly fine

until you threw it away like a cheap suit because of a little deformation! Luckily, Mottelson & Nilsson (Phys. Rev. 1955) werenโ€™t so hasty.

โ€ข Consider a deformed nucleus with axial symmetry that has asingle unpaired nucleon orbiting the nucleus

โ€ข Weโ€™re sticking to axial symmetry becauseโ€ขMost deformed nuclei have this property (mostly prolate)โ€ขThe math, diagrams, and arguments are easier

โ€ข The nucleon has some spin, ๐‘—๐‘—, which has a projection ontothe axis of symmetry, ๐พ๐พ

โ€ข ๐‘—๐‘— has 2๐‘—๐‘—+12 possible projections ๐พ๐พโ€ข Therefore, each single particle state from our shell model

now splits into multiple states, identified by their ๐พ๐พ, each of which can containtwo particles (spin up and spin down) for that given projection

26

Nuclear Rotation Axis

R.Casten, Nuclear Structure from a Simple Perspective (1990)

Page 27: Lecture 4: Nuclear Structure 2 - INPP Main Pagemeisel/PHYS7501/file/Lecture4_Structure2_PHYS7501_F2017_ZM.pdfโ€ข Note that the value for ๐›ฝ๐›ฝis going to depend on the specific

Loveland, Morrissey, Seaborg, Modern Nuclear Chemistry (2006)

Nilsson model: single-particle level splitting

27

R.Casten, Nuclear Structure from a Simple Perspective (1990)

โ€ข Consider the options for our nucleonโ€™s orbit around the nucleusโ€ข Orbits with the same principle quantum number will have the same radiusโ€ข Notice that the orbit with the smaller projection of ๐‘—๐‘— (๐พ๐พ1)

sticks closer to the bulk of the nucleus during its orbitโ€ข Since the nuclear force is attractive,

the ๐พ๐พ1 orbit will be more bound (i.e. lower energy) than the ๐พ๐พ2 orbitโ€ข The opposite would be true if the nucleus in our picture was oblate,

squishing out toward the ๐พ๐พ2 orbitโ€ข Therefore, for prolate nuclei, lower ๐พ๐พ single-particle levels

will be more bound (lower-energy),whereas larger ๐พ๐พ states will be more bound for oblate nuclei

๐‘—๐‘—

KK

Page 28: Lecture 4: Nuclear Structure 2 - INPP Main Pagemeisel/PHYS7501/file/Lecture4_Structure2_PHYS7501_F2017_ZM.pdfโ€ข Note that the value for ๐›ฝ๐›ฝis going to depend on the specific

โ€ข Continuing with our schematic picture, we see that the proximity of theorbiting nucleon to the nucleus isnโ€™t linear with ๐พ๐พ, since sin๐œƒ๐œƒ~๐พ๐พ

๐‘—๐‘—

โ€ข So the difference in binding for โˆ†๐พ๐พ = 1 increases as ๐พ๐พ increasesโ€ข Now, considering the fact that single particle levels of different ๐‘—๐‘—

can have the same projection ๐พ๐พ,we arrive at a situation that isessentially the two-state mixingof degenerate perturbation theory,where it turns out the perturbationbreaks the degeneracy and causesthe states to repel each otherin a quadratic fashion where the strength of the deflectiondepends on the proximity of the states in energy

28

Nilsson model: single-particle level splitting

R.Casten, Nuclear Structure from a Simple Perspective (1990)

R.Casten, Nuclear Structure from a Simple Perspective (1990)

D.Griffiths, Introduction to Quantum Mechanics (1995)

R.Casten, Nuclear Structure from a Simple Perspective (1990)

Page 29: Lecture 4: Nuclear Structure 2 - INPP Main Pagemeisel/PHYS7501/file/Lecture4_Structure2_PHYS7501_F2017_ZM.pdfโ€ข Note that the value for ๐›ฝ๐›ฝis going to depend on the specific

Nilsson Model: single particle levels vs ๐›ฝ๐›ฝ

29

Nucleons: 8 < ๐‘๐‘ < 20 or 8 < ๐‘๐‘ < 20Protons: Z>82

Neutrons: N>126

Protons: 50<Z<82

Neutrons: 82<Z<126

B. Harvey, Introduction to Nuclear Physics and Chemistry (1962)

Page 30: Lecture 4: Nuclear Structure 2 - INPP Main Pagemeisel/PHYS7501/file/Lecture4_Structure2_PHYS7501_F2017_ZM.pdfโ€ข Note that the value for ๐›ฝ๐›ฝis going to depend on the specific

Nilsson Model: Example

30

B. Harvey, Introduction to Nuclear Physics and Chemistry (1962)

โ€ข Consider 25Al, for which we expect ๐›ฝ๐›ฝ2 โ‰ˆ 0.2, like 27Alโ€ข There are 13 protons and 12 neutrons,

so the unpaired proton will be responsible for ๐ฝ๐ฝ๐œ‹๐œ‹โ€ข Filling the single-particle levels,

โ€ข We place two protons in the 1s1/2 level, which isnโ€™t shownโ€ข Then two more in 1/2-, two more in 3/2-, two more in 1/2-,

two more in the 1/2+, two more in the 3/2+

โ€ข And the last one winds up in the 5/2+ levelโ€ข So, we predict ๐ฝ๐ฝ๐‘Ÿ๐‘Ÿ.๐‘ ๐‘ 

๐œ‹๐œ‹ = โ„5 2+

โ€ข For the first excited sate,it seems likely the proton will hopup to the nearby 1/2+ level

โ€ข Agrees with dataโ€ข Since 25Al is deformed,

we should see rotational bandswith states that have (integer)+๐‘—๐‘—and โˆ ๐‘—๐‘—(๐‘—๐‘— + 1) spacing

Page 31: Lecture 4: Nuclear Structure 2 - INPP Main Pagemeisel/PHYS7501/file/Lecture4_Structure2_PHYS7501_F2017_ZM.pdfโ€ข Note that the value for ๐›ฝ๐›ฝis going to depend on the specific

Further Readingโ€ข Chapter 6: Modern Nuclear Chemistry (Loveland, Morrissey, Seaborg)โ€ข Chapter 7: Nuclear & Particle Physics (B.R. Martin)โ€ข Chapter 14, Section 13: Quantum Mechanics for Engineers (L. van Dommelen)โ€ข Chapter 5, Section G: Introduction to Nuclear Physics & Chemistry (B. Harvey)โ€ข Chapter 8: Nuclear Structure from a Simple Perspective (R. Casten)

31