lecture 20 10/19/05. titrations analyte + titrant reaction

54
Lecture 20 10/19/05

Post on 21-Dec-2015

221 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction

Lecture 2010/19/05

Page 2: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction

Titrations

• Analyte + titrant Reaction

Page 3: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction

Requirements for titration reaction

• Large equilibrium constant• so reacts to completion

• Fast kinetics

• Selective reaction

• Way to measure if reaction has occurred

Page 4: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction

Equivalence vs. Endpoint

• Are they Equal?

Page 5: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction

• Primary standard:• Can be weighed and used directly

• Standard solution• When primary standard not available for titrant• Get by standardization• Unknown titrant used to titrate known primary

standard

• Direct vs. back titration

Page 6: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction

Kjeldahl analysis• Digestion

• Organic C,H,N (boiling H2SO4) NH4+ + CO2 + H2O

• Neutralization• NH4

+ + OH- NH3 (g) + H20

• Distillation into standard HCl• NH3 + H+ NH4

+

• Titration of unreacted HCl• OH- + H+ H20

Page 7: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction

Kjeldahl (7-12)

• Used to analyze 256 μL of a solution containing 37.9 mg proteins/mL.

• Liberated NH3 was collected in 5.00 mL of 0.0336 M HCl.

• 6.34 mL of 0.010 M NaOH needed to neutralize unreacted acid.

• Weight % of nitrogen in protein?

Page 8: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction

Kjeldahl (7-12)

mmol105.0HClunreacted

mmol0634.0mmol168.0HClunreacted

mmol0634.0mol0000634.0addedOH

M010.0mL1000

LmL34.6addedOH

mmol168.0mol000168.0lInitial HC

M0336.0mL1000

LmL00.5 lInitial HC

-

-

Page 9: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction

Kjeldahl (7-12)

mg47.1Nweight

mmol

mgN007.14mmol105.0Nweight

mmol105.0HClunreacted ammonia

Page 10: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction

Kjeldahl (7-12)

%2.15100mg protein70.9

mgN47.1weight %

mg70.9 protein weight of

mL

mg protein9.37

μL1000

mLμL256 protein weight of

Page 11: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction

Precipitation Titration:Titration curve

• Before the equivalence point

• At the equivalence point

• After equivalence point

Page 12: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction

• Relate moles of titrant to moles of analyte

• X-axis: Volume titrant added

• Y-axis: Concentration of one of the reactants• often as pXpX = -log[X]

Page 13: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction

Titration of 0.25 mL of 0.1000 M I- with 0.0500 M Ag+

AgI (s) Ag+ + I-

Ksp = [Ag+ ][I-] = 8.3 x 10-17

1/Ksp = 1/[Ag+ ][I-] = 1.2 x 1016

So Ag+ + I- AgI (s) goes to completion

Page 14: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction

At the equivalence point (x-axis)

• x: (volume of Ag needed to reach equivalence point)

• Use stoichiometry to match moles of titrant and moles of analyte

mL50V

M) Ag)V0500.0(mL)00.25)(M I1000.0(

VCVC

Ag

Ag-

AgAgII

Page 15: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction

At the equivalence point (y-axis)

• y: (concentration of Ag)

• All of the Ag+ and I- have reacted to form AgI(s)• Where is the dissolved Ag+ coming from?

04.8pAg

M101.9]I[]Ag[x

)x)(x(103.8

]I][Ag[K

9

17

sp

Page 16: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60 70 80 90 100

mL Ag added

pA

g

Page 17: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction

Before the equivalence point x-axis

• Volume of Ag+ added• Add less than 50 mL

• Let’s add 10 mL • (this volume is arbitrary other than < 50 mL)

Page 18: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction

Before the equivalence point y-axis

• Find moles of I-

• Moles of I- = original moles I- - moles of Ag+ added• Moles of I- = (0.025L)(0.1 M) – (0.01L)(0.05M)

• Moles of I- = 0.002 moles • Find new I- concentration

• [I-]=(0.002 moles)/(0.035L) = 0.0571 M

• Find concentration of Ag+

• [Ag+]=Ksp/ [I-]

• [Ag+]=8.3x10-17 / 0.0571 = 1.4 x 10-15

• pAg+= 14.84

Page 19: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction

Before the equivalence point: y-axis (alternate method)

• [I-]=(fraction remaining)(original concentration)(dilution factor)

• [I-]=((50mL-10mL)/50mL)(0.1 M)(25mL/35mL)• [I-]=0.0571 M

• Find concentration of Ag+

• [Ag+]=Ksp/ [I-]

• [Ag+]=8.3x10-17 / 0.0571 = 1.4 x 10-15

• pAg+= 14.84

Page 20: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70 80 90 100

mL Ag added

pA

g

Page 21: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction

After the equivalence pointx-axis

• Volume of Ag+ added• Add more than 50 mL

• Let’s add 75 mL • (this volume is arbitrary other than > 50 mL)

Page 22: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction

After the equivalence pointy-axis

• Dominated by the unreacted Ag+

• [Ag+] = (original concentration)(dilution factor)

• [Ag+] = (0.05 M)(volume of excess Ag+/ total volume)

• [Ag+] = (0.05 M) x ((75mL-50mL) / (75mL + 25ml))

• [Ag+] = 0.0125 M

• pAg = 1.9

Page 23: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70 80 90 100

mL Ag added

pA

g

Page 24: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

0 10 20 30 40 50 60 70 80 90 100

mL Ag added

pA

g

Page 25: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction

Shape

• For reactions with1:1 stoichiometry:• Equivalence point is point of maximum slope and is an inflection

point (second derivative = 0)

• For reactions that do not have 1:1 stoichiometry:• Curve is not symmetric near equivalence point• Equivalence point is not the center of the steepest section of the

curve• Equivalence point is not an inflection point

Page 26: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction

Outer curve: 25 mL of 0.100 M I- titrated with 0.0500 M Ag+

Middle curve: 25 mL of 0.0100 M I- titrated with 0.00500 M Ag+

Inner curve: 25 mL of 0.00100 M I- titrated with 0.000500 M Ag+

Page 27: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction

25.00 mL of 0.100 M halide titrated with 0.0500 M Ag+

Page 28: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction

40.0 mL of 0.052 M KI plus 0.05 M KCl titrated with 0.084 M AgNO3

Page 29: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction

Problem 7-11The carbonate content of 0.5413g of powdered

limestone was measured by suspending the powder in water, adding 10.00 mL of 1.396 M HCl, and heating to dissolve the solid and expel CO2:

CaCO3(s) [FM 100.087] + 2H+ Ca2+ + CO2(g) + H2O

The excess acid required 39.96 mL of 0.1004M NaOH for complete titration to a phenolphthalein end point. Find the weight % of calcite in the limestone.

Page 30: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction

Problem 7-11 (solutions)Moles OH- = (39.96 mL)*(0.1004 M) = 4.012 mmol

Moles H+ = (10 mL)*(1.396 M) = 13.96 mmol

Moles H+ used to titrate CaCO3 = 9.948 mmol

Moles CaCO3 = 9.948 mmol H*(1 mol CaCO3 / 2 mol H)

Moles CaCO3 = 4.974 mmol

Mass CaCO3 = 4.974 mmol *(100.087 g/mol) = 0.498 g

Weight % = 0.498 g / 0.5413 * 100 = 92%

Page 31: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction

End-point detection for precipitation reactions

• Electrodes• Silver electrode

• Turbidity• Solution becomes cloudy due to

precipitation

• Indicators• Volhard• Fajans

Page 32: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction

Volhard (used to titrate Ag+)

• As an example: Cl- is the unknown• Precipitate with known excess of Ag+ • Ag+ + Cl- AgCl(s)

• Isolate AgCl (s), then titrate excess Ag+ with standard KSCN in the presence of Fe+3 • Ag+ + SCN- AgSCN(s)

• When all the Ag+ is gone:• Fe+3 + SCN- FeSCN2+

• (red color indicates end point)

Page 33: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction

Fajans (use adsorption indicator)

• Anionic dyes which are attracted to positively charged particles produced after the equivalence pointh

• Adsorption of dye produces color change• Signals end-point

Page 34: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction
Page 35: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction

Titration of strong acid/strong base

• 50 mL of 0.02 M KOH with 0.1 M HBr

Page 36: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction
Page 37: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction
Page 38: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction

Titration of a weak acid with strong base

• 0.02 MES [2-(n-morpholino)ethanesulfonic acid] with 0.100 M NaOH.

• pKa = 6.15

Page 39: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction
Page 40: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction
Page 41: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction
Page 42: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction
Page 43: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction

• Titration of 10.0 mL of 0.100 M B (base) with 0.100 M HCl.

• pKb1 = 4.00

• pKb2 = 9.00

Page 44: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction
Page 45: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction

Finding endpoint with pH electrode

Page 46: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction

Titration of H6A with NaOH

Page 47: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction
Page 48: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction
Page 49: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction

Gran Plot

)VV(K10V beaA

HApHb

Advantage is that you can use data before the endpoint to find the endpoint

Page 50: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction

Vb never goes to 0 because 10-pH never gets to 0

Also slope doesn’t stay constant as Vb nears 0

Page 51: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction

Indicator

• Acid or base chose different protonated forms have different colors

• Seek indicator whose color change is near equivalence point

• Indicator error• Difference between endpoint (color change) and true

equivalence point• If you use too much can participate in reaction

Page 52: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction
Page 53: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction
Page 54: Lecture 20 10/19/05. Titrations Analyte + titrant  Reaction

Quiz 4

A sample was analyzed using the Kjeldahl procedure. The liberated NH3 was collected in 5.00 mL of 0.05 M HCl, and the remaining acid required 3 mL of 0.035 M NaOH for a complete titration. How many moles of Nitrogen were in the original sample?