lecture 16: regression diagnostics i proportional hazards assumption -graphical methods -regression...

46
Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

Upload: gary-garrison

Post on 14-Jan-2016

256 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

Lecture 16: Regression Diagnostics I

Proportional Hazards Assumption -graphical methods -regression methods

Page 2: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

Regression Diagnostics

• Most interested in testing proportional hazards assumption

• Also looking for functional form of covariates• Two types of methods– Graphical approaches– Regression approaches

Page 3: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

Graphical Approaches

• Recall our graphical checks– Kernel smoothing– Smoothing splines

• Both will provide information about whether or not the hazards cross

• Both can be implemented in R– “muhaz” package: kernel smoothing for survival– “gss” package: smoothing splines for survival

Page 4: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

Graphical Approaches• Consider CPHM with single binary covariate…

• This means we can also can consider the following plot…

• If hazards proportional, this should be ≈ equal to • No package in R

– Calculate NA hazard estimates for each condition at each unique time point

0

ˆ 1

0

ˆexp

ˆ1 0 lnH t Z

H t Z

h t Z h t Z

H t Z e H t Z

ln 1 ln 0 vs. H t Z H t Z t

Page 5: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

Examples

• Lets explore the graphical and regression checks for proportional hazards– Kidney Infection data• Surgical vs. percutaneous

– BMT data• FAB classification• Methotrexate use

Page 6: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

Survival for Kidney

Page 7: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

Graphical Checks### KIDNEY INFECTION EXAMPLE####log cum haz plotsLibrary(Kmsurv); library(survival)

coxph(Surv(time, delta)~factor(type), data=kidney)dat1<-kidney[kidney$type==1, ]dat2<-kidney[kidney$type==2, ]fit1<-survfit(coxph(Surv(time, delta)~1, data=dat1), type="aalen")fit2<-survfit(coxph(Surv(time, delta)~1, data=dat2), type="aalen")

times<-sort(unique(kidney$time))ch1<--log(fit1$surv)ch2<--log(fit2$surv)

ch1<-c(0, ch1[1:17],ch1[17],ch1[17],ch1[18:20],ch1[20],ch1[21:23],ch1[23])ch2<-c(ch2[1:13],ch2[13],ch2[14:19],ch2[19],ch2[20],ch2[20],ch2[21:23],ch2[23],ch2[24])plot(times, log(ch2)-log(ch1), type="s", xlab="time",

ylab="log(H[t|Z=perc])-log(H[t|Z=surg])", lwd=2)lines(times, rep(0.613, length(times)), lwd=2, col=2)

Page 8: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

Graphical Checks#Smoothing splinescath<-kid$cath[order(kid$Time)]event<-kid$d[order(kid$Time)]times<-sort(kid$Time)

library(gss)hazfit<-sshzd(Surv(times, event)~cath*times)haz<-hzdrate.sshzd(hazfit, data.frame(times=times, cath=cath))h1<-haz[cath==1]; id1<-order(h1); t1<-times[cath==1]h2<-haz[cath==0]; id2<-order(h2); t2<-times[cath==0]

plot(times[cath==0], haz[cath==0], xlim=c(0, max(times)), ylim=range(haz), xlab="Time", type="l",ylab="hazard", lwd=2, col=1)lines(times[cath==1], haz[cath==1], lwd=2, col=2)legend(0, .1, c("percutaneous","surgical"), col=1:3, lwd=2, cex=0.8)

Page 9: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

Graphical Checks: Kidney

Page 10: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

BMT Data

• Let’s conduct graphical checks for – French/American/British Disease classification• Recall this was significant in our original model

– Methotrexate use• Recall this was not

Page 11: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

Survival Curves for BMT: FAB and MTX

Page 12: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

BMT Graphical Checks: FAB

Page 13: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

BMT Graphical Checks: MTX

Page 14: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

Graphical Approaches

• Pretty pictures are nice and can be intuitive but…

• We generally prefer a statistical means of determining if an assumption is true

• This leads us to regression approaches

Page 15: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

Regression Approaches

• Impose a time-dependent covariate into the model

• General idea:– If PHM is valid, time-dependent covariate will not

be significant– If time-dependent covariate is significant, then

there is “something” going on in terms of the HRs that varies over time

Page 16: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

Introduce Time Dependent Covariate

• Create an new variable Z2(t) = Z1×g(t), where g(t) is a function of time

• We don’t know the functional form of g(t)• Try several possibilities, for example

ln

0 if specific time

at time t if specific time

0 if specific time

ln * at time t if specific time

g t t

g t t

tg t

Z t

tg t

t Z t

Page 17: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

Binary Case

• Consider a binary covariate Z1

• Generate

• Model is:

• Hazard ratio is:

1

2 11

0 if 0

ln if 1

ZZ Z g t

g t t Z

0 1 1 2 2

0 1 2 1

exp

exp ln

h t h t Z Z

h t t Z

Z

1 2

1

1

10exp

h t Z

h t Zt

Page 18: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

New Time Dependent Covariate

• Fit proportional hazards model with Z1, Z2(t), and estimate b1, b2

• Test local hypothesis:– H0: b2 = 0 vs. HA: b2 ≠ 0

• If you reject H0, can not assume proportional hazards

• Do this for each covariate in question

Page 19: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

Examples

• Lets explore the regression check for proportional hazards in our two examples…

– Kidney Infection data• Surgical vs. percutaneous

– BMT data• FAB classification• Methotrexate use

Page 20: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

Regression Check: Kidney### Kidney Example (are hazards for percutaneous and surgical proportional?)times<-sort(unique(kidney$time))kidney$id<-1:nrow(kidney)

kid.long<-expand.breakpoints(kidney, index="id", status="delta", tevent="time", breakpoints=times)

kid.long$ttype1<-log(kid.long$Tstop)*(kid.long$type-1)kid.long$ttype2<-kid.long$Tstop*(kid.long$type-1)kid.long$ttype3<-ifelse(kid.long$Tstop>7.5, (kid.long$type-1), 0)kid.long$ttype4<-ifelse(kid.long$Tstop>7.5, kid.long$Tstop*(kid.long$type-1), 0)

m1<-coxph(Surv(Tstart, Tstop, delta)~type+ttype1, data=kid.long)m2<-coxph(Surv(Tstart, Tstop, delta)~type+ttype2, data=kid.long)m3<-coxph(Surv(Tstart, Tstop, delta)~type+ttype3, data=kid.long)m4<-coxph(Surv(Tstart, Tstop, delta)~type+ttype4, data=kid.long)

Page 21: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

Results: Kidney> m1

coef exp(coef) se(coef) z ptype 1.44 4.21 1.029 1.40 0.160ttype1 -1.47 0.23 0.587 -2.51 0.012

> m2coef exp(coef) se(coef) z p

type 0.961 2.614 0.751 1.28 0.200ttype2 -0.256 0.774 0.117 -2.18 0.029

> m3coef exp(coef) se(coef) z p

type 0.35 1.4193 0.549 0.637 0.520ttype3 -2.89 0.0555 1.184 -2.443 0.015

> m4coef exp(coef) se(coef) z p

type 0.241 1.272 0.5317 0.453 0.650ttype4 -0.185 0.831 0.0875 -2.113 0.035

Page 22: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

BMT Regression Check: FAB### BMT Example (are hazards FAB classes proportional?)bps<-sort(unique(c(bmt$DFS)))bmt.long<-expand.breakpoints(bmt, index="id", status="Either", tevent="DFS", breakpoints=bps)

#create time-dependent covariatesbmt.long$txfab1<-log(bmt.long$Tstop)*(bmt.long$FAB)bmt.long$txfab2<-bmt.long$Tstop*(bmt.long$FAB)bmt.long$txfab3<-ifelse(bmt.long$Tstop>100, (bmt.long$FAB), 0)bmt.long$txfab4<-ifelse(bmt.long$Tstop>100, bmt.long$Tstop*(bmt.long$FAB), 0)

m1<-coxph(Surv(Tstart, Tstop, Either)~FAB+txfab1, data=bmt.long)m2<-coxph(Surv(Tstart, Tstop, Either)~FAB+txfab2, data=bmt.long)m3<-coxph(Surv(Tstart, Tstop, Either)~FAB+txfab3, data=bmt.long)m4<-coxph(Surv(Tstart, Tstop, Either)~FAB+txfab4, data=bmt.long)

Page 23: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

Results: FAB> m1

coef exp(coef) se(coef) z pFAB 0.0253 1.03 0.956 0.0264 0.98txfab1 0.1202 1.13 0.182 0.6605 0.51 > m2

coef exp(coef) se(coef) z pFAB 0.541241 1.72 0.299949 1.804 0.071txfab2 0.000341 1.00 0.000706 0.483 0.630 > m3

coef exp(coef) se(coef) z pFAB 0.782 2.185 0.408 1.914 0.056txfab3 -0.206 0.814 0.488 -0.421 0.670 > m4

coef exp(coef) se(coef) z pFAB 0.564772 1.76 0.287651 1.963 0.05txfab4 0.000274 1.00 0.000681 0.403 0.69

Page 24: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

BMT Regression Check: MTX#create time-dependent covariates for MTXbmt.long$txmtx1<-log(bmt.long$Tstop)*(bmt.long$MTX)bmt.long$txmtx2<-bmt.long$Tstop*(bmt.long$MTX)bmt.long$txmtx3<-ifelse(bmt.long$Tstop>400, (bmt.long$MTX), 0)bmt.long$txmtx4<-ifelse(bmt.long$Tstop>400, bmt.long$Tstop*(bmt.long$MTX), 0)

m1<-coxph(Surv(Tstart, Tstop, Either)~MTX+txmtx1, data=bmt.long)m2<-coxph(Surv(Tstart, Tstop, Either)~MTX+txmtx2, data=bmt.long)m3<-coxph(Surv(Tstart, Tstop, Either)~MTX+txmtx3, data=bmt.long)m4<-coxph(Surv(Tstart, Tstop, Either)~MTX+txmtx4, data=bmt.long)

Page 25: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

Results: MTX> m1

coef exp(coef) se(coef) z pMTX 2.682 14.614 1.124 2.39 0.017txmtx1 -0.459 0.632 0.222 -2.07 0.038

> m2 coef exp(coef) se(coef) z p

MTX 1.22592 3.407 0.38088 3.22 0.0013txmtx2 -0.00377 0.996 0.00154 -2.45 0.0140

> m3 coef exp(coef) se(coef) z p

MTX 0.71 2.033 0.263 2.70 0.0069txmtx3 -1.73 0.178 0.789 -2.19 0.0290

> m4 coef exp(coef) se(coef) z p

MTX 0.70796 2.030 0.26188 2.70 0.0069txmtx4 -0.00303 0.997 0.00143 -2.12 0.0340

Page 26: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

Checking Model with >1 Covariate?### Model where MTX is not time-varying> m5a<-coxph(Surv(Tstart, Tstop, Either)~factor(Disease) + FAB + PtAge + DonAge + PtAge*DonAge+MTX, data=bmt.long)> m5aCall:coxph(formula = Surv(Tstart, Tstop, Either) ~ factor(Disease) + FAB + PtAge + DonAge + PtAge * DonAge + MTX, data = bmt.long)

coef exp(coef) se(coef) z pfactor(Disease)2 -1.00606 0.366 0.362370 -2.776 0.00550factor(Disease)3 -0.35406 0.702 0.370966 -0.954 0.34000FAB 0.84303 2.323 0.279461 3.017 0.00260PtAge -0.08522 0.918 0.035708 -2.387 0.01700DonAge -0.08390 0.920 0.030318 -2.767 0.00570MTX 0.30342 1.354 0.252929 1.200 0.23000PtAge:DonAge 0.00315 1.003 0.000943 3.337 0.00085

Likelihood ratio test=34.2 on 7 df, p=1.58e-05 n= 8665, number of events= 83

Page 27: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

Checking Model with >1 Covariate?### Model where MTX is not time-varying> m5<-coxph(Surv(Tstart, Tstop, Either)~factor(Disease) + FAB + PtAge + DonAge + PtAge*DonAge+MTX+txmtx1, data=bmt.long)> m5Call: coxph(formula = Surv(Tstart, Tstop, Either) ~ factor(Disease) + FAB + PtAge + DonAge + PtAge * DonAge + MTX + txmtx1, data = bmt.long)

coef exp(coef) se(coef) z pfactor(Disease)2 -1.01485 0.362 0.362198 -2.802 0.0051factor(Disease)3 -0.32998 0.719 0.368393 -0.896 0.3700FAB 0.88170 2.415 0.278466 3.166 0.0015PtAge -0.08201 0.921 0.035909 -2.284 0.0220DonAge -0.08490 0.919 0.030965 -2.742 0.0061MTX 2.69860 14.859 1.152782 2.341 0.0190txmtx1 -0.47772 0.620 0.225152 -2.122 0.0340PtAge:DonAge 0.00305 1.003 0.000955 3.194 0.0014

Likelihood ratio test=39.5 on 8 df, p=3.93e-06 n= 8665, number of events= 83

Page 28: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

Alternative Form of Time-Varying Covariate

• So far we’ve guessed at g(t)• Problem is we don’t necessarily know the

correct functional form• Consider a binary covariate, Z1

• Assume for covariate Z1, the relative risk changes over time

• What if we use the data instead– Get “best estimate” from the data

Page 29: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

Change Point Model• Let

• This gives us proportional hazards model with a change point at t(Liang et. Al (1990))

• Fit proportional hazards model with Z1 and Z2(t)

• We now have a PH model with HR:

– Model: H(t|Z (t)) = h0(t)exp{b1Z1 + b2Z2 }

– h(t|Z(t)) = h0(t)exp{b1Z1} if t < t

– h(t|Z(t)) = h0(t)exp{(b1 + b2)Z1} if t > t

• So we are fitting a PH model that includes a change point, which allows the HR to change after a specified time

12 0

Z if tZ t

if t

Page 30: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

How to Determine t

• A change point for the relative risk was introduced. Where is the best change point?

• Recall the partial likelihood only changes at event times

• Calculate log likelihood at each event time where t represents specific event times

• Choose t that yields the largest log-likelihood

Page 31: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

Kidney Example#Change point model >cps<-sort(unique(kidney$time[which(kidney$delta==1)]))>LL<-c()>for (i in 1:length(cps))>{> z2<-ifelse(kid.long$Tstop>cps[i], kid.long$type, 0)> mod<-coxph(Surv(Tstart, Tstop, delta)~type+z2, data=kid.long, > method="breslow")> LL<-append(LL, mod$loglik[2])>}

> round(LL, digits=3) [1] -97.878 -100.224 -97.630 -97.501 -99.683 -100.493 -98.856 -100.428 [9] -101.084 -101.668 -102.168 -100.829 -101.477 -102.059 -102.620 -103.229

Page 32: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

Change Point ResultsEvent Times Log Partial Likelihood

0.5 -97.8781.5 -100.2242.5 -97.6303.5 -97.5014.5 -99.6835.5 -100.4936.5 -98.8568.5 -100.4289.5 -101.084

10.5 -101.66811.5 -102.16815.5 -100.82916.5 -101.47718.5 -102.05923.5 -102.620

Page 33: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

What About Multiple Comparisons?

• Is it “fishing” to try many cutpoints?• No, we are conducting diagnostics so we don’t

worry so much• We aren’t sure of the form of a time-

dependence so we are being flexible to identify if we are missing something

Page 34: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

Hazards Not Proportional• Proportional hazards assumption doesn’t

hold… what can we do?• Single binary covariate… consider a piecewise

regression– Change-point identified by data (alternate coding)

• Many covariates, consider stratified model on non-proportional covariate

1 12 3

if if

0 if 0 if

Z t Z tZ t Z t

t t

Page 35: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

Kidney: 1-Covariate with Change-Point

> kid.long$z2<-ifelse(kid.long$Tstop>3.5, kid.long$cath, 0)> kid.long$z3<-ifelse(kid.long$Tstop<=3.5, kid.long$cath, 0)> mod<-coxph(Surv(Tstart, Tstop, d)~z2+z3, data=kid.long, method="breslow") > modCall:coxph(formula = Surv(Tstart, Tstop, d) ~ z2 + z3, data = kid.long, method = "breslow")

coef exp(coef) se(coef) z p z2 -2.09 0.124 0.760 -2.75 0.006z3 1.08 2.950 0.783 1.38 0.170

Likelihood ratio test=13.9 on 2 df, p=0.000956 n= 1132, number of events= 26

Page 36: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

Interpretation?

• Up to 3.5 months, there is a there is not a significant difference in risk of infection between the two groups.

• However, after 3.5 months the relative risk of infection in patients with percutaneously placed catheters is 0.12 times the risk relative to patients with surgically placed catheters.

• Recall our hazard rate plots– Hazards crossed at about 3.5 months

Page 37: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

A Few Points

• A single cutpoint may not be enough– There are “two” models– Within in each piece, we are still assuming

proportional hazards• Check proportional hazards models within

each of the time intervals• Can generate additional time varying

covariates within each interval

Page 38: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

Stratified Cox Regression

• Recall stratification• Estimates ‘pooled’ association across strata• Stratification in regression– Estimates pooled regression coefficient– Strong assumption that associations between

covariate and outcome are the same across strata

Page 39: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

Estimation: Partial Likelihood Approach

• Partition dataset based on strata• Define log-likelihood per strata• Log-likelihood based on J strata

• Maximize LL(b) w.r.t. b• Notice b is common across all the strata specific

partial log-likelihoods

'0

1 2

exp , 1,2,...,

...

j j

J

h t t h t t j J

LL LL LL LL

Z Z

Page 40: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

BMT: Stratified Model

• Steps:1) Check proportional hazards assumption2) Fit stratified cox model3) Check model assumptions (i.e. constant b’s… more on this in a moment)

• We’ve already seen that the proportional hazards assumption for Methotrexate use is incorrect.

Page 41: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

BMT Data• Associations between covariates and DFS, stratified by diagnosis

> reg2a<-coxph(Surv(Tstart, Tstop, Either)~ factor(Disease)+ FAB+DonAge:PtAge+TRP+strata(MTX), data = bmt.long2)> reg2aCall:coxph(formula=Surv(Tstart, Tstop,Either)~factor(Disease)+FAB+DonAge+

PtAge+DonAge*PtAge+PRt+strata(MTX), data = bmt.long2)

coef exp(coef) se(coef) z pfactor(Disease)2 -1.00911 0.365 0.364333 -2.770 0.0056factor(Disease)3 -0.34552 0.708 0.370254 -0.933 0.3500FAB 0.89008 2.435 0.280684 3.171 0.0015DonAge -0.08415 0.919 0.031123 -2.704 0.0069PtAge -0.08175 0.921 0.036255 -2.255 0.0240PRt 2.08909 8.078 1.095274 1.907 0.0560DonAge:PtAge 0.00301 1.003 0.000957 3.143 0.0017

Likelihood ratio test=33.4 on 7 df, p=2.23e-05 n= 19070, number of events= 83

Page 42: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

Is Assumption of Constant b Reasonable?

• Testing assumption• Divide dataset into J strata• Fit model with p covariates in each strata• Define• Define based on stratified model• Test significance via LRT

1 21...

J

j j j J jjLL LL LL LL

b b b b

LL b

2 2

112

J

LRT j j J pjX LL LL

b b

Page 43: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

Checking Constant b Assumption#Testing stratification assumptionreg2a<-coxph(Surv(Tstart, Tstop, Either) ~ factor(Disease) + FAB + DonAge + PtAge + DonAge*PtAge +PRt + strata(MTX), data=bmt.long2)

dat1<-bmt.long2[bmt.long2$MTX==0,]reg2b<-coxph(Surv(Tstart, Tstop, Either) ~ factor(Disease) + FAB + DonAge + PtAge + DonAge*PtAge +PRt + strata(MTX), data=dat1)

dat2<-bmt.long2[bmt.long2$MTX==1,]reg2c<-coxph(Surv(Tstart, Tstop, Either) ~ factor(Disease) + FAB + DonAge + PtAge + DonAge*PtAge +PRt + strata(MTX), data=dat2)

LL2<-reg2$loglik[2]LL3<-reg3a$loglik[2]+reg3b$loglik[2]+reg3c$loglik[2]lrt<-2*(LL3-LL2)p.lrt<-1-pchisq(lrt, 2)

Page 44: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

> reg2b coef exp(coef) se(coef) z p

factor(Disease)2 -1.19655 0.302 0.4585 -2.610 0.0091factor(Disease)3 -0.29025 0.748 0.4451 -0.652 0.5100FAB 1.08896 2.971 0.3384 3.218 0.0013DonAge -0.08378 0.920 0.0371 -2.258 0.0240PtAge -0.03630 0.964 0.0536 -0.677 0.5000PRt -0.86747 0.420 0.4793 -1.810 0.0700DonAge:PtAge 0.00227 1.002 0.0014 1.618 0.1100

> reg2c coef exp(coef) se(coef) z p

factor(Disease)2 -0.56372 0.569 0.63847 -0.8829 0.380factor(Disease)3 -0.85828 0.424 0.91761 -0.9353 0.350FAB 0.34408 1.411 0.65122 0.5284 0.600DonAge -0.00452 0.995 0.08152 -0.0555 0.960PtAge -0.02724 0.973 0.08073 -0.3374 0.740PRt -1.00688 0.365 0.55118 -1.8268 0.068DonAge:PtAge 0.00138 1.001 0.00227 0.6098 0.540

Page 45: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

Results> LL.piece<-reg2b$loglik[2]+reg2c$loglik[2]> LL.strat<-reg2a$loglik[2]

> lrt<-2*(LL.piece-LL.strat)> lrt[1] 6.118211

> p.lrt<-1-pchisq(lrt, 7)> p.lrt[1] 0.5260164

Page 46: Lecture 16: Regression Diagnostics I Proportional Hazards Assumption -graphical methods -regression methods

Next Time

• Regression diagnostics using residuals!