laporan pencemaran air

67
Praktikum Laboratorium Lingkungan Kelompok Annis Rachmawati 083050010 Sufiana Solihat 083050016 Deri Baehakhi 083050005 Jurusan Teknik Lingkungan Fakultas Teknik Universitas Pasundan Bandung 2011 BAB I PENDAHULUAN

Upload: gabbyveli

Post on 02-Aug-2015

251 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Laporan Pencemaran Air

Praktikum Laboratorium Lingkungan

Kelompok  Annis Rachmawati 083050010  Sufiana Solihat 083050016  Deri Baehakhi 083050005

 Jurusan Teknik LingkunganFakultas Teknik

Universitas PasundanBandung

2011

BAB I

PENDAHULUAN

Kualitas sumber air dari sungai-sungai penting di Indonesia umumnya tercemar amat sangat

berat oleh limbah organik yang berasal dari limbah penduduk, industri dan lainnya. Sungai mempunyai

fungsi yang strategis dalam menunjang pengembangan suatu daerah, yaitu seringnya mempunyai

multi fungsi yang sangat vital diantaranya sebagai sumber air minum, industri dan pertanian atau juga

pusat listrik tenaga air serta mungkin juga sebagai sarana rekreasi air

Berdasarkan klasifikasi dan kriteria mutu air dalam PP No.82 tahun 2001 tentang Pengelolaan

Kualitas dan Pengendalian Pencemaran Air, air sungai masuk pada kelas 1, yaitu air yang

Page 2: Laporan Pencemaran Air

peruntukkannya dapat digunakan untuk air baku air minum, dan atau peruntukan lain yang

mempersyaratkan mutu air yang sama dengan kegunaan tersebut.

 Tabel 1.1 Klasifikasi Dan Kriteria Mutu Air Berdasarkan PP No.82 Tahun 2001PARAMETER SATUAN KELAS KETERANGAN

I II III IVFISIKA

Temperatur

ᵒC

Deviasi

3

Deviasi

3

Deviasi

3

Deviasi

5

Deviasi

TemperturResidu Terlarut mg/L 1000 1000 1000 2000

Residu

Tersuspensimg/L 50 50 400 400

Bagi pengolahan air minum secara konvensional, residu tersuspensi

≤ 5000 mg/L

 

KIMIA ANORGANIKph

6-9 6-9 6-9 5-9 Apabila secara

BOD mg/L 2 3 6 12COD mg/L 10 25 50 100DO mg/L 6 4 3 0 AngkaTotal Fosfat sbgP

mg/L 0,2 0,2 1 5NO 3 sebagai N mg/L 10 10 20 20

NH3-N

mg/L 0,5 (-) (-) (-)

Bagiperikanan,kandunganamoniabebas untukikan yangpeka ≤ 0,02mg/Lsebagai

NH3

Arsen mg/L 0,05 1 1 1Kobalt mg/L 0,2 0,2 0,2 0,2Barium mg/L 1 (-) (-) (-)Boron mg/L 1 1 1 1Selenium mg/L 0,01 0,05 0,05 0,05

Page 3: Laporan Pencemaran Air

Kadmium mg/L 0,01 0,01 0,01 0,01Khrom (VI) mg/L 0,05 0,05 0,05 0,01

Tembaga

mg/L 0,02 0,02 0,02 0,2

Bagipengolahanair minumsecarakonvensional, Cu ≤ 1

mg/L

Besi

mg/L 0,3 (-) (-) (-)

Bagipengolahanair minumsecarakoncensional, Fe ≤ 5

mg/L

Timbal

mg/L 0,03 0,03 0,03 1

Bagipengolahanair minumsecarakonvensional, Pb ≤ 0,1

mg/L

Mangan mg/L 1 (-) (-) (-)Air Raksa mg/L 0,001 0,002 0,002 0,005Seng

mg/L 0,05 0,05 0,05 2

Bagipengolahanair minumsecarakonvensional, Zn≤ 5

mg/L

Khlorida mg/L 1 (-) (-) (-)Sianida mg/L 0,02 0,02 0,02 (-)Fluorida mg/L 0,5 1,5 1,5 (-)

 

Nitrit sebagai N

mg/L 0,06 0,06 0,06 (-)

Bagipengolahanair minumsecarakonvensional, NO2_N

≤ 1 mg/L

Sulfat mg/L 400 (-) (-) (-)

Khlorin bebas

mg/L 0,03 0,03 0,03 (-)

BagiABAMtidakdipersyarat

kan

Belerangsebagai H2S mg/L 0,002 0,002 0,002 (-)MIKROBIOLOGI

Page 4: Laporan Pencemaran Air

Fecal coliform jml/100

ml

100 1000 2000 2000

Bagi pengolahan air minum secara konvensional, fecalColiform ≤ 2000 jml/ 100 ml danTotal coliform ≤10000 jml/100ml

Total coliform jml/100

ml

1000 5000 10000 10000

RADIOAKTIVITASGross - A bg/L 0,1 0,1 0,1 0,1Gross - B bg/L 1 1 1 1KIMIA ORGANIKMinyak danLemak ug/L 1000 1000 1000 (-)Detergensebagai MBAS ug/L 200 200 200 (-)Senyawa Fenol ug/L 1 1 1 (-)Sebagai Fenol ug/LBHC ug/L 210 210 210 (-)Aldrin/Dieldrin ug/L 17 (-) (-) (-)Chlordane ug/L 3 (-) (-) (-)DDT ug/L 2 2 2 2Heptachlor danHeptachlor

ug/L 18 (-) (-) (-)Heptachlor danHeptachlorepoxide ug/L

Lindane ug/L 56 (-) (-) (-)Methoxyctor ug/L 35 (-) (-) (-)Endrin ug/L 1 4 4 (-)Toxaphan ug/L 5 (-) (-) (-)

 

Keterangan :

mg = miligram

ug = mikrogram

ml = militer

L = liter

Bq = Bequerel

MBAS = Methylene Blue Active Substance

Page 5: Laporan Pencemaran Air

ABAM = Air Baku untuk Air Minum

Logam berat merupakan logam terlarut

Nilai di atas merupakan batas maksimum, kecuali untuk pH dan DO.

Bagi pH merupakan nilai rentang yang tidak boleh kurang atau lebih dari nilai yang tercantum.

Nilai DO merupakan batas minimum.

Arti (-) di atas menyatakan bahwa untuk kelas termasuk, parameter tersebut tidak

dipersyaratkan

Tanda £ adalah lebih kecil atau sama dengan

Tanda < adalah lebih kecil

BAB II

PERCOBAAN DAN PEMBAHASAN

2.1 Pengawetan Sampel

Pengawetan sampel air adalah usaha untuk menghambat perubahan komposisi zat-zat tertentu

yg ada didalam suatu contoh. Oleh karena itu meski contoh sudah diawetkan, pengujian terhadap

parameter harus segera dilakukan agar hasil mencerminkan keadaan contoh pada waktu diambil.

Tabel 2.1 Cara Pengawetan Sampel

No. Parameter pemeriksaanVolume

samplePengawetan

Waktu maks.

pengawetan

1. Suhu 100 Analisa segera 0

2. Warna 500 Didinginkan 2 hari

3. Zat tersuspensi 200 Didinginkan 7-14 hari

4. Kekeruhan 100 Disimpan di tempat gelap 1-2 hari

5. Daya Hantar Listrik 500 Didinginkan 28 hari

6. pH 100 Analisa segera 2 jam

7. Alkliniti 200 Didinginkan 1-14 hari

8. BOD 1000 Didinginkan 6 jam – 14 hari

9. CO2 10 Dianalisa segera 0

10. COD 100 Diasamkan (pH < 2) dengan H2SO4 7-28 hari

11. Phosfat 100 Penyaringan segera kemudian 2 hari

Page 6: Laporan Pencemaran Air

dibekukan -100C

12. Kesadahan Mg2+ + Ca2+ 100 Diasamkan (pH < 2) dengan HNO3 6 bulan

13. Klor, Cl2 500 Dianalisa segera 0.5-2 jam

14. Logam -Penyaringan segera; Diasamkan (pH <

2) dengan HNO3

6 bulan

15. Ammonium 50Dianalisa segera; Diasamkan (pH < 2)

dengan H2SO4

7-28 hari

16. Nitrat 100 Diasamkan (pH < 2) dengan H2SO4 2 hari

17. Nitrat – nitrit 200 Dianalisa segera atau dibekukan -200C 0-28 hari

18. Nitrit 100 Dianalisa segera atau dibekukan -200C 0-2 hari

19. N Kjeldahl 500Didinginkan atau Diasamkan (pH < 2)

dengan H2SO4

7-28 hari

20. Oksigen 300

-     Cara elektroda khusus:

Analisa segera

       Cara titrasi winkler:

Diasamkan (pH < 2) dengan H2SO4

0.5-1 jam

8 jam

Sumber: Modul Praktikum Laboratorium Lingkungan, 2011

2.2 Parameter yang dianalisa

2.2.1 Warna

Meskipun murni, air selalu dikatakan berwarna biru-hijau apabila volume air cukup banyak.

Suatu hal yang penting untuk membedakan antara warna asli air (true colour) dan warna semu

(apparent colour) .

      Warna air adalah sifat fisik air yang disebabkan oleh karakteristik zat-zat yang terdapat di dalam

air, bukan disebabkan oleh molekul-molekul itu sendiri, karena air murni itu tidak berwarna.

      Warna dalam air alam dibedakan atas :

a.       Warna sejati, yaitu warna di dalam air yang disebabkan oleh adanya senyawa organik yang larut,

seperti pelapukan dedaunan atau ranting pohon

b.       Warna semu, yaitu warna di dalam air yang disebabkan oleh zat-zat tersuspensi (kekeruhan). Disebut

warna semu karena sifat warna tersebut akan hilang apabila air tersebut disaring atau disentrifuge.

Metode

Metode yang dilakukan dalam percobaan warna ini adalah metode Colorimetri. Colorimetric

merupakan salah satu metoda pengukuran konsentrasi suatu zat secara kuantitatif dengan melihat

karakter warna yang proporsional terhadap konsentrasi zat yang diukur.

Page 7: Laporan Pencemaran Air

Prinsip percobaan

Warna air dibandingkan dengan standar yang terbuat dari K2PtCl6 dan Cobalt.

Pereaksi

      Larutan stock standar warna Pt-Co

Larutkan 1.246 gr K2PtCl6 atau 0.5 g Pt dan 1.0 CoCl2 dengan aquadest. Tambahkan 100 ml HCL

pekat, kemudian encerkan dengan aquadest sampai volume 1 liter. Larutkan standar ini mengandung

500 unit Pt-Co.

      Larutan standar warna Pt-Co

Buat sederatan larutan standar warna Pt-Co dalam tabung nestler dengan cara mengencerkan stock

standar warna Pt-Co, yang akan dilihat pada tabel dibawah ini.

Tabel 2.2 parameter Larutan standar warna Pt-Co

No

.Larutan stock (ml) Aquadest (ml) Unit Pt-Co

1. 0.50 49.5 5

2. 1.0 49 10

3. 2.0 48 20

4. 3.0 47 30

5. 4.0 46 40

6. 5.0 45 50

Sumber: Modul Praktikum Laboratorium Lingkungan, 2011

Cara Kerja

      Pengukuran warna sejati (true color)

  Pisahkan zat tersuspensi dari sample air dengan cara disentrifuge atau disaring

  Masukan sampel yang terlah dicentrifuge ke dalam tabung nessler 50 ml sampai tanda batas

  Bandingkan warna dengan contoh air tersebut dengan larutan – larutan baku (standar) yang tersedia

dengan cara melihatnya dari bagian atas cairan dengan alas putih

Page 8: Laporan Pencemaran Air

  Catat unit warna larutan baku yang sesuai dengan contoh air

      Pengukuran warna semu (apparent color)

  Kocok sampel air dengan sempurna

  Masukan sampel air tersebut ke dalam tabung nessler 50 ml yang lainnya sampai tanda batas

  Bandingkan dengan warna-warna contoh air tersebut dengan larutan-larutan baku yang tersedia

  Cata unit warna larutan baku yang sesuai dengan contoh air.

Hasil analisa

Dikarenakan dengan kurangnya fasilitas untuk ketersediaan bahan, maka pada pengamatan

warna ini tidak dilakukan, sehingga tidak ada hasil yang diperoleh.

2.2.2 Kekeruhan

Kekeruhan dalam air tanah biasanya disebakan karena adanya zat padat yang tersuspensi yang

bersifat anorganik dan organic sedangkan zat organic. Kekeruhan dalam air disebabkan oleh zat-zat

yang tersuspensi (tidak larut).

   Sumber kekeruhan dalam air dapat berasal dari berbagai kegiatan manusia, seperti kegiatan pertanian,

pertambangan terbuka, sehingga banyak tanah yang terbawa oleh aliran air hujan.

   Partikel-partikel yang tersuspensi tersebut dapat berupa senyawa organic yang berasal dari pelapukan

tanaman atau hewan dan zat anorganik yang biasanya berasal dari lapisan batuan ataupun logam,

yang dapat menimbulkan efek terhadap kesehatan, estetika dan proses desinfeksi.

Untuk pengukuran kekeruhan dalam air, selain menggunkan alat turbidimeter helliege dapat

juga dengan alat-alat spesifik lainnya. Untuk setiap alat turbidimeter selalu dilengkapi dengan cara

penggunaannya. Satuan kekeruhan dalam air dapat dinyatakan dengan satuan mg/l SiO2, NTU

(Nephelometric Turbidity Units), FTU (Formazin Turbidity Units), JTU (Jackson Turbidity Units). Untuk

setiap alat turbidimeter harus dilengkapi dengan standar kekeruhan.

Batas waktu pengukuran yang masih direkomendasi adalah 24 jam dengan penyimpanan dalam

ruang gelap dan dingin. Jika contoh air terlalu lama makan akan terjadi perubahan kekruhan dalam air

akibat sedimentasi dan sebagainya.

Metode

Turbidimetri dengan alat Turbidi meter Helliege

Prinsip

Page 9: Laporan Pencemaran Air

Pengukuran kekeruhan dalam air berdasarkan pengukuran intensitas cahaya yang dipendarkan oleh

zat-zat tersuspensi dalam air.

Cara kerja

   Masukkan contoh air yang telah dikocok kedalam tabung turbidimeter 50 mm sampai tanda batas dan

tutup (jangan sampai ada gelembung udara)

   Masukkan kedalam alat turbidimeter dengan posisi cermin terbuka dan gunkan filter dark

   Tutup pintu turbidimeter dan nyalakan lampunya

   Putar skala pembacaan sambil dilihat dari atas sehingga kekeruha air tersebut sesuai dcengan standar

   Baca skala pembacaan dan masukkan ke dalam grafik standar kekeruhan sehingga didapat nilai

kekeruhannya.

   Jika skala pembacaan melebihi btas grafik standar kekeruhan, maka filternya diganti dengan ururtan

sebagai berikut:

1.     Filter dark, cermin tertutup dan ukuran tabung 50 mm,

2.     Filter light, cermin tertutup dan ukuran tabung 50 mm,

3.     Filter none, cermin tertutup dan ukuran tabung 50 mm,

4.     Filter none, cermin tertutup dan ukuran tabung 20 mm,

Hasil analisa

Hasil yang didapat untuk sampel air yang diamati menggunakan turbidimeter ialah 49 dengan

skala filter none, cermin tertutup.

2.2.3 Daya Hantar Listrik

DHL adalah kemampuan air untuk menghantarkan arus listrik, hal ini disebabkan karena adanya

mineral yang terlarut dalam air yang terionisasi. Ion –ion tersebut di dalam air berkemapuan untuk

menghantarkan arus listrik.

Tujuan dari pengukuran konduktivitas adalah untuk mengetahui banyak ion – ion yang terlarut

dalam air atau banyak mineral yang terlarut.

Parameter ini penting untuk memprediksikan kandungan mineralnya, semakin tinggi

kandungannya, maka akan semakin tinggi nilai DHL-nya. Batas waktu maksimum pengukuran yang

direkomendasikan adalah 28 hari.

Page 10: Laporan Pencemaran Air

Metode

Metode yang dapat digunakan dalam percobaan ini adalah Conductivimetri.

Prinsip

Pengukuran daya hantar listrik berdasarkan kemampuan kation dananion untuk

menghantarkan arus listrik yang dialirkan ke dalam air.

Cara kerja

  Kalibrasi conductivity meter:

-          Siapkan alat conductivity meter sesuai dengan buku petunjuk yang ada

-          Larutan standar KCl 0.0100 M disimpan dalam pemanas aie sehingga temperature larutan standar

tersebut mencapai 25ᵒC

-          Celupkan elektroda kedalam larutan standar KCl 0.0100 M

-          Putar pengatur suhu alat sehingga menunjukan temperature 25ᵒC

-          Putar pengatur kalibrasi sehingga alat tersebut memberikan pambacaan 1413 mikromhos/cm.

-          Cuci elektroda dengan aquadest dan keringkan

-          Kalibrasi apat dilakukan terhadap larutan standar KCl pada berbagai konsentrasi dan akan

memberikan pembacaan.

  Pengukuran daya hantar listrik

-        Ukur temperratur sampel air

-        Putar pengukur temperature sesuai dengan temperature sampel air

-        Celupkan elektroda ke dalam sampela air dan alat tersebut akan memrikan nilai daya hantar listrik

untuk contoh air tersebut.

Hasil pengamatan

Hasil yang didapat untuk DHL dari sampel air sungai Cikalimati adalah sebesar 498 ��ms/cm

2.2.4 pH

Page 11: Laporan Pencemaran Air

pH (Puissance d’Hydrogen Scale) merupakan parameter untuk menyatakan suatu keasaman

air, untuk menyatakan banyaknya ion H+ di dalam air, semakin banyak ion H+ dalam air, semakin

rendah pH air. Data pH sangat diperlukan untuk mengetahui apakah air tersebut memenuhi

persyaratan tertentu, misalnya untuk air minum dipersyaratkan pH antara pH 6,5 – 8,5.

Metode

Metode yang umum dipakai dalam penentuan pH suatu larutan adalah Electrode –

Potensiometri

Prinsip

Eletroda gelas mempunyai kemampuan untuk mengukur konsentrasi H+ dalam air secara

potensiometeri.

Cara kerja

Setiap pH meter yang akan digunakan untuk mengukur pH air harus dikalibrasi terlebih dahulu

dengan larutan buffer pH 4.0; pH 7.0; pH 9.0

Pada alat pH meter, umumnya dilengkapi dengan:

-          read out untuk pH

-          pengatur suhu

-          pengatur kalibrasi

-          elektroda

             kalibrasi pH meter

-        cuci elektroda dengan aquadest, kemudian keringkan dengan kertas penghisap.

-        Celupkan eletroda ke dalam larutan buffer 4,0

-        Setelah pH meter dinyalakan, atur pengatur suhu sesuai dengan suhu larutan buffer

-        Putar pengatur pH sehingga pembacaan menunjukkan nilai pH yang sesuai dengan larutan buffer

-        Teruskan kalibrasi dengan buffer pH 7 dan pH 9

             Pengukuran pH contoh air

-        Masukkan kira-kira 150 ml sampel air ke dalam gelas kimia 250 ml

Page 12: Laporan Pencemaran Air

-        Ukur suhu sampel dengan thermometer, kemuian celupkan elektroda yang telah dibersihkan ke dalam

sampel

-        Putar pengatur suhu sesuai dengan suhu sampel,

-        Nyalakan pH meter, read out. pH meter akan menunjukan nilai pH sampel air tersebut

-        Selama pemgukuran sampel air dikocok dengan menggunakan magnetic stirrer.

-        Setelah selesai pengukuran, matikan pH meter, kemudian bilas elektroda dengan aquadest dan

simpan dalam keadaan tercelup di dalam aquadest.

Hasil pengamatan

nilai pH yang didapat dari sampel air Sungai Cikalimati sebesar 7,04.

2.2.5 Asiditas – Alkalinitas

Asiditas adalah kemampuan air untuk menetralkan larutan basa, sedangkan alkalinitas adalah

kemampuan air untuk menetralkan larutan asam. Penyebab asidi alkalinitas dalam air adalah H+, CO2,

HCO3-,CO3

2- dan OH-.

Pengukuran asid-alkalinitas harus dilakukan sesegera mungkin dan biasanya dilakukan ditempat

pengambilan contoh (analisa setempat). Batas waktu pengukuran yang masih direkomendasikan

adalah 14 hari, kecuali untuk gas CO2, harus dilakukan pada saat sampling, Karena gas CO2 mudah

berubah. Satuan yang digunakan adalah mg/l atau mg/l CaCO3 sering digunakan untuk menyatakan

konsentrasi asiditas dan alkalinitas dalam air.

Metode

Metode yang dapat digunakan dalam mengukur asiditas-alkalinitas adalah Titrasi asam – basa.

Prinsip

Asiditas atau alkalinitas dalam air dinetralkan dengan basa NaOH atau asam HCl

menggunakan indicator fenolftalin dan metal orange.

Cara kerja

Masukkan 100 ml sampel air kedalam Erlenmeyer, lalu tambahkan 20 tetes indicator fenolftalin

0.035%, amati perubahan warna yang terjadi.

Page 13: Laporan Pencemaran Air

  Jika tidak terjadi perubahan warna (larutan tetap tidak berwarna), lakukan cara kerja untuk asidias (cara

kerja A)

  Jika cairan berubah warna menjadi merah (merah muda), lakukan cara kerja untuk alkalinitas (cara kerja

B)

Ternyata setelah dilakukan penambahan fenolftalin, tidak terjadi perubahan warna dan larutan tetap

tidak berwarna. Oleh karena itu, dilakukan cara kerja untuk Asiditas sebagai berikut:

a.     Titrasi dengan larutan NaOH 0.1 N sampai cairan berwarna merah muda. Catat banyaknya larutan

NaOH 0.1 N yang digunakan (ml)

b.     Tambahkan 3-5 tetes indicator metyl orange 0.1%

c.     Lanjutkan titrasi dengan larutan HCl 0.1 N sampai cairan berubah warna dari kunig menjadi orange

(jingga). Catat banyak larutanHCl 0.1 N yang digunakan.

Hasil pengamatan

volume titrasi yang didapat:

NaOH = 1 ml

HCL = 57.3 ml

Perhitungan

1         ml < 57.3 ml → Ρ < m, maka: Air mengandung CO2 dan HCO3-

  Mg/l CO2 = CO2

=

= 43.78 mg/l CO2

Jadi, nilai CO2 yang terkandung didalam sampel air yang telah diamati adalah 43.78 mg/l CO2

  Mg/l HCO3- = HCO3

=

= 299.32 mg/l HCO3-

Jadi, setelah dilakukan sampling terhadap sampel air, maka didapat angka 299.32 mg/l HCO3-

2.2.6 CO2 Agresif

Metode

Page 14: Laporan Pencemaran Air

Metode yang dapat digunakan untuk mengukur CO2 Agresif adalah berdasarkan kepada grafik

Mundlein Frankfurt.

Parameter yang Harus Diketahui

Paremater-parameter yang harus diketauhui dalam perhitungan ini adalah:

                CO2 bebas

CO2 bebas ditetapkan sesuai dengan prosedur penetapan asidi-alkalinitas.

                HCO3- atau kesadahan sementara

HCO3- ditetapkan dengan prosedur penetapan asidi-alkalinitas.

Perhitungan

Diketahui nilai CO2 bebas sebesar 43,78 mg/l CO2, dan nilai HCO3- sebesar 299.32 mg/l HCO3

-

dari percobaan sebelumnya. Kemudian diplot ke dalam Grafik Frankfurt tersebut, maka didapat

pertemuan garis tersebut pada titik A. Lalu digeser sampai memotong Garis Kesadahan, didapat nilai B

dengan nilai CO2 sebesar 42,5 mg/L.

Maka,

Jadi kadar CO2 yang terkandung dalam sampel air sungai Cikalimati sebesar 1,28 mg/L CO2.

2.2.7 Kesadahan

Kesadahan air didefinisikan sebagai kemampuan air untuk mengendapkan sabun, sehingga

keaktifan/ daya bersih sabun menjadi berkurang atau hilang sama sekali. Sabun adalah zat aktif

permukaan yang berfungsi menurunkan tegangan permukaan air, sehingga air sabun dapat berbusa.

Air sabun akan membentuk emulsi atau sistem koloid dengan zat pengotor yang melekat dalam benda

yang hendak dibersihkan.

Kesadahan terutama disebabkan oleh keberadaan ion-ion kalsium (Ca2+) dan magnesium (Mg2+)

di dalam air. Keberadaannya di dalam air mengakibatkan sabun akan mengendap sebagai garam

kalsium dan magnesium, sehingga tidak dapat membentuk emulsi secara efektif. Kation-kation

polivalen lainnya juga dapat mengendapkan sabun, tetapi karena kation polivalen umumnya berada

dalam bentuk kompleks yang lebih stabil dengan zat organik yang ada, maka peran kesadahannya

dapat diabaikan. Oleh karena itu penetapan kesadahan hanya diarahkan pada penentuan kadar

Ca2+ dan Mg2+. Kesadahan total didefinisikan sebagai jumlah miliekivalen (mek) ion Ca2+ dan Mg2+ tiap

liter sampel air (Anonim, 2008).

Kesadahan atau hardness adalah salah satu sifat kimia yang dimiliki oleh air. Penyebab air

menjadi sadah adalah karena adanya ion-ion Ca2+, Mg2+. Atau dapat juga disebabkan karena adanya

Page 15: Laporan Pencemaran Air

ion-ion lain dari polyvalent metal (logam bervalensi banyak) seperti Al, Fe, Mn, Sr dan Zn dalam bentuk

garam sulfat, klorida dan bikarbonat dalam jumlah kecil.

Air yang banyak mengandung mineral kalsium dan magnesium dikenal sebagai “air sadah”, atau

air yang sukar untuk dipakai mencuci. Senyawa kalsium dan magnesium bereaksi dengan sabun

membentuk endapan dan mencegah terjadinya busa dalam air. Oleh karena senyawa-senyawa

kalsium dan magnesium relatif sukar larut dalam air, maka senyawa-senyawa itu cenderung untuk

memisah dari larutan dalam bentuk endapan atau presipitat yang akhirnya menjadi kerak.

Pengertian kesadahan air adalah kemampuan air mengendapkan sabun, di mana sabun ini

diendapkan oleh ion-ion yang saya sebutkan diatas. Karena penyebab dominan/utama kesadahan

adalah Ca2+ dan Mg2+, khususnya Ca2+, maka arti dari kesadahan dibatasi sebagai sifat / karakteristik

air yang menggambarkan konsentrasi jumlah dari ion Ca2+ dan Mg2+, yang dinyatakan sebagai CaCO3.

Kesadahan ada dua jenis, yaitu (Giwangkara, 2008) :

1. Kesadahan sementara

Adalah kesadahan yang disebabkan oleh adanya garam-garam bikarbonat, seperti Ca(HCO3)2,

Mg(HCO3)2. Kesadahan sementara ini dapat / mudah dieliminir dengan pemanasan (pendidihan),

sehingga terbentuk encapan CaCO3 atau MgCO3.

Reaksinya:

Ca(HCO3)2 → dipanaskan → CO2 (gas) + H2O (cair) + CaCO3 (endapan)

Mg(HCO3)2 → dipanaskan → CO2 (gas) + H2O (cair) + MgCO3 (endapan)

2. Kesadahan tetap

Adalah kesadahan yang disebabkan oleh adanya garam-garam klorida, sulfat dan karbonat, misal

CaSO4, MgSO4, CaCl2, MgCl2. Kesadahan tetap dapat dikurangi dengan penambahan larutan soda–

kapur (terdiri dari larutan natrium karbonat dan magnesium hidroksida) sehingga terbentuk endapan

kaslium karbonat (padatan/endapan) dan magnesium hidroksida (padatan/endapan) dalam air.

Reaksinya:

CaCl2 + Na2CO3 → CaCO3 (padatan/endapan) + 2NaCl (larut)

CaSO4 + Na2CO3 → CaCO3 (padatan/endapan) + Na2SO4 (larut)

MgCl2 + Ca(OH)2 → Mg(OH)2 (padatan/endapan) + CaCl2 (larut)

MgSO4 + Ca(OH)2 → Mg(OH)2 (padatan/endapan) + CaSO4 (larut)

Ketika kesadahan kadarnya adalah lebih besar dibandingkan penjumlahan dari kadar alkali

karbonat dan bikarbonat, yang kadar kesadahannya eqivalen dengan total kadar alkali disebut “

Page 16: Laporan Pencemaran Air

kesadahan karbonat; apabila kadar kesadahan lebih dari ini disebut “kesadahan non-karbonat”. Ketika

kesadahan kadarnya sama atau kurang dari penjumlahan dari kadar alkali karbonat dan bikarbonat,

semua kesadahan adalah kesadahan karbonat dan kesadahan noncarbonate tidak ada. Kesadahan

mungkin terbentang dari nol ke ratusan miligram per liter, bergantung kepada sumber dan perlakuan

dimana air telah subjeknya

Metode

Metode yang dapat digunakan dalam pengukuran kesadahan adalah dengan Titrasi kompleksometri

dengan EDTA.

Kesadahan total yaitu ion Ca2+ dan Mg2+ dapat ditentukan melalui titrasi dengan EDTA sebagai titran dan

menggunakan indikator yang peka terhadap semua kation tersebut. Kejadian total tersebut dapat dianalisis

secara terpisah misalnya dengan metode AAS (Automic Absorption Spectrophotometry) (Abert dan Santika,

1984).

Asam Ethylenediaminetetraacetic dan garam sodium ini (singkatan EDTA) bentuk satu kompleks kelat

yang dapat larut ketika ditambahkan ke suatu larutan yang mengandung kation logam tertentu. Jika sejumlah

kecil Eriochrome Hitam T atau Calmagite ditambahkan ke suatu larutan mengandung kalsium dan ion-ion

magnesium pada satu pH dari 10,0 ± 0,1, larutan menjadi berwarna merah muda. Jika EDTA ditambahkan

sebagai satu titran, kalsium dan magnesium akan menjadi suatu kompleks, dan ketika semua magnesium dan

kalsium telah manjadi kompleks, larutan akan berubah dari berwarna merah muda menjadi berwarna biru yang

menandakan titik akhir dari titrasi. Ion magnesium harus muncul untuk menghasilkan suatu titik akhir dari titrasi.

Untuk mememastikankan ini, kompleks garam magnesium netral dari EDTA ditambahkan ke larutan buffer.

Penentuan Ca dan Mg dalam air sudah dilakukan dengan titrasi EDTA. pH untuk titrasi adalah 10 dengan

indikator Eriochrom Black T (EBT). Pada pH lebih tinggi, 12, Mg(OH)2 akan mengendap, sehingga EDTA dapat

dikonsumsi hanya oleh Ca2+ dengan indikator murexide. Adanya gangguan Cu bebas dari pipa-pipa saluran air

dapat di masking dengan H2S. EBT yang dihaluskan bersama NaCl padat kadangkala juga digunakan sebagai

indikator untuk penentuan Ca ataupun hidroksinaftol. Seharusnya Ca tidak ikut terkopresitasi dengan Mg, oleh

karena itu EDTA direkomendasikan.

Kejelasan dari titik- akhir banyak dengan pH peningkatan. Bagaimanapun, pH tidak dapat ditingkat

dengan tak terbatas karena akibat bahaya dengan kalsium karbonat mengendap, CaCO3, atau hidroksida

magnesium, Mg(OH)2 , dan karena perubahan celup warnai di ketinggian pH hargai. Ditetapkan pH dari 10,0 ±

0,1 adalah satu berkompromi kepuasan. Satu pembatas dari 5 min disetel untuk jangka waktu titrasi untuk

memperkecil kecenderungan ke arah CaCO3 pengendapan.

Prinsip

Page 17: Laporan Pencemaran Air

Kalsium dan magnesium dalam air dapat membentuk senyawa komplek dengan Etilen

Diamine Tetra Asetat (EDTA) pada suatu pH tertentu. Untuk mengetahui titik akhir titrasi digunkan

indicator logam yaitu indicator EBT dan Murexida.

Cara kerja

             Kesadahan total

-        Masukkan 100 ml sampel air ke dalam Erlenmeyer,

-        Tambahkan 5 ml larutan buffer pH 10, jika cairan menjadi keruh, tambahkan 1 ml KCN 10% Kemudian

ditambah 50 mg indicator EBT

-        Titrasi dengan larutan EDTA 1/28 N sampai cairan berubah warna menjadi biru laut.

-        Catat banyaknya larutan EDTA yang digunakan.

                  Kesadahan kalsium

- Masukkan 100 ml sampel air ke dalam Erlenmeyer,

- Tambahkan 5 ml larutan buffer pH 12, jika cairan menjadi keruh, tambahkan 1 ml KCN 10% Kemudian

ditambah 50 mg indicator murexida

- Titrasi dengan larutan EDTA 1/28 N sampai cairan berubah warna dari merah anggur menjadi ungu

- Catat banyaknya larutan EDTA yang digunakan.

Hasil pengamatan

   kesadahan total

volume titrasi yang didapat:

EDTA 14,2 ml

Perhitungan

Kesadahan total =

=

= 13.9 ᵒG

Jadi, kadar kesadahan total pada sampel air sungai Cikalimati yang telah diteliti sebesar 13.9 o G

   Kesadahan Ca

volume titrasi yang didapat:

EDTA 4 ml

Page 18: Laporan Pencemaran Air

Perhitungan

Kesadahan Ca =

=

= 3.93 ᵒG

Dari hasil pengamatan terhadap sampel air sungai Cikalimati didapat kadar kesadahan Ca sebesar

3.93 o G

   Kesadahan magnesium

Perhitungan

Kesadahan Mg = kesadahan total – kesadahan Ca

= 13.9 ᵒG - 3.93 ᵒG

= 9.97 ᵒG

Sampel air yang telah diamati mempunyai kadar kesadahan Mg sebesar 9.97 o G

2.2.8 Sulfat

Sulfat (SO42-)merupakan anion yang banyak terdapat dalam air di alam. Kandungan sulfat dalam

air minum < 250 mg/l. Selain itu, sulfat yang ada pada limbah industry dapat menyebabkan kerak pada

ketel uap dan heat exchange.

Seringkali kehadiran SO42- menimbulkan bau dan korosi pada pipa. Bila O2 dan NO3 dalam air

tidak ada, SO42- akan bertindak sebagai sumber oksigen/penerima electron pada oksidasi biokimia

bakteri anaerob. Ion sulfat adalah salah satu anion yang banyak terjadi pada air alam. Ia merupakan

sesuatu yang penting dalam penyediaan air untuk umum karena pengaruh pencucian perut yang

cukup besar. Sulfat penting dalam penyediaan air untuk umum maupun untuk industri, karena

kecenderungan air untuk mengandungnya dalam jumlah yang cukup besar untuk membentuk kerak air

yang keras pada ketel dan alat pengubah panas.

Sulfat merupakan suatu bahan yang perlu dipertimbangkan, sebab secara langsung merupakan

“penanggung jawab” dalam dua problem yang serius yang sering dihubungkan dengan penanganan

dan pengolahan air bekas. Masalah ini berupa masalah bau dan masalah korosi pada perpipaan yang

diakibatkan dari reduksi sulfat menjadi hidrogen sulfida dalam kondisi anaerobik. Efek laksatif pada

sulfat ditimbulkan pada konsentrasi 600-1000 mg/l, apabila Mg+ dan Na+ merupakan kation yang

bergabung dengan SO4, yang akan menimbulkan rasa mual dan ingin muntah.

Metode

Page 19: Laporan Pencemaran Air

Metode yang umum digunakan dalam mengukur kadar sulfat dalam susatu sampel adalah dengan

Turbidimetri.

Analisis secara turbidimetri merupakan analisis berdasarkan pengukuran turbiditas (S) atau

kekeruhan dari suatu suspensi. Kekeruhan dapat disebabkan oleh bahan-bahan tersuspensi yang

bervarisasi dari ukuran koloidal sampai dispersi kasar, tergantung dari derajad turbulensinya.

Pengukuran intensitas cahaya yang ditransmisi sebagai fungsi dari konsentrasi fase terdispersi adalah

dasar dari analisis turbidimetri.

Dalam membuat kurva kalibrasi dianjurkan dalam penerapan turbidimetri karena hubungan

antara sifat-sifat optis suspensi dan konsentrasi fase terdispersinya paling jauh adalah semi empiris.

Agar kekeruhan (turbidity) itu dapat diulang penyiapannya haruslah seseksama mungkin, endapan

harus sangat halus. Intensitas cahaya bergantung pada banyaknya dan ukuran partikel dalam

suspensi sehingga aplikasi analitik dapat dimungkinkan. Prinsip spektroskopi absorbsi dapat

digunakan pada turbidimeter, dan nefelometer. Untuk turbidimeter, absorpsi akibat partikel yang

tersuspensi diukur sedangkan pada nefelometer, hamburan cahaya oleh suspensilah yang diukur.

Meskipun presisi metode ini tidak tinggi tetapi mempunyai kegunaan praktis, sedang akurasi

pengukuran tergantung pada ukuran dan bentuk partikel. Setiap instrument spektroskopi absorpsi

dapat digunakan untuk turbidimeter, sedangkan nefelometer memerlukan resptor pada sudut 90oC

terhadap lintasan cahaya. Aplikasi teknik turbidimeter cukup luas, misalkan dalam studi pencemaran

air, jumlah sulfat dalam air dapat diukur dengan turbidimeter. Penentuan sulfat dalam air laut, dapat

dilakukan dengan mengubah sulfat menjadi suatu partikel yang tersuspensi dalam air laut tersebut,

sehingga memungkinkan dilakukannya analisa secara turbidimetri

Prinsip

Ion sulfat dalam air dengan penambahan Kristal BaCl2 dan buffer salt acid akan membentuk

koloid tersuspensi (kekeruhan). Semakin tinggi konsentrasi sulfat semakin keruh cairan. Kekeruhan

yang terjadi diukur dengan alat tubidimeter.

Cara kerja

-        Saring sampel air jika keruh

-        Masukkan 50 ml sampel kedalam Erlenmeyer

-        Tambahkan 10 ml larutan salt acid dan 50 mg Kristal BaCl2

-        Kosok dan biarkan selama 5 menit

-        Kekeruhan yang terjadi diukur dengan spektrofotometer pada λ 420 mm

Page 20: Laporan Pencemaran Air

-        Dari hasil pembacaan, masukkan ke dalam kurva kalibrasi sehingga didapat konsentrasi sulfat dalam

mg/l sampel.

Hasil pengamatan

      abs blanko = 0.30

      abs sample = 0.38

      Y = abs sample - abs blanko

= 0.38 – 0.30

= 0.08

  Perhitungan

Y = 0.0125 x + 0.0001

0.08 = 0.0125 x + 0.0001

X =

X = 6,392 mg/l SO42-

Jadi, kandungan sulfat dari sampel air yang telah diperiksa menunjukan hasil sebesar 6,392 mg/l SO42-

2.2.9 Zat Organik

Zat organik sering juga disebut angka permanganate, merupakan pengukuran angka

permanganate atau pengukuran zat organic dalam air, dimana zat organic di dalam air dioksidasi oleh

oksidator kuat KMnO4 pada temperatur mendidih (100oC) selama 10 menit.

Kelemahan metode ini adalah untuk jenis senyawa organic yang mudah menguap, tidak akan

terukur karena akan menguap pada pemanasan di dalam labu Erlenmeyer yang terbuka. Prinsip

pengukuran, zat organic dalam air dioksidasi oleh KMnO4 berlebih dalam suasana asam dan panas.

Kelebihan KMnO4 direduksi oleh asam oksalat berlebih. Kelebihan asam oksalat dititrasi kembali oleh

larutan KMnO4.

Metode

Metode yang biasa dipakai dalam penentuan kadar zat organik yang terkandung dalam suatu

sampel adalah metode Titrasi permanganometri.

Prinsip

Page 21: Laporan Pencemaran Air

Zat organik dioksidasi oleh KMnO4 berlebih dalam suasana asam san panas. Kelebihan KMnO4

direduksi oleh asam oksalat berlebih. Kelebihan asam oxalate di titrasi kembali oleh larutan KMnO4.

Cara kerja

      Pembebasan labu Erlenmeyer dari zat organik

-          Masukkan 100 ml air kran ke dalam labu Erlenmeyer

-          Tambahkan beberapa buah batu didih

-          Tambahkan 5 ml H2SO4 4N bebeas organic dan tetes demi tetes larutan KMnO4 0.01 N sampai

cairan berwarna merah muda (ros)

-          Panaskan di atas api atau hot palte dan biarkan mendidih selama 10 menit, jika selama pendidihan

warna merah muda hilang, tambahkan lagi larutan KMnO4 0.01 N sampai merah muda tidak hilang

-          Setelah selesai, buang cairan dalam Erlenmeyer dan gunakan untuk penentuan zat organic dalam

sampel tanpa dicuci.

      Pemeriksaan zat oraganik

-          Masukkan sampel air kedalam Erlenmeyer bebas organic

-          Tambahkan 5 ml H2SO4 4N bebas organic dan tetes demi tetes larutan KMnO4 0.01 N sampai cairan

berwarna merah muda (ros). Hitung penambahan KMnO4

-          Panaskan di atas api atau hot palte dan biarkan mendidih selama 10 menit, jika selama pendidihan

warna merah muda hilang, tambahkan lagi larutan KMnO4 0.01 N sampai merah muda tidak hilang.

Hitung kembali penggunaan KMnO4

-          Setelah hamper mendidih, tambhakan 10 ml larutan KMnO4 0.01 N, pemanasan diteruskan selama 10

menit tepat. Jika selama pemanasan warna KMnO4 hilang, tambahkan lagi 10 ml KMnO4 0.01N,

penambahan diteruskan sampai cairan tetap berwarna merah

      Mencari factor ketelitian KMnO4

-          Masukkan 10 ml asam oxalate 0.01 N ke dalam labu Erlenmeyer yang telah bebas organic

-          Tambahkan 5 ml H2SO4 4N bebas organic

-          Panaskan sampai hamper mendidih (70ᵒC)

-          Titrasi dengan larutan KMnO4 0.01N sampai cairan berwarna merah muda (ros)

-          Catat banyaknya larutan KMnO4 yang digunakan

Factor ketelitian =

Page 22: Laporan Pencemaran Air

Hasil pengamatan

-        Volume titrasi = 6.5 ml

-        Faktor ketelitian KMnO4 (f) = 1.02

   Perhitungan:

Jadi diperoleh kadar zat organic dalam sampel air Sungai Cikalimati sebesar 21,58 mg/L

2.2.10Klorida

Klorida banyak ditemukan di alam, hal ini di karenakan sifatnya yang mudah larut. Kandungan

klorida di alam berkisar < 1 mg/l sampai dengan beberapa ribu mg/l di dalam air laut. Air buangan

industri kebanyakan menaikkan kandungan klorida demikian juga manusia dan hewan membuang

material klorida dan nitrogen yang tinggi.

Kadar Cl- dalam air dibatasi oleh standar untuk berbagai pemanfaatan yaitu air minum, irigasi

dan konstruksi. Konsentrasi 250 mg/l unsure ini dalam air merupakan batas maksimal konsentrasi

yang dapat mengakibatkan timbulnya rasa asin. Konsentrasi klorida dalam air dapat meningkat

dengan tiba-tiba dengan adanya kontak dengan air bekas. Klorida mencapai air alam dengan banyak

cara. Kotoran manusia khususnya urine, mengandung klorida dalam jumlah yang kira-kira sama

dengan klorida yang dikonsumsi lewat makanan dan air. Jumlah ini rata-rata kira-kira 6 gr klorida

perorangan perhari dan menambah jumlah Cl dalam air bekas kira-kira 15 mg/l di atas konsentrasi di

dalam air yang membawanya, disamping itu banyak air buangan dari industri yang mengandung

klorida dalam jumlah yang cukup besar.

Klorida dalam konsentrasi yang layak adalah tidak berbahaya bagi manusia. Klorida dalam

jumlah kecil dibutuhkan untuk desinfectan. Unsur ini apabila berikatan dengan ion Na+dapat

menyebabkan rasa asin, dan dapat merusak pipa-pipa air.

Metode

Metode yang umum digunakan dalam menentukan kadar Klorida yang terkandung dalam suatu

sampel adalah dengan cara Tirasi argentometri cara Mohr.

Prinsip

Klorida dalam suasana netral diendapkan dengan AgNO3, membentuk AgCl . Kelebihan sedikit

Ag+ dengan adanya indicator K2CrO4, akan terbentuk endapan merah bata pada titik titrasi.

Page 23: Laporan Pencemaran Air

Cara kerja

  Masukkan 100 ml sampel kedalam labu Erlenmeyer. Tambahkan 2 tetes HNO3 pekat dan 3-5 tetes

K2CrO4 10%

  Tambahkan sedikit demi sedikit serbuk ZnO atau MgO sambil dikocok sampai cairan berwarna kuning

kehijauan

  Titrasi dengan Larutan AgNO3 1/35 45 N sampai terjadi endapan merah bata

  Catat banyaknya Larutan AgNO3 1/35 45 N yang digunakan

Hasil pengamatan

      Volume titrasi Larutan AgNO3 1/35 45 N = 4.8 ml

      Factor ketelitian AgNO3 (F) = 1.0217

Perhitungan

mg/L klorida =

=

= 45,8 mg/l Cl-

Setelah dilakukan pengamatan hasil yang dapat untuk kandungan klorida dalam sample air

sebesar 45,8 mg/l Cl -

2.2.11Besi

Adanya besi dalam air akan mengganggu dalam penggunaan air, misalnya jika digunakan untuk

mencuci pakaian, maka akan terjadi noda-noda dipermukaan kain dari endapan besi. Metode yang

biasa digunakan untuk analisa besi di laboratorium adalah metode AAS dan metode phenantroline-

spektrofotometri.

Prinsip pengukuran besi berdasarkan metode phenantroline adalah metode spektrofotometri,

yaitu besi di dalam air direduksi dengan hidroksil amin membentuk Fe2+. Selanjutnya ion Ferro

tersebut direaksikan dengan phenantroline membentuk senyawa komplek yang berwarna merah.

Warna merah tersebut diukur intensitasnya dengan menggunakan spektro pada panjang gelombang

515 nm.

Metode

Page 24: Laporan Pencemaran Air

Metode yang dapat digunakan dalam percobaan penentuan kadar besi dalam suatu sampel air

adalah metode Colorimetric – visual.

Prinsip

Fe didalam air terdiri dari Fe2+ dan Fe3+. Fe2+ dioksidasi oleh air brom (Br2) dalam suasana asam

dan apanas membentuk Fe3+. Dengan penambahan KCNS, Fe3+ akan membentuk senyawa Fe(CNS)3,

yang berwarna merah yang terjadi dibandingkan dengan standar.

Cara kerja

  Masukkan 50 ml sampel ke dalam Erlenmeyer

  Tambahkan 2.5 ml H2SO4 4N dan 3-5 tetes air brom

  Didihkan sampai bau brom hilang, kemudian dinginkan

  Setelah dingin, masukkan ke dalam tabung nessler

  Tambahkan 2.5 ml larutan KCNS 20%, kemudian kocok

  Warna merah yang terjadi dibandingkan dengan larutan standar

Hasil pengamatan

      abs blanko = 0.07

      abs sample = 0.19

      Y = abs sample - abs blanko

= 0.19 – 0.07

= 0.12

  Perhitungan

y = 0,3281 x – 0,0049

0,12 = 0,3281 x – 0,0049

Jadi, kandungan besi dalam sampel air sebesar 0,3807 m g/L Fe , setelah dilakukan pengamatan.

2.2.12Ammonium

Ammonia adalah bahan kimia dengan formula kimia NH3. Yang mempunyai bentuk segi

tiga. Titik leburnya ialah -75 °C dan titikdidihnya ialah -33.7 °C. Pada suhu dan tekanan yang tinggi,

Page 25: Laporan Pencemaran Air

ammonia adalah gas yang tidak mempunyai warna dan lebih ringan daripada udara. 10% larutan

ammonia dalam airmempunyai pH 12.

Ammonia cair terkenal dengan sifat mudah larut. Ia dapat melarutkan logam alkali dengan

mudah untuk membentuk larutan yang berwarna dan dapat mengalirkan elektrik dengan baik.

Ammonia dapat larut dalam air. Larutan ammonia dengan air mengandung sedikit ammonium

hidroksida (NH4OH). Ammonia tidak menyebabkan kebakaran, dan tidak akan terbakar kecuali

dicampur dengan oksigen. Nyala ammonia apabila terbakar adalah hijau kekuningan. Dan meletup

apabila dicampur dengan udara.

Ammonia dapat digunakan untuk pembersih, pemutih dan mengurangi bau busuk. Larutan

pembersih yang dijual kepada konsumen menggunakan larutan ammonia hidroksida cair sebagai

pembersih utama. Tetapi, dalam penggunaanya haruslah berhati-hati karena penggunaan untuk

jangka waktu yang lama dapat mengganggu pernafasan.

Amonia umumnya bersifat basa (pKb=4.75), namun dapat juga bertindak sebagai asam yang

amat lemah (pKa=9.25)

Metode

Metode yang dapat digunakan dalam pengukuran kadar Ammonium adalah Spektofotometri.

Prinsip

NH4+ dalam suasana basa dengan pereaksi nessler membentuk senyawa komples yang

berwarna kuning sampai coklat. Intensitas warna yang diukur absorbansnya pada panjang gelombang

tertentu.

Cara kerja

   Pipet 25 ml sampel air

   Tambahkan 1-2 tetes pereaksi garam seignette dan 1.0ml pereaksi nessler, kocok dan biarkan selama 10

menit

   Warna kuning yang terjadi diukur absorbansinya dengan spektrofotometer pada panjang gelombang

maksimum

   Hitung konsentrasi sampel dari absorban yang didapat dengan menggunakan kurva kalibrasi

Page 26: Laporan Pencemaran Air

Hasil pengamatan dan Perhitungan

% T sampel = 38

% T blanko = 108

      Abs sampel

Y = 2 – log % T

= 2 – log 38

= 0,4202

      Abs blanko

Y = 2 – log % T

= 2 – log 108

= -0,0334

      Y = abs sampel – abs blanko

= 0.4202 – (-0.0334)

= 0.4536

  Perhitungan

y = 0.1013 x – 0.0012

0.4536 = 0.1013 x – 0.0012

Jadi kadar Ammonium yang terkandung dalam sampel air Sungai Cikalimati sebesar 4,49 mg/L NH4+ .

2.2.13 Nitrit

Di perairan, Nitrit (NO2) biasanya ditemukan dalam jumlah yang sangat sedikit lebih sedikit

daripada Nitrat, karena tidak stabil dengan keberadaan Oksigen. Nitrit biasanya tidak bertahan lama

dan merupakan keadaan sementara proses oksidasi antara ammonia dan Nitrat yang dapat terjadi

dalam air sungai, sistem drainase, instalasi air buangan dan sebagainya. Proses nitrifikasi ditunjukkan

dalam persamaan reaksi berikut :

N organik + O2 → NH3-N + O2 → NO2-N + O2 → NO3-N

Sumber Nitrit dapat berupa limbah industri dan limbah domestik. Garam-garam Nitrit digunakan

sebagai penghambat terjadinya proses korosi pada industri. Pada manusia, keberadaan nitrit dalam

jumlah tertentu dapat membahayakan kesehatan karena dapat bereaksi dengan haemoglobin dalam

Page 27: Laporan Pencemaran Air

darah, hingga darah tidak dapat mengangkut oksigen lagi. Ikatan Nitrit dengan hemoglobin, disebut

Methemoglobin, mengakibatkan hemoglobin tidak mampu mengikat oksigen. Jika jumlah

Methemoglobin mencapai > 15% dari total hemoglobin, maka akan terjadi keadaan yang disebut

Sianosis, yaitu suatu keadaan dimana seluruh jaringan tubuh manusia kekurangan oksigen. Dengan

dosis yang lebih kecil akan dapat membahayakan bayi yang berusia 28 hari karena belum lengkapnya

pembentukan dan regenerasi hemoglobin di dalam tubuh mereka. Kebanyakan kasus membuktikan

bahwa bayi yang berusia 28 hari langsung mengalami methemoglobinemia setelah minum air formula

yang tinggi kadar nitrit. Jika hal ini terjadi pada bayi dikenal dengan nama ”Blue Baby”.

Nitrit juga dapat mengakibatkan penurunan tekanan darah karena efek vasodilatasinya. Gejala

klinis yang timbul dapat berupa mual, muntah, sakit perut, sakit kepala, penurunan tekanan darah dan

denyut nadi lebih cepat (takikardi), selain itu sianosis dapat muncul dalam jangka waktu beberapa

menit sampai 45 menit. Pada kasus yang ringan, gejala hanya tampak di sekitar bibir dan membran

mukosa. Adanya sianosis sangat tergantung dari jumlah total hemoglobin dalam darah, saturasi

oksigen, pigmentasi kulit dan pencahayaan saat pemeriksaan. Bila mengalami keracunan yang berat,

korban dapat tidak sadar seperti, berkurangnya kesadaran (stupor) koma atau kejang sebagai akibat

turunnya konsentrasi oksigen dalam darah arteri (hipoksia).

Mula-mula timbul gangguan pelebaran saluran cerna (gastrointestinal) dan sianosis tanpa sebab

akan sering dijumpai. Pada kasus yang berat, koma dan kematian dapat terjadi dalam satu jam

pertama akibat timbulnya hipoksia dan kegagalan sirkulasi. Akibatnya, terjadi penurunan aliran darah

ke sel atau organ sehingga berkurangnya fungsi pemeliharaan organ (iskemia) terutama organ-organ

vital.

Metode

Metode yang biasa digunakan dalam mementukan kadar Nitrit dalam air adalah Reaksi

Diazotasi-Spetrofotometri.

Prinsip

Prinsip dari percobaan ini yaitu: Nitrit dengan asam sulfanilat dan N-(1-Napthyl Ethylene

Diamin)-Dihidroklorida dalam suasana asam (pH 2,0 - 2,5) membentuk senyawa kompleks yang

berwarna ungu. Warna ungu yang terbentuk diukur absorbansinya pada panjang gelombang tertentu

dengan spektrofotometer.

Percobaan :

Page 28: Laporan Pencemaran Air

Sampel Air Sungai Cikalimati diambil sampelnya untuk diperiksa kadar Nitrit yang terkandung di

dalamnya menggunakan metode Spektrofotometri .

    25 mL sampel air ditambah 1 mL pereaksi pewarna,

    Kemudian dikocok, dan didiamkan selama 10 menit.

    Karena didapat warna ungu yang cukup pekat dan dikhawatirkan sampel itu tidak akan terbaca oleh

spektrofotometer, maka percobaan diulangi dengan pengenceran sampel 50 kali.

    Lalu dari hasil pengenceran sampel itu, diambil 25 mL dan ditambahkan 1 mL pereaksi pewarna.

    Kemudian dikocok dan didiamkan 10 menit.

    Setelah 10 menit, sampel itu diukur % Transmitannya pada panjang gelombang 520 nm.

    Hasil pengukuran menunjukkan angka %T sebesar 37.

    Dilakukan pula pengukuran untuk blanko dengan cara yang sama, didapat nilai %T sebesar 94,4.

Perhitungan :

Sampel :

%T = 37 % → Abs = y = 2 – Log 37% = 0,432

Blanko :

%T = 94,4 → Abs = y = 2 – Log 94,4% = 0,025

Jadi, didapat nilai Absorbansi:

Abs = y = Abs Sampel – Abs Blanko = 0,432 – 0,025 = 0,407

Rumus untuk Konsentrasi Nitrit :

y = 0,8238 x – 0,0007

0,407 = 0,8238 x – 0,0007

Karena sampel diencerkan sebanyak 50 kali, maka :

0,496 x 50 = 24,75

Jadi, kadar Nitrit yang ada dalam sampel air Sungai Cikalimati tersebut sebesar 24,75 mg/L NO2.

2.2.14Nitrat

Nitrat dibentuk dari Asam Nitrit yang berasal dari ammonia melalui proses oksidasi katalitik. Nitrat adalah

bentuk senyawa yang stabil dan keberadaannya berasaldari buangan pertanian, pupuk, kotoran hewan dan

manusia dan sebagainya.

Dosis letal dari Nitrat pada orang dewasa adalah sekitar 4 sampai 30 g (atau sekitar 40 sampai 300 mg

NO3-kg). Dosis antara 2 sampai 9 gram NO3- dapat mengakibatkan methemoglobinemia. Nilai ini setara dengan

Page 29: Laporan Pencemaran Air

33 to 150 mg NO3-/kg. Nitrat yang masuk ke dalam saluran pencernaan melalui makanan atau air minum, tetapi

yang terbanyak adalah melalui air minum. Belum ada laporan yang jelas mengenai efek racun dari Nitrat.

Selama ini yang diketahui efek racunnya adalah konversi dari nitrit.

Nitrat pada konsentrasi tinggi dapat menstimulasi pertumbuhan ganggang yang tak terbatas, sehingga air

kekurangan oksigen terlarut yang bias menyebabkan kematian ikan. Nitrat yang berlebih dari sisa pemupukan

akan mengalir bersama air menuju sungai atau meresap ke dalam air tanah. Nitrat yang berlebih akan

terakumulasi di dalam tanah.

Metode

Metode yang umum digunakan dalam penentuan kadar Nitrat adalah metode Brucin-

Spektrofotometri.

Prinsip

Prinsip dari metode tersebut yaitu : Nitrat dalam suasana asam dengan Brusin Sulfat dan Asam

Sulfanilat membentuk senyawa kompleks yang berwarna kuning. Warna kuning yang terjadi diukur

intensitasnya dengan spektrofotometer pada panjang gelombang tertentu.

Tidak dilakukan pengujian Nitrat pada sampel air Sungai Cikalimati. Namun prosedur kerja yang

dapat dilakukan dalam pengujian Nitrat adalah sebagai berikut :

    Pipet 10 mL contoh air yang telah jernih (contoh air yang keruh harus disaring terlebih dahulu).

    Tambahkan 2 mL larutan NaCl, 10 mL larutan H2SO4 4:1, dan 0,5 mL larutan Brusin Sulfanilat. Setiap

penambahan pereaksi harus dikocok.

    Panaskan di atas penangas air (95°C) selama 20 menit di ruang asam.

    Setelah dingin, tambahkan aquadest hingga volumenya 25 mL dan ukur intensitasnya dengan

spectrophotometer pada panjang gelombang maksimum.

2.2.15Orthophosphat

Dalam kimia, Orthophosphat atau sering disebut gugus phosphate adalah sebuah ion poliatomik

atau radikal terdiri dari 1 atom phosphorus dan 4 oksigen. Setiap senyawa phosphate terdapat dalam

Page 30: Laporan Pencemaran Air

bentuk terlarut, tersuspensi atau terikat di dalam sel organism dalam air. Di daerah pertanian,

Orthophosphat berasal dari bahan pupuk yang masuk ke dalam sungai melalui drainase dan aliran air

hujan.

Keberadaan Phosphat dalam air sangat berpengaruh terhadap keseimbangan ekosistem

perairan. Bila kadar Phosphat dalam air rendah, seperti alir alam (<0,01 mg P/L), pertumbuhan

ganggang akan terhalang. Keadaan ini disebut oligotrop. Sebaliknya bila kadar Phosphat dalam air

tinggi, pertumbuhan tanaman dan ganggang tidak terbatas lagi (keadaan eutrop), sehingga dapat

mengurangi jumlah oksigen terlarut air. Hal ini tentu sangat berbayaha bagi kelestarian ekosistem

perairan.

Metode

Metode yang biasa digunakan dalam menguji kadar Orthophosphat dalam air adalah Stannous

Chlorida-Spektrofotometri.

Prinsip

Prinsip dari metode ini adalah sebagai berikut : Orthophosphat dengan Ammonium Molibdat

membentuk senyawa kompleks yang berwarna kuning. Dengan penambahan reduktor SnCl2 akan

tereduksi membentuk senyawa kompleks yang berwarna biru. Intensitas warna biru yang terjadi diukur

dengan alat spektrofotometer pada panjang gelombang tertentu.

Percobaan :

Sampel Air Sungai Cikalimati diambil sampelnya untuk diperiksa kadar Orthophosphat yang

terkandung di dalamnya menggunakan metode Spektrofotometri .

    Air sampel dipipet sebanyak 25 mL.

    Ditambahkan 1 mL larutan Ammonium Molibdate, dan 0,15 mL SnCl2 (3 tetes).

    Lalu dikocok dan dibiarkan selama 10 menit.

    Karena didapat warna biru yang cukup pekat dan dikhawatirkan sampel itu tidak akan terbaca oleh

spektrofotometer, maka percobaan diulangi dengan pengenceran sampel 10 kali.

    Lalu dari hasil pengenceran sampel itu, diambil 25 mL dan ditambahkan 1 mL larutan Ammonium

Molibdate dan 3 tetes SnCl2.

    Dikocok, lalu didiamkan 10 menit.

Page 31: Laporan Pencemaran Air

    Setelah 10 menit, sampel itu diukur absorbansinya menggunakan spektrofotometer dengan panjang

gelombang 660 nm.

    Hasil pengukuran menunjukkan angka Abs sebesar 0,35.

    Dilakukan pula pengukuran untuk blanko dengan cara yang sama, didapat nilai %T sebesar 0,26.

Perhitungan :

Sampel :

Abs = 0,35

Blanko :

Abs = 0,26

Jadi, didapat nilai Absorbansi:

Abs = y = Abs Sampel – Abs Blanko = 0,35 – 0,26 = 0,09

Rumus untuk Konsentrasi Orthophosphat :

y = 0,0818 x + 0,0006

0,09 = 0,0818 x + 0,0006

Karena sampel diencerkan sebanyak 10 kali, maka :

1,093 x 10 = 10,93

Jadi, kadar Orthophosphat yang ada dalam sampel air Sungai Cikalimati tersebut sebesar 10,93 mg/L

PO43- .

2.2.16Percobaan Koagulasi

Koagulasi adalah proses penggumpalan partikel koloid karena penambahan bahan kimia

sehingga partikel-partikel tersebut bersifat netral dan membentuk endapan karena adanya gaya

gravitasi. Secara garis besar, mekanisme koagulasi adalah destabilisasi muatan negatif partikel oleh

muatan positif dari koagulan, tumbukan antar partikel, dan adsorpsi.

Faktor-faktor yang mempengaruhi koagulasi diantaranya pemilihan bahan kimia, penentuan

dosis optimum koagulan, dan penentuan pH optimum. Apabila muatan koloid dihilangkan, maka

kestabilan koloid akan berkurang dan dapat menyebabkan koagulasi atau penggumpalan.

Penghilangan muatan koloid dapat terjadi pada sel elektroforesis atau jika elektrolit ditambahkan ke

dalam sistem koloid. Apabila arus listrik dialirkan cukup lama ke dalam sel elektrolisis maka partikel

koloid akan digumpalkan ketika mencapai electrode. Jadi, koloid yang bermuatan negatif akan

digumpalkan di anode, sedangkan koloid yang bermuatan positif digumpalkan di katode.

Page 32: Laporan Pencemaran Air

Koagulan yang paling banyak digunakan dalam praktek di lapangan adalah Alumunium Sulfat

[Al2(SO4)3], karena mudah diperoleh dan harganya relatif lebih murah dibandingkan dengan jenis

koagulan yang lain.

Metode

Metode yang umum digunakan dalam percobaan koagulasi adalah Jar-Test.

Prinsip

Kekeruhan dalam air disebabkan oleh zat-zat tersuspensi dalam bentuk lumpur kasar, lumpur

halus dan koloid. Pada permukaan koloid bermuatan listrik sehingga koloid dalam keadaan stabil,

akibatnya koloid sulit untuk mengendap. Senyawa koagulan (seperti Tawas Alumunium)

berkemampuan mendestabilisasikan koloid (menetralkan muatan listrik pada permukaan koloid)

sehingga koloid dapat bergabung satu sama lainnya membentuk flok dengan ukuran yang lebih besar

sehingga mudah mengendap. Tujuan dari percobaan Jartest adalah untuk menentukan dosis koagulan

yang optimum dalam pengolahan air.

Reaksi

Reaksi yang terjadi dalam Percobaan Koagulasi yaitu :

Al2 (SO4)3 + 6H2O → 2Al (OH)3 + 3H2SO4

Tidak dilakukan Percobaan Koagulasi terhadap sampel air Sungai Cikalimati. Namun prosedur

kerja yang dapat dilakukan dalam Percobaan Koagulasi adalah sebagai berikut :

    Siapkan 6 buah gelas kimia ukuran 500 mL.

    Isi masing-masing gelas dengan 500 mL contoh air.

    Tambahkan larutan tawas Alumunium (1 mL = 10 mg) secara bertingkat mulai dari 1,0 mL; 1,5 mL; 2,0

mL; … dst. Kemudian simpan dalam alat Jartest.

    Kocok dengan kecepatan 100 RPM selama 1 menit dan 60 RPM selama 10 menit.

    Setelah selesai, biarkan flok mengendap. Amati bentuk flok, kecepatan mengendap flok, volume flok yang

terbentuk, dan waktu yang dibutuhkan untuk mengendapkan flok.

    Periksa kekeruhan dan pH terhadap supernatannya. Jika hasil percobaan tidak memuaskan, dapat

diulangi dengan penambahan dosis koagulan yang lebih tinggi atau lebih rendah.

Page 33: Laporan Pencemaran Air

2.2.17Pengukuran Sisa Klor

Metode

Metode yang bisa digunakan dalam Pengukuran Sisa Klor yaitu secara colorimetric

menggunakan alat komparator.

Prinsip

Klor dalam air dengan Orthotolidin akan membentuk senyawa kompleks yang berwarna kuning.

Warna kuning yang terjadi dibandingkan dengan warna standar.

Tidak dilakukan Pengukuran Sisa Klor terhadap sampel air Sungai Cikalimati. Namun prosedur

kerja yang dapat dilakukan dalam Pengukuran Sisa Klor adalah sebagai berikut :

    Masukkan 10 mL contoh air ke dalam tabung Komparator dan 10 mL aquadest ke dalam tabung yang

lainnya (untuk blanko).

    Tambahkan ke dalam masing-masing tabung 20 tetes (1 mL) larutan O-tolidin, kocok.

    Masukkan ke dalam alat komparator.

    Untuk blanko, masukkan ke dalam tempat yang di belakangnya terdapat warna kuning dari standar, dan

untuk sampel simpan pada tempat yang belakangnya tidak berwarna.

    Bandingkan, dan ukur konsentrasi sisa klor berdasarkan perbandingan tersebut.

Pengukuran sisa klor harus secepat mungkin dianalisa dan pada umumnya dilakukan di tempat

pengambilan contoh (lapangan), karena gas klor tersebut mudah menguap. Selain dengan Orthotolidin

juga dapat digunakan dengan metode yang lainnya, seperti titrasi iodometri, atau dengan indicator

DPD (N,N Diethyl-p-phenylenediamine).

2.2.18Daya Pengikat Klor

Metode

Metode yang dapat digunakan dalam percobaan Daya Pengikat Klor sama dengan pada

percobaan Pengukuran Sisa Klor, yaitu metode Colorimetri dengan Orthotolidin menggunakan alat

Komparator.

Prinsip

Page 34: Laporan Pencemaran Air

Dalam pengolahan air diperlukan pembubuhan senyawa desinfektan seperti kaporit. Untuk

menentukan dosis desinfektan yang harus dibubuhkan, perlu dilakukan percobaan Daya Pengikat Klor.

DPC adalah banyak senyawa klor (Cl2) yang dibutuhkan oleh air untuk proses desinfeksi (membunuh

bakteri). Daya Pengikat Klor ditentukan dengan cara selisih antara klor yang dibubuhkan dengan sisa

klor setelah kontak selama 30 menit.

Tidak dilakukan percobaan Daya Pengikat Klor terhadap sampel air Sungai Cikalimati. Namun

prosedur kerja yang dapat dilakukan dalam percobaan Daya Pengikat Klor adalah sebagai berikut :

    Siapkan 3 buah labu Erlenmeyer.

    Isi masing-masing labu dengan 50 mL contoh air yang telah memenuhi persyaratan secara fisik dan kimia.

    Tambahkan 0,10 mL; 0,15 mL; dan 0,20 mL larutan kaporit (1 mL = 1 mg) ke dalam labu tersebut.

    Kocok dan simpan di dalam ruang gelap selama 30 menit.

    Tentukan sisa klornya dari setiap labu Erlenmeyer dengan cara seperti pemeriksaan pada sisa klor.

    Catat sisa klornya dari masing-masing labu Erlenmeyer.

Berikut adalah rumus yang dapat digunakan dalam perhitungan Daya Pengikat Klor :

2.2.19Oksigen Terlarut (Dissolved Oxygen-DO)

DO sering juga disebut dengan kebutuhan oksigen (Oxygen demand), merupakan salah satu

parameter penting dalam analisis kualitas air. Nilai DO yang biasa diukur dalam bentuk konsentrasi

menunjukkan jumlah oksigen (O2) yang tersedia dalam suatu badan air. Semakin besar nilai DO pada

air, mengindikasikan air tersebut memiliki kualitas yang bagus. Sebaliknya jika nilai DO rendah, dapat

diketahui bahwa air tersebut telah tercemar. Pengukuran DO juga bertujuan melihat sejauh mana

badan air mampu menampung biota air seperti ikan dan mikroorganisme. Selain itu kemampuan air

untuk membersihkan pencemaran juga ditentukan oleh banyaknya oksigen dalam air. Oleh sebab

pengukuran parameter ini sangat dianjurkan di samping parameter lain.

Di dalam air, oksigen memainkan peranan dalam menguraikan komponen-komponen kimia

menjadi komponen yang lebih sederhana. Oksigen memiliki kemampuan untuk beroksidasi dengan zat

pencemar seperti komponen organik sehingga zat pencemar tersebut tidak membahayakan. Oksigen

juga diperlukan oleh mikroorganisme, baik yang bersifat aerob serta anaerob, dalam proses

metabolisme. Dengan adanya oksigen dalam air, mikroorganisme semakin giat menguraikan

kandungan zat pencemar dalam air. Reaksi yang terjadi dalam penguraian tersebut adalah :

Page 35: Laporan Pencemaran Air

Jika reaksi penguraian komponen kimia dalam air terus berlaku, maka kadar oksigen pun akan

menurun. Pada klimaksnya, oksigen yang tersedia tidak cukup menguraikan komponen kimia tersebut.

Keadaan yang demikian merupakan pencemaran berat pada air.

Metode

Untuk mengukur kadar DO dalam air, ada 2 metode yang sering dilakukan yaitu metode titrasi

dan metode elektrokimia (dengan DO-meter).

Prinsip

Prinsip percobaan dengan metode titrasi adalah sebagai berikut : Oksigen akan mengoksidasi

Mn2+ dalam suasana basa membentuk endapan MnO2. Dengan penambahan alkali iodide dalam

suasana asam akan membebaskan iodium. Banyaknya iodium yang dibebaskan ekuivalen dengan

banyaknya oksigen terlarut. Iodium yang dibebaskan, dianalisa dengan metode titrasi iodimetri dengan

larutan standar Thiosulfat dari indikator larutan kanji.

Reaksi

Reaksi yang terjadi dalam percobaan ini diantaranya :

Mn 2+ + 2OH - + ½ O2 → MnO2 + H2O

MnO2 + 2I - + 4H+ → Mn 2+ + I2 + H2O

I2 + 2S2O3 2- → S4O6

2- + 2I –

Percobaan

Sampel Air Sungai Cikalimati diambil sampelnya untuk diperiksa kadar DO yang terkandung di

dalamnya menggunakan metode titrasi Iodimetri.

    Isi botol BOD dengan contoh air sampai penuh, kemudian tutup. Usahakan jangan sampai ada gelembung

udara sedikitpun.

    Masukkan 1 mL MnSO4 dan 1 mL larutan alkali Iodida (perekasi Oksigen). Pemasukan reagen

menggunakan pipet 1 mL, ujung pipet harus mencapai larutan dasar botol. Tutup kembali. Tujuan

ditambahkannya MnSO4 adalah untuk mengikat oksigen, sehingga terbentuk MnO2 (endapan coklat).

    Kemudian aduk dengan cara membolak-balikkan botol sampai larutan homogen.

Page 36: Laporan Pencemaran Air

    Diamkan selama 10 menit sampai kelihatan ada endapan coklat pada dasar botol. (Jika endapan putih

berarti tidak ada O2)

    Tuangkan sebagian isi botol ke dalam labu Erlenmeyer, tambahkan 1 mL Asam Sulfat pekat dan 20 mL

larutan kanji hingga timbul warna ungu. Titrasi secepatnya dengan larutan Thiosulfat 1/80 N sampai

warna ungu hilang. Diperoleh volume titran sebanyak 2,4 mL.

    Untuk larutan yang masih tersisa di dalam botol BOD, tambahkan 1 mL Asam Sulfat pekat, tutup, dan

kocok. Larutan akan berwarna kuning coklat. Titrasi cepat dengan larutan Thiosulfat 1/80 N hingga

warnanya menjadi kuning muda. Tambahkan indikator amilum/kanji hingga larutan menjadi biru.

Lanjutkan titrasi sampai warna biru tersebut hilang. Diperoleh voume titran sebanyak 11,9 mL.

    Jadi volume larutan Thiosulfat yang terpakai adalah 2,4 + 11,9 = 14,3 mL

Perhitungan

Jadi kadar oksigen terlarut yang terdapat dalam sampel air Sungai Cikalimati sebesar 47,99 mg/L.

2.2.22Biochemical Oxygen Demand (BOD)

BOD adalah banyaknya oksigen yang dibutuhkan oleh bakteri selama penguraian senyawa

organik pada kondisi aerobik. Dalam hal ini dapat diinterpretasikan bahwa senyawa organik

merupakan makanan bagi bakteri. Parameter BOD digunakan untuk menentukan tingkat pencemar

oleh senyawa organik yang dapat diuraikan oleh bakteri. Percobaan BOD adalah peruji hayati

(bioassay).

Metode

Metode yang dapat digunakan dalam pengukuran BOD antara lain dengan Metode Titrasi

Permanganat, Winkler, dan Titrasi Iodometri.

Prinsip

Prinsip dalam pengukuran BOD yaitu :

Pengukuran BOD terdiri dari pengenceran sampel, inkubasi selama 5 hari pada suhu 20°C dan

pengukuran oksigen terlarut sebelum dan sesudah inkubasi. Penurunan oksigen terlarut selama

inkubasi menunjukkan banyaknya oksigen yang dibutuhkan oleh sampel air. Oksigen terlarut dianalisa

dengan menggunakan metode Winkler.

Page 37: Laporan Pencemaran Air

Percobaan

a. Menentukan Angka Pengenceran

Dilakukan pengenceran terhadap sampel air Sungai Cikalimati dengan beberapa angka

pengenceran, diantaranya pengenceran 7x, 4x, dan 3x.

Setelah mengetahui angka pengenceran dari sampel air tersebut, maka dilakukan pengenceran

sampel air dengan air pengencer yang telah dibuat. Banyaknya air pengencer tersebut disesuaikan

dengan hasil prehitungan di atas. Setelah diencerkan, masukkan masing-masing angka pengenceran

ke dalam 2 buah botol BOD yang telah dikalibrasi volumenya. Simpan salah satu botol BOD dari

masing-masing angka pengenceran tersebut dalam incubator 20°C selama 5 hari (untuk kemudian

diperiksa oksigen terlarutnya setelah 5 hari), sedangkan botol BOD yang lainnya langsung diperiksa

kandungan oksigen terlarutnya dengan metode titrasi Winkler.

Untuk percobaan BOD ini diperlukan 8 buah botol BOD, yakni 2 botol untuk Blanko ; 2 botol untuk

sampel dengan Pengenceran 7x ; 2 botol untuk sampel dengan Pengenceran 4x ; dan 2 botol lagi

untuk sampel dengan Pengenceran 3x, dan masing-masing akan diukur DO0 dan DO5.

b. Kalibrasi Botol BOD

Masing-masing botol BOD yang digunakan harus dikalibrasi terlebih dahulu, yaitu dengan cara

mengisi botol dengan air hingga penuh, kemudian pindahkan semua air pengisi tersebut ke dalam

gelas ukur. Maka diperoleh nilai volume untuk masing-masing botol BOD, antara lain :

Botol Blanko :

DO0 = 340 mL DO5

= 320 mL

Botol Sampel P7x :

DO0 = 310 mL DO5

= 310 mL

Botol Sampel P4x :

DO0 = 310 mL DO5

= 310 mL

Botol Sampel P3x :

DO0 = 310 mL DO5

= 350 mL

c. Pemeriksaan Oksigen Terlarut

Page 38: Laporan Pencemaran Air

Prosedur untuk pemeriksaan oksigen terlarut dengan metode titrasi Winkler telah dibahas pada

materi Pengukuran Dissolved Oxygen (DO). Didapat hasil pengamatan volume titran (Thiosulfat)

sebagai berikut :

DO0 DO5

Blanko 24,9 mL 7,8 mL

Pengenceran 7x 24,6 mL 6,4 mL

Pengenceran 4x 25,6 mL 7,5 mL

Pengenceran 3x 24,2 mL 7,0 mL

Perhitungan

Pengukuran DO0 untuk Blanko :

Pengukuran DO5 untuk Blanko :

Pengukuran DO0 untuk sampel dengan Pengenceran 7x :

Pengukuran DO5 untuk sampel dengan Pengenceran 7x :

BOD, 5 hari, 20°C untuk sampel dengan Pengenceran 7x adalah:

Dimana, D1

= DO 0 hari sampel (mg/L)

D2

= DO 5 hari sampel (mg/L)

B1

= DO 0 hari blanko (mg/L)

B2

= DO 5 hari blanko (mg/L)

P =

Angka Pengenceran

f =

Koreksi untuk seeding

maka,

Jadi, BOD5 untuk sampel yang diencerkan sebanyak 7x adalah sebesar 10,03 mg BOD5/L.

Page 39: Laporan Pencemaran Air

Pengukuran DO0 untuk sampel dengan Pengenceran 4x :

Pengukuran DO5 untuk sampel dengan Pengenceran 4x :

BOD, 5 hari, 20°C untuk sampel dengan Pengenceran 4x adalah:

f

maka,

Jadi, BOD5 untuk sampel yang diencerkan sebanyak 4x adalah sebesar 7,74 mg BOD5/L.

Pengukuran DO0 untuk sampel dengan Pengenceran 3x :

Pengukuran DO5 untuk sampel dengan Pengenceran 3x :

BOD, 5 hari, 20°C untuk sampel dengan Pengenceran 3x adalah:

f

maka,

Jadi, BOD5 untuk sampel yang diencerkan sebanyak 3x adalah sebesar 7,07 mg BOD5/L.

2.2.21Chemical Oxygen Demand (COD)

COD adalah banyaknya oksigen yang dibutuhkan untuk mengoksidasi senyawa organik dalam

air, sehingga parameter COD mencerminkan banyaknya senyawa organik dalam air yang dapat

dioksidasi secara kimia. Oksidator yang umum digunakan adalah Kalium dikromat.

Metode

Metode yang umum digunakan dalam penentuan COD adalah Metode Titrimetri dengan Closed

Reflux.

Prinsip

Senyawa organik dalam air dioksidasi oleh larutan Kalium dikromat dalam suasana Asam Sulfat pada

temperature sekitar 150°C. Kelebihan Kalium dikromat dititrasi oleh larutan Ferro Ammonium Sulfat

(FAS) dengan indicator Ferroin.

Page 40: Laporan Pencemaran Air

Reaksi

Reaksi yang terjadi pada percobaan ini diantaranya :

Kuning Hijau

Percobaan

Sampel Air Sungai Cikalimati diambil sampelnya untuk diperiksa kadar COD yang terkandung di

dalamnya menggunakan Metode Titrimetri dengan Closed Reflux.

    Masukkan ke dalam Culture Tube (tabung COD mikro) 2,5 mL sampel air.

    Tambahkan 1,5 mL Digestion Solution dan 3,5 mL pereaksi Asam Sulfat-Perak Sulfat melalui dinding

secara hati-hati.

    Panaskan tabung dalam COD Reaktor, dan biarkan selama 2 jam pada suhu 150°C.

    Setelah selesai, dinginkan dan pindahkan pada Erlenmeyer 50 mL, bilas dengan sedikit aquadest.

    Tambahkan 3 tetes indikator Ferroin.

    Titrasi dengan larutan FAS 0,025 M. Titrasi dihentikan setelah terjadi perubahan warna dari hijau menjadi

merah coklat.

    Dilakukan juga percobaan blanko dengan menggunakan aquadest sebagai sampel dengan cara kerja

yang sama seperti di atas.

Pembahasan

Penambahan larutan HgSO4 dilakukan untuk menghilangkan gangguan Cl - . Cr2O7 2- yang digunakan

untuk mengoksidasi zat organic, karena terdapat Cl – dalam air maka Cr2O7 2- juga habis untuk

mengoksidasi Cl - . Jadi untuk menghilangkan gangguan tersebut digunakanlah HgSO4.

Penambahan H2SO4 dilakukan untuk memberikan suasana asam, karena reaksi akan berlangsung

dalam suasana asam. Sedangkan, AgSO4 digunakan sebagai katalis untuk mempercepat reaksi.

Perhitungan

A = Vtitrasi Blanko = 2,68 mL

B = Vtitrasi Sampel = 2,5 mL

C = Molaritas FAS = 0,025 M

Maka,

Jadi kadar COD sebagai mg/L O2 yang ada dalam sampel air Sungai Cikalimati adalah 14,4 mg/L.

Page 41: Laporan Pencemaran Air

BAB III

EVALUASI HASIL ANALISA

Hasil pengamatan yang diperoleh dari pemeriksaan sampel air sungai Cikalimati kemudian

dibandingkan dengan standar baku mutu yang berlaku. Dalam hal ini peraturan yang digunakan adalah

PP No.82 tahun 2001 tentang Pengelolaan Kualitas dan Pengendalian Pencemaran Air.

Pembandingan ini dilakukan untuk mengetahui kualitas air sungai Cikalimati, sehingga dapat diketahui

peruntukannya. Adapun evaluasi dari hasil analisa dari parameter-pameter yang telah diperiksa adalah

sebagai berikut:

Tabel 3.1 Perbandingan Hasil Analisa Air Sungai Cikalimati terhadap

Baku Mutu PP No.82 tahun 2001

No

.Parameter Satuan Hasil Analisa

PP No. 82 Tahun

2001Keterangan

1 pH 7,04 6-9 Tidak Tercemar

2 Sulfat mg/L 6,392 400 Tidak Tercemar

3 Klorida mg/L 45,8 1 Tercemar

4 Besi mg/L 0,3807 0,3 Tercemar

5 Ammonium mg/L 4,49 0,5 Tercemar

6 Nitrit mg/L 24,75 0,06 Tercemar

7 Orthophosphat mg/L 10,93 0,2 Tercemar

8 DO mg/L 47,99 6 Tercemar

9

BOD5

Pengenceran 7x

Pengenceran 4x

Pengenceran 3x

mg/L10,03

7,74

7,07

2 Tercemar

10 COD mg/L 14,4 10 Tercemar

Page 42: Laporan Pencemaran Air

BAB IV

KESIMPULAN

Berdasarkan hasil evaluasi dari hasil percobaan yang dilakukan terhadap sampel air Sungai

Cikalimati, dan setelah dibandingkan dengan baku mutu yang tercantum dalam PP No. 82 Tahun

2001. Hasil menyatakan bahwa sebagian besar parameter yang dibandingkan tersebut melebihi batas

yang diperbolehkan. Sehingga dapat disimpulkan bahwa air Sungai Cikalimati Telah Tercemar dan

tidak layak untuk digunakan sebagai air baku air minum.