l8 optimize

Upload: ricksantos

Post on 09-Apr-2018

248 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/8/2019 l8 Optimize

    1/57

    16.810 (16.682)16.810 (16.682)Engineering Design and Rapid PrototypingEngineering Design and Rapid Prototyping

    Design Optimization- Structural Design OptimizationInstructor(s)

    Prof. Olivier de Weck Dr. Il Yong Kim

    January 23, 2004

  • 8/8/2019 l8 Optimize

    2/57

    Course Concept

    16.810 (16.682) 2

    today

  • 8/8/2019 l8 Optimize

    3/57

    Course Flow Diagram

    16.810 (16.682)

    CAD/CAM/CAE Intro

    Overview

    ManufacturingTraining

    Structural TestTraining

    Design Optimization

    Hand sketching

    CAD design

    FEM analysis

    Produce Part 1

    Test

    Produce Part 2

    Optimization

    Problem statement

    Final Review

    Test

    Learning/Review Deliverables

    Design Sketch v1

    Part v1

    Experiment data v1

    Design/Analysis

    output v2

    Part v2

    Experiment data v2

    Drawing v1

    Design Intro

    today

    Wednesday

    FEM/Solid MechanicsAnalysis output v1

    3

  • 8/8/2019 l8 Optimize

    4/57

    What Is Design Optimization?

    Selecting the best design within the available means

    1. What is our criterion for best design? Objective function

    2. What are the available means? Constraints

    (design requirements)

    3. How do we describe different designs? Design Variables

    16.810 (16.682) 4

  • 8/8/2019 l8 Optimize

    5/57

    Optimization Statement

    MinimizeSubject to

    f

    g

    h(x)

    ( ) 0x( ) 0x

    16.810 (16.682) 5

  • 8/8/2019 l8 Optimize

    6/57

    Constraints

    - Design requirementsInequality constraints

    Equality constraints

    16.810 (16.682) 6

  • 8/8/2019 l8 Optimize

    7/57

    Objective Function- A criterion for best design (or goodness of a design)

    Objective function

    16.810 (16.682) 7

  • 8/8/2019 l8 Optimize

    8/57

    Design VariablesParameters that are chosen to describe the design of a system

    Design variables are controlled by the designers

    The position of upper holes along the design freedom line

    16.810 (16.682) 8

  • 8/8/2019 l8 Optimize

    9/57

    Design VariablesFor computational design optimization,

    Objective function and constraints must be expressedas a function of design variables (or design vector X)

    Objective function: f(x) Constraints:g(x), h(x)Cost = f(design)Displacement = f(design)

    What is f for each case?Natural frequency = f(design)Mass = f(design)

    16.810 (16.682) 9

  • 8/8/2019 l8 Optimize

    10/57

    Optimization Statement( )

    ( ) 0

    ( ) 0

    f

    h

    x

    x

    x

    Minimize

    Subject to g

    f(x) : Objective function to be minimized

    g(x) : Inequality constraints

    h(x) : Equality constraints

    x : Design variables

    16.810 (16.682) 10

  • 8/8/2019 l8 Optimize

    11/57

    Optimization Procedure

    Improve Design Computer Simulation

    START

    Converge ?

    Y

    N

    END

    ( )

    Subj ( ) 0

    ( ) 0

    f

    g

    h

    x

    x

    x

    Change x

    Determine an initial design (x0)

    termination criterion?

    Minimize

    ect to

    Evaluate f(x), g(x), h(x)

    Does your design meet a

    16.810 (16.682) 11

  • 8/8/2019 l8 Optimize

    12/57

    Structural OptimizationSelecting the beststructuraldesign

    - Size Optimization - Shape Optimization- Topology Optimization

    16.810 (16.682) 12

  • 8/8/2019 l8 Optimize

    13/57

    Structural Optimization

    ( )

    j ( ) 0

    ( ) 0

    f

    g

    h

    x

    x

    x

    BCs are given Loads are given

    minimize

    sub ect to

    1. To make the structure strong Min. f (x)

    e.g. Minimize displacement at the tip

    g(x) 02. Total mass MC

    16.810 (16.682) 13

  • 8/8/2019 l8 Optimize

    14/57

    Size OptimizationBeams

    ( )j ( ) 0

    ( ) 0

    fg

    h

    xx

    x

    minimizesub ect to

    Design variables (x) f(x) : compliance

    x : thickness of each beam g(x) : mass

    Number of design variables (ndv)

    ndv = 5

    16.810 (16.682) 14

  • 8/8/2019 l8 Optimize

    15/57

    Size Optimization

    - Shapeare given

    Topology- Optimize cross sections

    16.810 (16.682) 15

  • 8/8/2019 l8 Optimize

    16/57

    Shape OptimizationB-spline

    ( )j ( ) 0

    ( ) 0

    fg

    h

    xx

    x

    Hermite, Bezier, B-spline, NURBS, etc.

    minimizesub ect to

    Design variables (x) f(x) : compliancex : control points of the B-spline

    g(x) : mass(position of each control point)

    Number of design variables (ndv)

    ndv = 8

    16.810 (16.682) 16

  • 8/8/2019 l8 Optimize

    17/57

    Shape OptimizationFillet problem Hook problem Arm problem

    16.810 (16.682) 17

  • 8/8/2019 l8 Optimize

    18/57

    Shape OptimizationMultiobjective & Multidisciplinary Shape OptimizationObjective function

    1. Drag coefficient, 2. Amplitude of backscattered wave

    Analysis

    1. Computational Fluid Dynamics Analysis

    2. Computational Electromagnetic WaveField Analysis

    Obtain Pareto Front

    Raino A.E. Makinen et al., Multidisciplinary shape optimization in aerodynamics and electromagnetics using genetic

    algorithms, International Journal for Numerical Methods in Fluids, Vol. 30, pp. 149-159, 1999

    16.810 (16.682) 18

  • 8/8/2019 l8 Optimize

    19/57

    Topology OptimizationCells

    ( )j ( ) 0

    ( ) 0

    fg

    h

    xx

    x

    minimizesub ect to

    Design variables (x) f(x) : compliance

    x : density of each cell g(x) : massNumber of design variables (ndv)

    ndv = 27

    16.810 (16.682) 19

  • 8/8/2019 l8 Optimize

    20/57

    Topology OptimizationShort Cantilever problem

    Initial

    Optimized

    16.810 (16.682) 20

  • 8/8/2019 l8 Optimize

    21/57

    Topology Optimization

    16.810 (16.682) 21

  • 8/8/2019 l8 Optimize

    22/57

    Topology OptimizationBridge problem

    Obj = 4.16105Distributed

    loading

    Obj = 3.29105Minimize

    i idzF ,

    )toSubject ( dx M ,o0 (x) 1 Obj = 2.88105

    Mass constraints: 35%

    Obj = 2.7310516.810 (16.682) 22

  • 8/8/2019 l8 Optimize

    23/57

    Topology OptimizationDongJak Bridge in Seoul, Korea

    H

    L

    H

    16.810 (16.682) 23

  • 8/8/2019 l8 Optimize

    24/57

    Structural OptimizationWhat determines the type of structural optimization?

    Type of the design variable(How to describe the design?)

    16.810 (16.682) 24

  • 8/8/2019 l8 Optimize

    25/57

    Optimum Solution Graphical Representation

    f(x)

    x: design variable

    f(x): displacement

    Optimum solution (x*)x

    16.810 (16.682) 25

  • 8/8/2019 l8 Optimize

    26/57

    Optimization Methods

    Gradient-based methods

    Heuristic methods

    16.810 (16.682) 26

  • 8/8/2019 l8 Optimize

    27/57

    Gradient-based Methodsf(x)

    Start

    Move

    Gradient=0 Stop!

    You do no c ore optimization

    Check gradient

    Check gradient

    t know this fun tion bef

    No active constraints Optimum solution (x*)x

    (Termination criterion: Gradient=0)

    16.810 (16.682) 27

  • 8/8/2019 l8 Optimize

    28/57

    Gradient-based Methods

    16.810 (16.682) 28

  • 8/8/2019 l8 Optimize

    29/57

    Global optimum vs. Local optimumf(x) Termination criterion: Gradient=0

    Global optimum

    Local optimum

    Local optimum

    xNo active constraints

    16.810 (16.682) 29

  • 8/8/2019 l8 Optimize

    30/57

    Heuristic Methods A Heuristic is simply a rule of thumb that hopefully will find a

    good answer.

    Why use a Heuristic?

    Heuristics are typically used to solve complex optimization

    problems that are difficult to solve to optimality.

    Heuristics are good at dealing with local optima without

    getting stuck in them while searching for the global optimum.

    Schulz, A.S., Metaheuristics, 15.057 Systems Optimization Course Notes, MIT, 1999.

    16.810 (16.682) 30

  • 8/8/2019 l8 Optimize

    31/57

    Genetic AlgorithmPrinciple by Charles Darwin - Natural Selection

    16.810 (16.682) 31

  • 8/8/2019 l8 Optimize

    32/57

    Heuristic Methods Heuristics Often Incorporate Randomization

    3 Most Common Heuristic Techniques

    Genetic Algorithms

    Simulated Annealing Tabu Search

    16.810 (16.682) 32

  • 8/8/2019 l8 Optimize

    33/57

    Optimization Software- iSIGHT

    - DOT

    - Matlab (fmincon)

    16.810 (16.682) 33

  • 8/8/2019 l8 Optimize

    34/57

    Topology Optimization Software ANSYS

    Static Topology Optimization

    Dynamic Topology Optimization

    Electromagnetic Topology Optimization

    Subproblem Approximation Method

    16.810 (16.682)

    Design domain

    First Order Method

    34

  • 8/8/2019 l8 Optimize

    35/57

    Topology Optimization Software MSC. Visual Nastran FEA

    Elements of lowest stress are removed gradually.

    Optimization results

    Optimization results illustration

    16.810 (16.682) 35

  • 8/8/2019 l8 Optimize

    36/57

    MDO

    Multidisciplinary Design Optimization

    16.810 (16.682) 36

  • 8/8/2019 l8 Optimize

    37/57

    Multidisciplinary Design OptimizationCentroid Jitter on Focal Plane [RSS LOS]NASA Nexus Spacecraft Concept

    60

    T=5 sec

    14.97 m

    1 pixel

    Requirement: J =5 mz,2

    OTA

    4020

    CentroidY[m]

    0-20

    SunshieldInstrument -40Module

    0 1 2 -60

    -60 -40 -20 0 20 40 60meters

    Centroid X [m]

    Goal: Find a balanced system design, where the flexible structure, the optics and the control systems worktogether to achieve a desired pointing performance, given various constraints

    16.810 (16.682) 37

  • 8/8/2019 l8 Optimize

    38/57

    Multidisciplinary Design OptimizationAircraft Comparison

    le

    Approx. 480 passengers each

    Approx. 8,700 nm range each

    TakeoffBWBA3XX-50R

    18%

    BWBA3XX-50R

    19%Total

    Sea-Level

    19%BWBA3XX-50R

    Operators

    Empty

    Fuel

    Burn

    per Seat

    32%BWBA3XX-50R

    Boeing Blended Wing Body Concept

    Goal

    Shown to Same Sca

    Maximum

    Weight

    Static Thrust

    Weight

    : Find a design for a family of blended wing aircraftthat will combine aerodynamics, structures, propulsionand controls such that a competitive system emerges - as

    measured by a set of operator metrics.

    16.810 (16.682) 38

  • 8/8/2019 l8 Optimize

    39/57

    Multidisciplinary Design OptimizationFerrari 360 Spider

    Goal: High end vehicle shape optimization whileimproving car safety for fixed performance level

    and given geometric constraints

    Reference: G. Lombardi, A. Vicere, H. Paap, G. Manacorda,Optimized Aerodynamic Design for High Performance Cars, AIAA-98-4789, MAO Conference, St. Louis, 1998

    16.810 (16.682) 39

  • 8/8/2019 l8 Optimize

    40/57

    Multidisciplinary Design Optimization

    16.810 (16.682) 40

  • 8/8/2019 l8 Optimize

    41/57

    Multidisciplinary Design Optimization

    16.810 (16.682) 41

  • 8/8/2019 l8 Optimize

    42/57

    Multidisciplinary Design OptimizationDo you want to learn more about MDO?

    Take this course!

    16.888/ESD.77Multidisciplinary System

    Design Optimization (MSDO)

    Prof. Olivier de Weck

    Prof. Karen Willcox

    16.810 (16.682) 42

  • 8/8/2019 l8 Optimize

    43/57

    Baseline DesignPerformance

    Natural frequency analysis

    Design requirements

    16.810 (16.682) 44

  • 8/8/2019 l8 Optimize

    44/57

    Baseline DesignPerformance and cost

    1 0.070 mm

    2 0.011 mmf 245Hz

    m 0.224 lbs

    C 5.16 $

    16.810 (16.682) 45

  • 8/8/2019 l8 Optimize

    45/57

    Baseline Design245 Hz 421 Hz

    f1=0f2=0f3=0f4=0f5=0f6=0f7=421 Hzf8=1284 Hzf9=1310 Hz

    f1=245 Hzf2=490 Hzf3=1656 Hz

    16.810 (16.682) 46

  • 8/8/2019 l8 Optimize

    46/57

    Design Requirement for Each Team#

    Productname

    mass(m)

    Cost(c)

    Disp(1) Disp(2)

    NatFreq

    (f)

    Quality

    F1(lbs)

    F2(lbs)

    F3(lbs)

    Const Optim Acc

    0Baseline

    0.224lbs

    5.16$

    0.070mm

    0.011mm

    245Hz

    3 50 50 100 c m f

    1Family

    economy20% -30% 10% 10% -20% 2 50 50 100 c m f

    2Familydeluxe

    10% -10% -10% -10% 10% 4 50 50 100 m c f

    3Crossover

    20% 0% -15% -15% 20% 4 50 75 75 m c f

    4 City bike -20% -20% 0% 0% 0% 3 50 75 75 c m f

    5 Racing -30% 50% 0% 0% 20% 5 100 100 50 m f c6 Mountain 30% 30% -20% -20% 30% 4 50 100 50 f m c7 BMX 0% 65% -15% -15% 40% 4 75 100 75 f m c

    8 Acrobatic -30% 100% -10% -10% 50% 5 100 100 100 f m c

    9Motorbike

    50% 10% -20% -20% 0% 3 50 75 100 f c m

    16.810 (16.682) 47

  • 8/8/2019 l8 Optimize

    47/57

    Design OptimizationTopology optimization

    Design domain

    Shape optimization

    16.810 (16.682) 48

  • 8/8/2019 l8 Optimize

    48/57

    Design Freedom1 bar

    2.50 mm

    2 bars 0.80 mm

    Volume is the same.

    17 bars

    0.63 mm

    16.810 (16.682) 49

  • 8/8/2019 l8 Optimize

    49/57

    Design Freedom1 bar

    2 bars

    2.50 mm

    0.80 mm

    17 bars

    More design freedom More complex(Better performance) (More difficult to optimize)

    0.63 mm

    16.810 (16.682) 50

  • 8/8/2019 l8 Optimize

    50/57

    Cost versus Performance17 bars

    0

    1

    2

    3

    45

    6

    7

    8

    9

    Cost

    [$]

    1 bar

    2 bars

    0 0.5 1 1.5 2 2.5 3Displacement [mm]

    16.810 (16.682) 51

  • 8/8/2019 l8 Optimize

    51/57

    Plan for the rest of the courseClass Survey

    Jan 24 (Saturday) 7 am Jan 26 (Monday) 11am

    Company tour

    Jan 26 (Monday) : 1 pm 4 pm

    Guest Lecture (Prof. Wilson, Bicycle Science)

    Jan 28 (Wednesday) : 2 pm 3:30 pm

    Manufacturing Bicycle Frames (Version 2)

    Jan 28 (Wednesday) : 9 am 4:30 pm

    Jan 29 (Thursday) : 9 am 12 pm

    Testing

    Jan 29 (Thursday) : 10 am 2 pm

    GA GamesJan 29 (Thursday) : 1 pm 5 pm

    Guest Lecture, Student Presentation (5~10 min/team)

    Jan 30 (Friday) : 1 pm 4 pm

    16.810 (16.682) 52

    R f

  • 8/8/2019 l8 Optimize

    52/57

    ReferencesP. Y. Papalambros, Principles of optimal design, Cambridge University Press, 2000

    O. de Weck and K. Willcox, Multidisciplinary System Design Optimization, MIT lecture note, 2003

    M. O. Bendsoe and N. Kikuchi, Generating optimal topologies in structural design using ahomogenization method, comp. Meth. Appl. Mech. Engng, Vol. 71, pp. 197-224, 1988

    Raino A.E. Makinen et al., Multidisciplinary shape optimization in aerodynamics andelectromagnetics using genetic algorithms, International Journal for Numerical Methods in Fluids,

    Vol. 30, pp. 149-159, 1999

    Il Yong Kim and Byung Man Kwak, Design space optimization using a numerical designcontinuation method, International Journal for Numerical Methods in Engineering, Vol. 53, Issue 8,pp. 1979-2002, March 20, 2002.

    16.810 (16.682) 53

  • 8/8/2019 l8 Optimize

    53/57

    Web-based topology optimization program

    Developed and maintained by Dmitri Tcherniak, Ole Sigmund,

    Thomas A. Poulsen and Thomas Buhl.

    Features:1.2-D

    2.Rectangular design domain

    3.1000 design variables (1000 square elements)

    4. Objective function: compliance (F)

    5. Constraint: volume

    16.810 (16.682) 54

  • 8/8/2019 l8 Optimize

    54/57

    Web-based topology optimization programObjective function

    -Compliance (F)

    Constraint

    -Volume

    Design variables

    - Density of each design cell

    16.810 (16.682) 55

  • 8/8/2019 l8 Optimize

    55/57

    Web-based topology optimization programNo numerical results are obtained.

    Optimum layout is obtained.

    16.810 (16.682) 56

    W b b d t l ti i ti

  • 8/8/2019 l8 Optimize

    56/57

    Web-based topology optimization programP 2P 3P

    Absolute magnitude of load does not affect optimum solution

    16.810 (16.682) 57

    W b b d t l ti i ti

  • 8/8/2019 l8 Optimize

    57/57

    Web-based topology optimization program

    http://www.topopt.dtu.dk

    16.810 (16.682) 58