kleineberg dlr spring-in iscm 2008 x

24
Institut für Faserverbundleichtbau und Adaptronik ISCM 2008: „Spring-In“ Simulation M. Kleineberg, T. Spröwitz Braunschweig, 07.05.2008

Upload: gary-f

Post on 11-Apr-2015

123 views

Category:

Documents


3 download

DESCRIPTION

DLR tech doc

TRANSCRIPT

Page 1: Kleineberg DLR Spring-In ISCM 2008 x

Institut für Faserverbundleichtbau und Adaptronik

ISCM 2008:„Spring-In“ Simulation

M. Kleineberg, T. Spröwitz

Braunschweig, 07.05.2008

Page 2: Kleineberg DLR Spring-In ISCM 2008 x

Folie 2 > Vortrag > AutorDokumentname > 23.11.2004Institut für Faserverbundleichtbau und Adaptronik

Content:

- Relevance of the “Spring-In” Effect

- Theory of the „Spring-In“ Effect

- Approach to Identify Material Parameters

- FEM Simulation of Complex Curved Profiles

- Conclusion

Page 3: Kleineberg DLR Spring-In ISCM 2008 x

Folie 3 > Vortrag > AutorDokumentname > 23.11.2004Institut für Faserverbundleichtbau und Adaptronik

Content:

- Relevance of the “Spring-In” Effect

- Theory of the „Spring-In“ Effect

- Approach to Identify Material Parameters

- FEM Simulation of Complex Curved Profiles

- Conclusion

Page 4: Kleineberg DLR Spring-In ISCM 2008 x

Folie 4 > Vortrag > AutorDokumentname > 23.11.2004Institut für Faserverbundleichtbau und Adaptronik

Relevance of the “Spring-In” Effect

Sources: AIRBUS, BOEING, NASA

B737-300 B747-400

B787

A300 A310-200

A320 A340-300A340-600

A380

MD80B757 B767 MD90

B777

A400M

A350 XWB

0%

10%

20%

30%

40%

50%

60%

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Year of First Fight

Sh

are

of C

om

po

site

Co

mp

on

ents

A350XWB

B787

Substitution ofHigh Volume„Single Aisle“ Models expected in 2015

Expected Production Scenario

- Typical Production Rate: >350 Aircrafts per Year

- Extreme Competition on World Market and therefore Low Earnings per Aircraft

? Composite Airframe only if Mature Production Technologies available

? ?

Page 5: Kleineberg DLR Spring-In ISCM 2008 x

Folie 5 > Vortrag > AutorDokumentname > 23.11.2004Institut für Faserverbundleichtbau und Adaptronik

Relevance of the “Spring-In” Effect

Crucial Cost Drivers for High Volume Composite Structures

Part Production ? Typically more than 60% of Costs

Component Assembly ? Typically more than 30% of Costs

Derived Measures to ensure Cost Effectiveness

Minimised Rejection Rate ? Maximum Reproducibility on High Level

Minimised Cycle Times ? Optimized utilisation of Technical Equipment

High Precision Manufacturing ? Shim free Assembly

Page 6: Kleineberg DLR Spring-In ISCM 2008 x

Folie 6 > Vortrag > AutorDokumentname > 23.11.2004Institut für Faserverbundleichtbau und Adaptronik

Relevance of the “Spring-In” Effect

Problem: “Spring-In” Effect causes severe deformations on curved components

? Direct Rejections due to exceeded Shape Tolerances

? Increased Assembling Effort (Shimming) due to increased Gap Distances

? Component Failure or Damage due to Overloading during Assembling

? Component Failure or Damage due to underestimated Mould-Part-Interaction

? Time-Consuming and Expensive Reengineering of Moulds

Page 7: Kleineberg DLR Spring-In ISCM 2008 x

Folie 7 > Vortrag > AutorDokumentname > 23.11.2004Institut für Faserverbundleichtbau und Adaptronik

Content:

- Relevance of the “Spring-In” Effect

- Theory of the „Spring-In“ Effect

- Approach to Identify Material Parameters

- FEM Simulation of Complex Curved profiles

- Conclusion

Page 8: Kleineberg DLR Spring-In ISCM 2008 x

Folie 8 > Vortrag > AutorDokumentname > 23.11.2004Institut für Faserverbundleichtbau und Adaptronik

Theory of the „Spring-In“ Effect

Matrix dominated Out of Plane Properties

Out of Plane Properties: - High Coefficient of Thermal Expansion (CTE)- Noticeable Resin Cure related Effects

In Plane Properties: - Low CTE- Negligible Resin Cure related Effects

Fibre dominated In Plane Properties

Page 9: Kleineberg DLR Spring-In ISCM 2008 x

Folie 9 > Vortrag > AutorDokumentname > 23.11.2004Institut für Faserverbundleichtbau und Adaptronik

Theory of the „Spring-In“ Effect

( )(1 ) 1

t r t rtot thermal chemical

r r

TT

? ? ? ?? ? ? ?

? ?

? ?? ? ? ?? ?? ?? ? ? ? ? ? ? ?? ?? ? ? ?? ?? ?? ?? ? ? ?? ?

? ? tot????????Total „Spring-In“ Angle ? r: Radial CTE ? t: Tangential CTE ? ? thermal????CTE dependent „Spring-In“ Angle ? r : Radial Laminate Shrinkage ? t : Tangential Laminate Shrinkage ? ?chemical??Cure Shrinkage dependent „Spring-In“ Angle ? T: Effective Temperature Difference

Parameter Definition for a Curved Laminate Section

Calculation Basis

R: Nominal

t: Nominal Laminate Thickness

: Nominal Laminat Angle?

A : Nominal Arc Length, outer/inner o/i

RadiusR’:Radius Measured

t’: Laminate Thickness M

’: Laminate Angle ?

A ’: Arc Length outer/inneroi

easured

Measured

Measured,

RA ’o A’i

Ai

Ao

?

?’

t

R’

t’

Page 10: Kleineberg DLR Spring-In ISCM 2008 x

Folie 10 > Vortrag > AutorDokumentname > 23.11.2004Institut für Faserverbundleichtbau und Adaptronik

Theory of the „Spring-In“ Effect

Primary “Spring-In” Effects

- CTE in Radial Direction [? r] ? Fibre Volume Content (FVC)- Laminate Shrinkage in Radial Direction [?r] ? FVC- Effective Temperature Difference [? T] ? Process Parameter

Primary “Spring-In” Effects can be Simulated if Coefficients are Available

Secondary “Spring-In” Effects

- Laminate thickness ? Gradient in Degree of Cure- Mould-Part-Mismatch: CTE ? Preload on Boundary Layers- Laminate Imperfections (Voids, Ondulations etc.) ? FVC, Local Stress Induction- Mould-Part-Mismatch: “Spring-In” ? Local Bending Moments- Moisture Expansion of Matrix ? Partial Shrink Compensation- Laminate Radius ? Additional Shear Loads?

Secondary “Spring-In” Effects are difficult to Quantify!

Page 11: Kleineberg DLR Spring-In ISCM 2008 x

Folie 11 > Vortrag > AutorDokumentname > 23.11.2004Institut für Faserverbundleichtbau und Adaptronik

Theory of the „Spring-In“ Effect

VitrificationGelation

Gelled Glass Region

Sol/Gel Region

Char RegionElastomer Region

Devitrification

Ungelled Glass Region

Liquid Region

Log Time

Tg gel

Tg 0

Tem

pera

ture

Tg Minimum Cycle Time

Minimum„Spring-In“

Time Temperature Transformation (TTT) Diagram for Epoxy Resins

Page 12: Kleineberg DLR Spring-In ISCM 2008 x

Folie 12 > Vortrag > AutorDokumentname > 23.11.2004Institut für Faserverbundleichtbau und Adaptronik

Theory of the „Spring-In“ Effect

“Spring-In” Effect of L-Shaped Profile

? Independent of Laminate Thickness? Independent of Radius

“Spring-In” Effect of T-Shaped Profiles

? Dependent of Web Thickness? Dependent of Radius

t

Glass epoxy Laminate, L-shaped structure

t

Glass epoxy Laminate, T-shaped structure

Dong, C.; Zhang, C.; Liang, Z.; Wang, B.:

t

Page 13: Kleineberg DLR Spring-In ISCM 2008 x

Folie 13 > Vortrag > AutorDokumentname > 23.11.2004Institut für Faserverbundleichtbau und Adaptronik

Content:

- Relevance of the “Spring-In” Effect

- Theory of the „Spring-In“ Effect

- Approach to Identify Material Parameters

- FEM Simulation of Complex Curved Profiles

- Conclusion

Page 14: Kleineberg DLR Spring-In ISCM 2008 x

Folie 14 > Vortrag > AutorDokumentname > 23.11.2004Institut für Faserverbundleichtbau und Adaptronik

Approach to Identify Material Parameters

Approach to Simulate Primary “Spring-In” Effects

Standard Parameters for HT fibres and RTM6 Epoxy Resin? Literature, Data Sheets

? r ´(Radial CTE) and ?r (Radial Laminate Shrinkage) ? Experimental Investigation

? T (Difference between Gel-Point and max. Cure Temperature)? Experimental Investigation

Approach to Simulate Secondary “Spring-In” Effects

Avoidance of Secondary “Spring-In” Effects as far as Possible

Page 15: Kleineberg DLR Spring-In ISCM 2008 x

Folie 15 > Vortrag > AutorDokumentname > 23.11.2004Institut für Faserverbundleichtbau und Adaptronik

Approach to Identify Material Parameters

Strategy to predict “Spring-In” Deformation

Iteration 2D/3DHybridmodel

„Spring-In“ Deformationof Complex Structures

Step 1: Analyses of 90° Coupons under different Process Conditions? Experimental determination of resulting “Spring-In” Angles

Step 2: Adaption of FEM Simulation to measured Results of 90° Coupons? Combined Coefficient for Chemical Shrinkage and Thermal Expansion

Step 3: Simulation of complex Structures by using the identified Combined Coefficient ? Prediction of Assembling Problems and Stress Concentrations

Step 1 Step 2 Step 3

Page 16: Kleineberg DLR Spring-In ISCM 2008 x

Folie 16 > Vortrag > AutorDokumentname > 23.11.2004Institut für Faserverbundleichtbau und Adaptronik

Approach to Identify Material Parameters

Step 1: Analyses of 90° Coupons under different Process Conditions

0

20

40

60

80

100

120

140

160

180

200

0 100 200 300 400 500 600 700 800 900

T V1, Normal

T V2, Tgel 180°

T V3, Tgel 130°

T V7, Tgel 110°

- Variation of ? T by varying the Gel-Point (110°C, 130°C, 180°C)

- Variation of FVC by varyingthe Mould Gap distance

Ni36 RTM Mould with compatible CTE to reduce Mould-Part-Interaction

Automated Process in a heated Press to increase Reproducibility

High Precision Measuring Equipment to quantify Laminate Thickness and Coupon Angle

Page 17: Kleineberg DLR Spring-In ISCM 2008 x

Folie 17 > Vortrag > AutorDokumentname > 23.11.2004Institut für Faserverbundleichtbau und Adaptronik

Approach to Identify Material Parameters

Step 2: Adaption of FEM Simulation to measured Results of 90° Coupons

2D / 3D Hybrid FEM Simulation

Each Ply of the Laminate issimulated by 3 Finite Element Layers [Type: HEX8]

2D

3D

Page 18: Kleineberg DLR Spring-In ISCM 2008 x

Folie 18 > Vortrag > AutorDokumentname > 23.11.2004Institut für Faserverbundleichtbau und Adaptronik

Approach to Identify Material Parameters

Step 2: Adaption of FEM Simulation to measured Results of 90° Coupons

Page 19: Kleineberg DLR Spring-In ISCM 2008 x

Folie 19 > Vortrag > AutorDokumentname > 23.11.2004Institut für Faserverbundleichtbau und Adaptronik

Content:

- Relevance of the “Spring-In” Effect

- Theory of the „Spring-In“ Effect

- Approach to Identify Material Parameters

- FEM Simulation of Complex Curved Profiles

- Conclusion

Page 20: Kleineberg DLR Spring-In ISCM 2008 x

Folie 20 > Vortrag > AutorDokumentname > 23.11.2004Institut für Faserverbundleichtbau und Adaptronik

FEM Simulation of Complex Curved Profiles

Step 3: Simulation of Complex Structures

2D / 3D Hybrid Models

Integral Z-Profiles

Integral Z-Profiles

Integral LCF-Profiles

UDReinforcedInner andMiddleChord

Profiles that have been investigated

Page 21: Kleineberg DLR Spring-In ISCM 2008 x

Folie 21 > Vortrag > AutorDokumentname > 23.11.2004Institut für Faserverbundleichtbau und Adaptronik

FEM Simulation of Complex Curved Profiles

Isostatic Boundary Conditionat Free Edge? Global „Spring-In“ Angle? Stress Analyses

Assembly Boundary Condition

? Stress Analyses

Step 3: Simulation of Complex Structures: Boundary Conditions

Page 22: Kleineberg DLR Spring-In ISCM 2008 x

Folie 22 > Vortrag > AutorDokumentname > 23.11.2004Institut für Faserverbundleichtbau und Adaptronik

FEM Simulation of Complex Curved Profiles

Step 3: Simulation of Complex Structures: Simulation Results

Integral Z-Profiles

Integral LCF-Profiles

Global “Spring-In” Effect:? Global Radius Decreases

Global “Spring-In” Effect: ? Global Radius Decreases

Integral Z-Profiles

Global “Spring-In” Effect:? Global Radius IncreasesUD

UD

UD

Stress Level 1:No significant Increase of Stress Level under Assembly BoundaryConditions

Stress Level 2:Stress Level and “Spring-In” Effect can be reduced by 50% by applying low Gel-Temperatures

Page 23: Kleineberg DLR Spring-In ISCM 2008 x

Folie 23 > Vortrag > AutorDokumentname > 23.11.2004Institut für Faserverbundleichtbau und Adaptronik

Content:

- Relevance of the “Spring-In” Effect

- Theory of the „Spring-In“ Effect

- Approach to Identify Material Parameters

- FEM Simulation of Complex Curved Profiles

- Conclusion

Page 24: Kleineberg DLR Spring-In ISCM 2008 x

Folie 24 > Vortrag > AutorDokumentname > 23.11.2004Institut für Faserverbundleichtbau und Adaptronik

Conclusion

„Spring-In“ Deformation is Highly Dependent on Gel-Temperature and Fibre Volume Content

? Reproducible Process Conditions Required for Cost Effective, High Precision Manufacturing

Simple L-Shaped Coupons can be used to investigate the “Spring-In” Behaviour ofComplex Composite Structures

? Realisation of Spring-In Compensated Manufacturing Moulds possible

Lower Gel-Temperatures lead to reduced “Spring-In” Angles but also increaseCycle Times significantly

? Reduced “Spring-In” Angles indicate a lower Stress Level in the Laminate