kinesiology 406

105
Kinesiology 406 Motor control, motor learning and skilled performance

Upload: yashika54

Post on 30-Jun-2015

647 views

Category:

Documents


9 download

TRANSCRIPT

Page 1: Kinesiology 406

Kinesiology 406

Motor control, motor learning and skilled performance

Page 2: Kinesiology 406

Useful information

Associate Professor, Dr. John Buchanan

Web page: http://bucksplace.tamu.edu Syllabus handouts by section Articles etc.

Page 3: Kinesiology 406

Useful information - Grading Exams and quizzes

6 quizzes 3 major exams 1 comprehensive final

Questions: MC, short-answer, Fill-in-the-blank, Essay, true-false, labeling-drawing

graphs, Computations

Assignments: Lab exercise: required

Class project Experimental participation

3 experimental sessions and 1 write-up

Review paper An 8 page review of literature on a specific topic, based on 4 articles

Page 4: Kinesiology 406

Chapter 1 The Classification of Motor Skills

Page 5: Kinesiology 406

As a scientific discipline, the area of motor control …

Motor control: definition

Page 6: Kinesiology 406

As a scientific discipline, the area of motor learning …

Motor learning: definition

Page 7: Kinesiology 406

Degrees of freedom: the problem of motor control? (the outflow side) What can a muscle do?

How many muscles in the human body?

How many possible muscle activity patterns are there?

How many nerve cells in the brain?

Page 8: Kinesiology 406

Sensory-perceptual processes as part of the problem of motor control? (the inflow side)

What is the role of our sensory systems in controlling our actions and learning?

What does it mean to perceive something?

What does it mean to remember or recognize something?

Why is paying attention important for learning?

Page 9: Kinesiology 406

How can the problem be approached?

Physical mechanisms

Abstract processes

Theoretical (representing information)

Page 10: Kinesiology 406

Similarities and differences

Which of these two actions are the most similar and why?

Page 11: Kinesiology 406

11

Basic Terminology

Voluntary control

Movements (and kinematics)

An action (or motor skill)

Page 12: Kinesiology 406

12

Classifying actions based on muscles

Muscle size Fine actions

Gross actions

Page 13: Kinesiology 406

13

Classifying actions based on starting, stopping, and rhythm

General action type Continuous

Discrete

Serial (sequential)

Page 14: Kinesiology 406

14

Classifying actions within the environment

Action initiation and context stability Closed motor skills

Open motor skills

Page 15: Kinesiology 406

Chapter 2The Measurement of Human

Performance

Page 16: Kinesiology 406

16

Experiment: Participants

Populations

Samples

Selecting a sample

Page 17: Kinesiology 406

17

Experiment: manipulating, measuring, and baseline

Independent variable

Dependent variable

Control condition

Experimental condition

Page 18: Kinesiology 406

18

Dependent variables: performance outcome (goal-action) measures

Temporal measures Reaction time (RT):

Movement time (MT):

Spatial measures

Page 19: Kinesiology 406

19

Dependent variables: performance production (movement) measures

Kinematics

Electromyography

Brain signals

Page 20: Kinesiology 406

20

How do you record outcome and production measures?

Computers Keypads Joystick or mouse

Page 21: Kinesiology 406

How do you record kinematic production measures?

Computers and motion analysis system

Sampling the action over time

Page 22: Kinesiology 406

Viewing kinematic data

Stick figure representation of movements and actions

Page 23: Kinesiology 406

23

Plotting kinematic data: time series and angle-angle plot

extension

flexion

Flex Elbow extend

Fle

x

Wris

t

exte

nd

Wrist angle

Elbow angle

60 deg

Page 24: Kinesiology 406

24

Displacement and velocity

30 cm

0

Vel

(cm

/s)

Time (sec)

0 1.75.5

Vel. =

Speed. =

Page 25: Kinesiology 406

25

Displacement and EMGS

Targets

1 sec

De

gre

e

EM

G(m

V)

0

1 00

200

300S m a ll T arge ts

-20

-10

0

10

20 B ice ps

Deg

ree

EM

G(m

V)

0

100

200

300

-20

-10

0

10

20 T ricep s

near

far

How is muscle activity related to limb movement?

Page 26: Kinesiology 406

26

Analyzing performance and outcome measures: mean = (x)/n

Arithmetic mean: elbow-wrist flexion-extension task

(x)/n = (x)/n =

Why is the mean important?

elbow (flx-ext)5959606160615961

wrist (flx-ext)5758626364665461

Page 27: Kinesiology 406

27

Computing errors for outcome and performance measures

The task has a specific goal and the participant receives a score.

Constant error (CE)

Absolute error (AE)

Variable error (VE)

Page 28: Kinesiology 406

28

Constant error (CE): directional bias

Goal: elbow-wrist flexion-extension task – 60 degrees of rotation

ElbowDeg. Error1) 592) 593) 604) 615) 606) 617) 598) 61

WristDeg. Error1) 572) 583) 624) 635) 646) 667) 548) 61

start: CE = end: CE =Mean CE = Mean CE =

Page 29: Kinesiology 406

29

Absolute error (AE): accuracy

start: AE = end: AE =Mean AE = Mean AE =

Goal: elbow-wrist flexion-extension task – 60 degrees of rotation

ElbowDeg. Error1) 592) 593) 604) 615) 606) 617) 598) 61

WristDeg. Error1) 572) 583) 624) 635) 646) 667) 548) 61

Page 30: Kinesiology 406

30

Variable error (VE): consistency

Wrist angle dataMnCE score (Mn-sc) (Mn-sc)2 (Summed)/n sqrt 3.375

x/n = VE =

Goal: elbow-wrist flexion-extension task – 60 degrees of rotation

Page 31: Kinesiology 406

31

Analyzing performance and outcome measures: mean (x)/n

Arithmetic mean: simple reaction time (RT) scores

RT (sec.).500.450.525.475.370.600.510.490

RT (sec.).210.215.225.205.202.222.217.208

Page 32: Kinesiology 406

Constant error (CE): directional bias

Goal: learn to complete an action in a specific time, MT=1.5 secs

Start of practiceMT Error1) 1.2 sec2) 1.9 sec3) 1.3 sec4) 1.1 sec5) 1.1 sec

End of practiceMT Error1) 1.6 sec2) 1.7 sec3) 1.7 sec4) 1.6 sec5) 1.8 sec

start: ce = end: ce =Mean CE = Mean CE =

Page 33: Kinesiology 406

End of practiceMT Error1) 1.6 sec2) 1.7 sec3) 1.7 sec4) 1.6 sec5) 1.8 sec

Start of practiceMT Error1) 1.2 sec2) 1.9 sec3) 1.3 sec4) 1.1 sec5) 1.1 sec

Absolute error (AE): accuracy

start: ae = end: ae =Mean AE = Mean AE =

Goal: learn to complete a movement in a specific time, MT=1.5 secs

Page 34: Kinesiology 406

Variable error (VE): consistency

Start of Practice data CEMnCE score (Mn-sc) (Mn-sc)2 (Summed)/n sqrt

VE =

Goal: learn to complete a movement in specific time, MT=1.5 secs

Page 35: Kinesiology 406

Root mean square error (RMSE)tracking task

T1

T2

T3

T4

T5

T6

T7

T8

T9 T10

10

0

20

Page 36: Kinesiology 406

36

Root mean square error

10 targets1) 92) 203) 94) 185) 86) 167) 78) 149) 6.510) 6

10 scores1) 9.1 2) 223) 44) 205) 56) 187) 6.58) 199) 5.510) 5

RMSE1) 2) 3)4)5) 6) 7)8)9)10)

RMSE =

T1

T2

T3 S 1

S 2

S 3

Page 37: Kinesiology 406

37

Brain recordings and imaging

EEG

fMRI

PET

Page 38: Kinesiology 406

38

fMRI: functional MRI - BOLD

Blood oxygenation level dependent (BOLD)

deep

surface

Page 39: Kinesiology 406

39

Kandel, Schwartz, Jessel (1991). Principles of Neuroscience, Figure 22-5, pp .315

top - nose

Figure 2C

radioactive tracer – sugar (surface and deep structures)Level of tracer in neurons

Positron emission tomography:PET scan - rCBF

Page 40: Kinesiology 406

40

Kandel, Schwartz, Jesse (1991). Principles of Neuroscience, Figure 22-6, pp .316

PET scan and visual stimuli

Page 41: Kinesiology 406

Chapter 4Neuromotor Basis of Motor Control

Page 42: Kinesiology 406

42

Types and Functions of Neurons

Three types of functional neurons

Where does an action start and where does it end?

Page 43: Kinesiology 406

43lateral view

Cerebral hemispheres

Left right

dorsal view

Page 44: Kinesiology 406

eye

fa ce

lips

ja w

ton gueswa llow

brow

neck

thumbfingers

handwrist

elbowarm

shoulder trunk

hip

knee

toes

44

p harynxto ngue

jawgum steeth

lips

fa ce

no see ye

thu m bf ingers

h andforea rm

elb owarmh ead

n ecktrun kh iplegto es

Somatotopic maps: commands to muscles and body sensation to cortex

Penfield and Rasmussen (1950)

Page 45: Kinesiology 406

45

Electroencephalography (EEG): movement preparation

Page 46: Kinesiology 406

46

Motor cortex to muscles

Crossing over of control signals

Left-H.

Right-H.

Connectivity and surface area

Page 47: Kinesiology 406

47

Motor planning and sequencing areas

Page 48: Kinesiology 406

48

B.

A.

C.

Anatomy and function: MRI and PET

Page 49: Kinesiology 406

49

Continuous and discrete actions

Schaal et al. (2004). Right wrist flexion-extension motion 4 actions (Fig. 1A and 1B)

ext

flx

ext

flx

ext

flx

ext

flx

Page 50: Kinesiology 406

50

Continuous and discrete actions: brain activity patterns

Schaal et al. (2004). Figure 2C

Bilateral activity

Unilateral (contra-) activity

Page 51: Kinesiology 406

51

Subcortical structures

Basal ganglia – 4 components

Page 52: Kinesiology 406

Caudate

Basal Ganglia pathways

PutamenGlobus Pallidus

Substantia nigra

Page 53: Kinesiology 406

53spinal cord

Brain stem and cerebellum

Page 54: Kinesiology 406

54

Cerebellum and timing

Ivry et al., (2002). Spencer et al., (2003).

Discrete tapping

Continuous motion

Page 55: Kinesiology 406

55

Dorsal

Ventral

Spinal cord: sensory-motor information flow

Page 56: Kinesiology 406

56

Alpha (a) motor neuron

Input

Conduction

output

Page 57: Kinesiology 406

57

Muscle fibers and motor neurons

Page 58: Kinesiology 406

Alpha()-Gamma () co-activation

A) Alpha MN activates:

A B

B) Gamma MN co-activated:

Page 59: Kinesiology 406

59

Features of the motor unit

420,000:

252,000,000:

Average ratio

Force output

Page 60: Kinesiology 406

30-50%

Time (sec)

1

2

3

4

5

Force production: The size principle and motor unit activation

Page 61: Kinesiology 406

61

Spinal circuitry and Final common path

Reflexes

Interneurons

Page 62: Kinesiology 406

62

100Time in msecs

Muscletension

Patellartendonstruck

Knee Jerk

Muscleefferent

Muscle spindleafferent

0

Stretch reflex: mono-synaptic

Sensorycell

Motorneurons

extext

Page 63: Kinesiology 406

63

Inter-neurons and information divergence

Painfulstimuli

Page 64: Kinesiology 406

sensoryinput

Crossed-extensor reflex: divergence

Extensorsinhibited

Flexorsexcited

Extensorsexcited

Flexorsinhibited

+ excitation- inhibition

inter-neuron

Motorneurons

Sensory cell axon

extflx

Page 65: Kinesiology 406

65

+-

+

Descending Signal

Information feedback: inhibition

Page 66: Kinesiology 406

66

motor neuron

Final common path: information convergence

Page 67: Kinesiology 406

67

Hierarchy of the Motor System

Strategy (planning) PMC, SMA, basal ganglia

Tactics (setting parameter for execution) MC, cerebellum, basal ganglia

Execution Brain stem and spinal cord

Page 68: Kinesiology 406

Chapter 9Attention as a limited capacity

resource

Page 69: Kinesiology 406

69

Two main aspects of attention

Splitting attention

Focusing of attention

Page 70: Kinesiology 406

70

Information processing model

3 stage model of cognitive motor processes

CNS

Page 71: Kinesiology 406

71

Splitting attention

Dual task paradigm

SP RS RP

SP RS RP

Page 72: Kinesiology 406

72

Splitting attention: a simple motor task

Force output and attention (Leob, 1886)

The dual task

Variables

Finding

Page 73: Kinesiology 406

Splitting attention: Gait and Parkinson’s disease O’Shea et al. (2002)

Primary task

Secondary task

Page 74: Kinesiology 406

Splitting attention: Gait and Parkinson’s disease

Walking speed

Stride length

Controls PDs Controls PDs

Motor (coins)

Cognitive (count)

o Look at the standing task that was also done with this experiment.

Page 75: Kinesiology 406

75

Splitting attention: a clinical setting

Geurts and Mulder (1994) – relearning

What is an appropriate Dual task?

Variables

8 weeks of rehabilitation therapy

Page 76: Kinesiology 406

76

CoP (sway) and attentionC

oP V

eloc

ity

2 weeks 8 weeks

Page 77: Kinesiology 406

77

Cell phone and drivingWhy talking and driving don’t mix!

Reaction time

Red lights

Cell phone – bigger impact than!

Brain activity

Page 78: Kinesiology 406

78

Central-resource capacity: Flexible allocation (Kahneman 1973)

Rules of allocation

Cognitive effort

Page 79: Kinesiology 406

79

Multiple-resource theories (Wickens 1992)

Page 80: Kinesiology 406

80

Arousal, attention and performance

Levels of arousal low, optimal, high

arousal

Perf

orm

ance

lowpoor

high

best

Page 81: Kinesiology 406

81

Focusing Attention

Width

Direction

Switching

Automaticity – skill level

Page 82: Kinesiology 406

82

Neural basis of attention

Reticular activation system (red lines) Emerges from the reticular formation in brainstem

Page 83: Kinesiology 406

83

Visual selective attention

Page 84: Kinesiology 406

Visual selective attention

Shank and Haywood (1987)

Kato and Fukuda (2002)

Page 85: Kinesiology 406

85

85

Chapter 10

Memory components, forgetting, and strategies

Page 86: Kinesiology 406

86

Principles of human remembering and forgetting

What are the functional roles of memory?

How are memories encoded, stored, and recalled based on these functional roles?

Comparison of verbal and motor memory

Page 87: Kinesiology 406

87

Multiple memory model

Atkinson and Shiffrin (1968)

Baddeley (1986, 1995)

Working Memory Long-term memory

Page 88: Kinesiology 406

88

Working memory (WM) static characteristics

Duration

Capacity

Action example - Ille and Cadopi (1999)

Page 89: Kinesiology 406

89

Increasing WM capacity: subjective organization (chunking)

Starkes et al (1987)

Who remembers the most (produces the most) under a given condition?

Why do the experts remember more in the structured condition?

Page 90: Kinesiology 406

90

Long-term memory (LTM) characteristics

Functional LTM systems

Knowledge

Capacity and Duration

Page 91: Kinesiology 406

91

Neural aspects of LTM memory formation

H.M. (1950’s) suffered from epilepsy

Page 92: Kinesiology 406

Mirror Tracing

Mirror

Hand blocked from view

Mirror tracing

Retention tests

Page 93: Kinesiology 406

93

Remembering and forgetting

Encoding

Retrieval

Forgetting

Page 94: Kinesiology 406

94

sliding handle

Encoding: Categorization of actions

Magill and Lee (1987)

Free recall:

Page 95: Kinesiology 406

95

Encoding: verbal cues and actions

Shea (1977) - lever positioning task – without vision

3 verbal cues labels

3

12

2

111

10

Recall interval

Page 96: Kinesiology 406

96

Verbal cues as mnemonics for movements

5 sec 60 sec

AE

(d

eg

)

Retention interval (sec)

5

6

7

8

9

Page 97: Kinesiology 406

97

Proactive interference: WM

Location and distance

Step 1

Step 2

Step 3

Experimental group Control group

Page 98: Kinesiology 406

98

Retroactive interference: WM

Step 1

Step 2

Step 3

Experimental group Control group

Page 99: Kinesiology 406

99

Retroactive interference: motor task

Stelmach and Kelso (1970)

A

Page 100: Kinesiology 406

100

Interfering with motor consolidation

Muellbacher et al (2002) – TMS study

Task:

Goal

Issue:

Page 101: Kinesiology 406

101

TMS immediately after practice

Hypothesis:

Experimental group

Control group

3 Practice sessions P3P2

1.0

2.5

0.0

1.5

2.0

0.5

P1

1.0

2.5

0.0

1.5

2.0

0.5N

orm

aliz

ed A

ccel

erat

ion

Motor cortex

Occ. cortex

Pre-frontal

rTMS1 rTMS2

Page 102: Kinesiology 406

102

TMS long delay after practice

Hypothesis:

Experimental group

Control group

1 Practice session

rTMS

1.0

2.5

0.0

1.5

2.0

0.5Nor

mal

ized

Acc

eler

atio

n

1.0

2.5

0.0

1.5

2.0

0.5

P2P1

6-hr

res

t

Page 103: Kinesiology 406

103

Attention, memory, and learning

Foerde et al. (2006).

Dual task paradigm – shape sorting task

fMRI data

Page 104: Kinesiology 406

104

Neuro-anatomical regions and memory

No-distraction:

Secondary task

Multitasking

Page 105: Kinesiology 406

Material for Test #1Chapters 1, 2, 4, 9, and 10