k band downconverter with integrated fractional-n pll and ...€¦ · 16995-001 third-order...

61
K Band Downconverter with Integrated Fractional-N PLL and VCO Data Sheet ADMV4420 Rev. A Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2018–2019 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com FEATURES RF front end with integrated RF balun and LNA Double balanced, active mixer with high dynamic range IF amplifier Fractional-N synthesizer with low phase noise, multicore VCO 5 V supply operation with integrated LDO regulators Output P1dB: 7 dBm Output IP3: 16 dBm Conversion gain: 36 dB Noise figure: 7 dB RF input frequency range: 16.95 GHz to 22.05 GHz Internal LO frequency range: 16.35 GHz to 21.15 GHz IF frequency range: 900 MHz to 2500 MHz Single-ended 50 Ω input impedance and 75 Ω IF output impedance Programmable via 4-wire SPI 32-lead, 5 mm × 5 mm LFCSP APPLICATIONS Satellite communication Point to point microwave communication GENERAL DESCRIPTION The ADMV4420 is a highly integrated, double balanced, active mixer with an integrated fractional-N synthesizer, ideally suited for next generation K band satellite communications. The RF front end consists of an integrated RF balun and low noise amplifier (LNA) for an optimal, 7 dB, single-sideband noise figure while minimizing external components. Additionally, the high dynamic range IF output amplifier provides a nominal conversion gain of 36 dB. An integrated low phase noise, fractional-N, phase-locked loop (PLL) with a multicore voltage controlled oscillator (VCO) and internal 2× multiplier generate the necessary on-chip LO signal for the double balanced mixer, eliminating the need for external frequency synthesis. The multicore VCO uses an internal autocalibration routine that allows the PLL to select the necessary settings and lock in approximately 400 µs. The reference input to the PLL employs a differentially excited 50 MHz crystal oscillator. Alternatively, the reference input can be driven by an external, singled-ended, 50 MHz source. The phase frequency detector (PFD) comparison frequency of the PLL operates up to 50 MHz. The ADMV4420 is fabricated on a silicon germanium (SiGe), bipolar complementary metal-oxide semiconductor (BiCMOS) process, and is available in a 32-lead, RoHS compliant, 5 mm × 5 mm LFCSP package with an exposed pad. The device is specified over the −40°C to +85°C temperature range on a 5 V power supply.

Upload: others

Post on 27-Aug-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

K Band Downconverter with Integrated Fractional-N PLL and VCO

Data Sheet ADMV4420

Rev. A Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2018–2019 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

FEATURES RF front end with integrated RF balun and LNA Double balanced, active mixer with high dynamic range IF

amplifier Fractional-N synthesizer with low phase noise, multicore VCO 5 V supply operation with integrated LDO regulators Output P1dB: 7 dBm Output IP3: 16 dBm Conversion gain: 36 dB Noise figure: 7 dB RF input frequency range: 16.95 GHz to 22.05 GHz Internal LO frequency range: 16.35 GHz to 21.15 GHz IF frequency range: 900 MHz to 2500 MHz Single-ended 50 Ω input impedance and 75 Ω IF output

impedance Programmable via 4-wire SPI 32-lead, 5 mm × 5 mm LFCSP

APPLICATIONS Satellite communication Point to point microwave communication

GENERAL DESCRIPTION The ADMV4420 is a highly integrated, double balanced, active mixer with an integrated fractional-N synthesizer, ideally suited for next generation K band satellite communications.

The RF front end consists of an integrated RF balun and low noise amplifier (LNA) for an optimal, 7 dB, single-sideband noise figure while minimizing external components. Additionally, the high dynamic range IF output amplifier provides a nominal conversion gain of 36 dB.

An integrated low phase noise, fractional-N, phase-locked loop (PLL) with a multicore voltage controlled oscillator (VCO) and internal 2× multiplier generate the necessary on-chip LO signal for the double balanced mixer, eliminating the need for external frequency synthesis. The multicore VCO uses an internal autocalibration routine that allows the PLL to select the necessary settings and lock in approximately 400 µs.

The reference input to the PLL employs a differentially excited 50 MHz crystal oscillator. Alternatively, the reference input can be driven by an external, singled-ended, 50 MHz source. The phase frequency detector (PFD) comparison frequency of the PLL operates up to 50 MHz.

The ADMV4420 is fabricated on a silicon germanium (SiGe), bipolar complementary metal-oxide semiconductor (BiCMOS) process, and is available in a 32-lead, RoHS compliant, 5 mm × 5 mm LFCSP package with an exposed pad. The device is specified over the −40°C to +85°C temperature range on a 5 V power supply.

Page 2: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

ADMV4420 Data Sheet

Rev. A | Page 2 of 61

TABLE OF CONTENTS Features .............................................................................................. 1 Applications ....................................................................................... 1 General Description ......................................................................... 1 Revision History ............................................................................... 3 Functional Block Diagram .............................................................. 4 Specifications ..................................................................................... 5 Absolute Maximum Ratings ............................................................ 7

Thermal Resistance ...................................................................... 7 ESD Caution .................................................................................. 7

Pin Configuration and Function Descriptions ............................. 8 Interface Schematics..................................................................... 9

Typical Performance Characteristics ........................................... 10 IF = 900 MHz, Low-Side Injection LO Performance ............ 10 IF = 900 MHz, High-Side Injection LO Performance ........... 12 IF = 1700 MHz, Low-Side Injection LO Performance .......... 14 IF = 1700 MHz, High-Side Injection LO Performance ......... 16 IF = 2500 MHz, Low-Side Injection LO Performance .......... 18 IF = 2500 MHz, High-Side Injection LO Performance ......... 20 LO = 16.75 GHz, Low-Side Injection Performance ............... 22 LO = 16.75 GHz, High-Side Injection Performance ............. 24 LO = 18.95 GHz, Low-Side Injection Performance ............... 26 LO = 18.95 GHz, High-Side Injection Performance ............. 28 LO = 21.15 GHz, Low-Side Injection Performance ............... 30 LO = 21.15 GHz, High-Side Injection Performance ............. 32 Phase Noise Performance .......................................................... 34 Return Loss and Isolation .......................................................... 35 Spurious and Harmonics Performance ................................... 36

Theory of Operation ...................................................................... 37 Reference Input Stage ................................................................. 37 Reference Doubler, R Counter, and RDIV2 ............................ 37 N Counter .................................................................................... 38 INT, FRAC, MOD, and Reference Path Relationship ............ 38 Integer-N Mode .......................................................................... 38 Phase Frequency Detector and Charge Pump ........................ 38 Loop Filter ................................................................................... 39 CP Current Setup ....................................................................... 39 Bleed Current (CP_BLEED) Setup .......................................... 39 MUXOUT .................................................................................... 39 Digital Lock Detect .................................................................... 40 Enables ......................................................................................... 40

IF Output—External Inductor/Biasing ................................... 40 SPI Configuration ...................................................................... 40 VCO Autocalibration and Automatic Level Control ............. 40 Programming Sequence ............................................................ 40

Control Registers ............................................................................ 41 Register Details ............................................................................... 42

Address 0x000, Reset: 0x00, Name: ADI_SPI_CONFIG_1 .. 42 Address 0x001, Reset: 0x00, Name: ADI_SPI_CONFIG_2 .. 43 Address 0x003, Reset: 0x01, Name: CHIPTYPE .................... 44 Address 0x004, Reset: 0x03, Name: PRODUCT_ID_L ........ 44 Address 0x005, Reset: 0x00, Name: PRODUCT_ID_H ....... 44 Address 0x00A, Reset: 0x00, Name: SCRATCHPAD ............ 44 Address 0x00B, Reset: 0x00, Name: SPI_REV ........................ 44 Address 0x103, Reset: 0x6F, Name: ENABLES ....................... 45 Address 0x108, Reset: 0x05, Name: SDO_LEVEL ................. 45 Address 0x200, Reset: 0xA7, Name: INT_L ........................... 46 Address 0x201, Reset: 0x00, Name: INT_H ........................... 46 Address 0x202, Reset: 0x02, Name: FRAC_L ......................... 46 Address 0x203, Reset: 0x00, Name: FRAC_M ....................... 46 Address 0x204, Reset: 0x00, Name: FRAC_H ........................ 46 Address 0x208, Reset: 0x04, Name: MOD_L ......................... 47 Address 0x209, Reset: 0x00, Name: MOD_M ........................ 47 Address 0x20A, Reset: 0x00, Name: MOD_H ........................ 47 Address 0x20C, Reset: 0x01, Name: R_DIV_L ...................... 48 Address 0x20D, Reset: 0x00, Name: R_DIV_H ..................... 48 Address 0x20E, Reset: 0x00, Name: REFERENCE ................ 48 Address 0x211, Reset: 0x00, Name: VCO_DATA_READBACK1 ..................................................... 49 Address 0x212, Reset: 0x00, Name: VCO_DATA_READBACK2 ..................................................... 49 Address 0x213, Reset: 0x01, Name: PLL_MUX_SEL ............ 50 Address 0x214, Reset: 0x98, Name: LOCK_DETECT .......... 50 Address 0x215, Reset: 0x00, Name: VCO_BAND_SELECT 51 Address 0x216, Reset: 0x00, Name: VCO_ALC_TIMEOUT 51 Address 0x217, Reset: 0x01, Name: VCO_MANUAL ........... 51 Address 0x219, Reset: 0x13, Name: ALC ................................ 51 Address 0x21C, Reset: 0x90, Name: VCO_TIMEOUT1 ...... 52 Address 0x21D, Reset: 0x01, Name: VCO_TIMEOUT2 ...... 52 Address 0x21E, Reset: 0x4B, Name: VCO_BAND_DIV ...... 52 Address 0x21F, Reset: 0x18, Name: VCO_READBACK_SEL....................................................................................................... 52

Page 3: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

Data Sheet ADMV4420

Rev. A | Page 3 of 61

Address 0x226, Reset: 0x02, Name: AUTOCAL ..................... 53 Address 0x22C, Reset: 0x07, Name: CP_STATE .................... 54 Address 0x22D, Reset: 0x01, Name: CP_BLEED_EN ............ 54 Address 0x22E, Reset: 0x03, Name: CP_CURRENT ............. 54 Address 0x22F, Reset: 0x0C, Name: CP_BLEED .................... 54

Applications Information ............................................................... 55

Evaluation Board ......................................................................... 55 Outline Dimensions ........................................................................ 60

Ordering Guide ........................................................................... 60

REVISION HISTORY 4/2019—Rev. 0 to Rev. A Change to Features Section .............................................................. 1 Changes to Local Oscillator (LO) Internal Frequency Range Parameter, VCO Frequency Range Parameter, and Conversion Gain Parameter, Table 1 .................................................................... 5 Changes to IF = 900 MHz, Low-Side Injection LO Performance Section .............................................................................................. 10 Changes to IF = 1700 MHz, Low-Side Injection LO Performance Section ....................................................................... 14 Changes to IF = 2500 MHz, Low-Side Injection LO Performance Section ....................................................................... 18 10/2018—Revision 0: Initial Version

Page 4: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

ADMV4420 Data Sheet

Rev. A | Page 4 of 61

FUNCTIONAL BLOCK DIAGRAM

1699

5-00

1

THIRD-ORDERFRACTIONAL

INTERPOLATOR

×2

N COUNTER

3.3VPLLLDO

3.3VVCOLDO 1.8V

SDMLDO

13 14 1615109

8

7

5

6

2

1

3

4

11 12

17

22

21

28303132 29 27 2526

23

24

20

19

18

MODULUS

16.75GHz TO 21.15GHz

8.375GHz TO 10.575GHz

FRACTIONREGISTER

SPI/LOGIC

PLL LOOP FILTER

CPOUT

GND

VPOS3_CP

ENBL1

ENBL0

GND

GND

SDO

GND

GND

GND

RFIN

GND

GND

DECL1_VCO1

DECL2_VCO2

VPO

S1_V

CO

DECL

3_PL

L

DECL

4_SD

M

VPO

S2_P

LL

REF/

XTAL

1

XTAL

2/NC

MUX

OUT

GND

SCLK

SDI

VTUN

E

VPO

S4_I

F

IFO

UT

GND

DECL

5_RF

PHASEFREQUENCYDETECTOR

CHARGEPUMP

BLEEDCURRENT

CALIBRATIONSWITCH

INTEGERREGISTER

VCO

VCO

ADMV4420

÷1 OR ÷2REFERENCE

DIVIDER

÷1REFERENCEDIVIDE-BY-2

×1 OR ×2REFERENCE

DOUBLER

CS

Figure 1.

Page 5: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

Data Sheet ADMV4420

Rev. A | Page 5 of 61

SPECIFICATIONS The measurements are performed at TA = 25°C with 0 dBm external reference at 50 MHz when VVPOS1_VCO = VVPOS2_PLL = VVPOS3_CP = VVPOS4_IF = 5 V, RF input power = −40 dBm, and PLL loop filter bandwidth = 60 kHz with 45° of phase margin, unless otherwise noted.

Table 1. Parameter Min Typ Max Unit Test Conditions/Comments RF INPUT

Frequency Range 16.95 22.05 GHz Input Return Loss −8.5 dB Input Impedance 50 Ω Single-ended

LOCAL OSCILLATOR (LO) INTERNAL FREQUENCY RANGE

16.35 21.15 GHz

VCO Frequency Range 8.175 10.575 GHz Tuning Sensitivity (kVCO) 50 MHz/V Calculated with fVCO/VTUNE VTUNE 0 3 V

IF OUTPUT IF Frequency Range 900 2500 MHz Conversion Gain

IF = 900 MHz Low-Side Injection

LO = 16.75 GHz 31 35 dB RF = 17.65 GHz LO = 18.95 GHz 33 39 dB RF = 19.85GHz LO = 21.15 GHz 32 dB RF = 22.05 GHz

High-Side Injection LO = 17.85 GHz 28.5 33 dB RF = 16.95 GHz LO = 18.95 GHz 32.5 37 dB RF = 18.05 GHz LO = 21.15 GHz 29 40 dB RF = 20.25 GHz

IF = 950 MHz Low-Side Injection

LO = 16.35 GHz 29 32 dB RF = 17.30 GHz IF = 2500 MHz

Low-Side Injection LO = 16.75 GHz 28.5 36 dB RF = 19.25 GHz LO = 17.95 GHz 38 dB RF = 20.45 GHz LO = 19.55 GHz 30 dB RF = 22.05 GHz

High-Side Injection LO = 19.45 GHz 27 31 dB RF = 16.95 GHz LO = 20.45 GHz 35 dB RF = 17.95 GHz LO = 21.15 GHz 37 dB RF = 18.65 GHz

Output 1 dB Compression Point (Output P1dB)

7 dBm

Output Third-Order Intercept (Output IP3)

16 dBm

Noise Figure 7 dB Single sideband with appropriate filtering Gain Flatness

±1 dB Across any 250 MHz bandwidth for an IF of 900 MHz to 2000 MHz

±2 dB Across any 250 MHz bandwidth for an IF of 2000 MHz to 2500 MHz

Output Impedance 75 Ω Single-ended Output Return Loss −6.5 dB

Page 6: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

ADMV4420 Data Sheet

Rev. A | Page 6 of 61

Parameter Min Typ Max Unit Test Conditions/Comments SUPPLY VOLTAGE

VVPOS1_VCO, VVPOS2_PLL, VVPOS3_CP, VVPOS4_IF 4.75 5.00 5.25 V

TOTAL POWER CONSUMPTION Active Mode 1900 mW Sleep Mode 80 mW All blocks powered down

EXTERNAL PLL REFERENCE Frequency 50 MHz Amplitude 0.3 2.5 V p-p Single-ended input, high impedance

CRYSTAL REFERENCE Crystal Frequency 50 MHz Fundamental mode Capacitance 10 pF

PHASE FREQUENCY DETECTOR (PFD) FREQUENCY

50 MHz Compare frequency

REFERENCE SPURS −70 dBm

FREQUENCY SETTLING 400 μs After frequency change programmed; within 50 kHz resolution

CLOSED-LOOP PHASE NOISE LO frequency = 16.75 GHz to 21.15 GHz −80 dBc/Hz 10 kHz offset −85 dBc/Hz 100 kHz offset −116 dBc/Hz 1 MHz offset −125 dBc/Hz 10 MHz offset

LOGIC

(ENBL0, ENBL1, SDO, SDI, SCLK, CS)

Logic Low −0.3 0 +0.5 V Logic High 1.2 3.3 3.6 V

Page 7: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

Data Sheet ADMV4420

Rev. A | Page 7 of 61

ABSOLUTE MAXIMUM RATINGS Table 2. Parameter Rating Supply Voltage (VVPOS1_VCO, VVPOS2_PLL,

VVPOS3_CP, and VVPOS4_IF 5.5 V

Digital Input/Output Signal (SCLK, SDI, SDO, CS, ENBL1, and ENBL0)

3.6 V

RFIN 0 dBm Source and Sink Current (MUXOUT) 300 µA Maximum Junction Temperature 125°C Peak Reflow Temperature 260°C Operating Temperature Range −40°C to +85°C Storage Temperature Range −65°C to +150°C Electrostatic Discharge (ESD) Sensitivity Human Body Model (HBM) 500 V1 2000 V2 1500 V3 Field Induced Charged Device Model

(FICDM)1 500 V

1 Applies to all pins of the ADMV4420. 2 Applies to all pins except the MUXOUT, ENBL0, ENBL1, SDO, SDI, SCLK, and

CS pins. 3 Applies to the MUXOUT, ENBL0, ENBL1, SDO, SDI, SCLK, and CS pins.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

60 SECONDSTO 180 SECONDS 20 SECONDS

TO 40 SECONDS480 SECONDS MAX

TEM

PER

ATU

RE

(°C

)

TIME (Seconds)

260°C –5°C/+0°C

150°C TO 200°C

RAMP DOWN6°C/SEC MAX

217°C

RAMP UP3°C/SEC MAX

60 SECONDSTO

150 SECONDS

1699

5-12

4

Figure 2. Pb-Free Reflow Solder Profile

THERMAL RESISTANCE Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.

θJA is the natural convection junction to ambient measured in a one cubic foot sealed enclosure. θJC is the junction to case thermal resistance.

Table 3. Thermal Resistance Package Type θJC

1 θJA1 Unit

CP-32-12 7.25 39.6 °C/W 1 The θJA and θJC values are determined by measuring the thermally

designed PCB with a heat sink.

ESD CAUTION

Page 8: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

ADMV4420 Data Sheet

Rev. A | Page 8 of 61

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

NOTES1. THE EXPOSED PAD MUST BE CONNECTED TO GND.

24 SDO23 GND22 CPOUT21 VPOS3_CP20 ENBL119 ENBL018 GND17 GND

12345678

GNDGNDGNDRFINGNDGND

DECL1_VCO1DECL2_VCO2

PIN 1INDICATOR

9 10 11 12 13 14 15 16

VPO

S1_V

CODE

CL3_

PLL

DECL

4_SD

MVP

OS2

_PLL

XTAL

2/NC

REF/

XTAL

1M

UXO

UTG

ND

32 31 30 29 28 27 26 25

DECL

5_RF

GND

IFO

UTVP

OS4

_IF

VTUN

E

SCLK

SDI

ADMV4420TOP VIEW

(Not to Scale)

1699

5-00

2

CS

Figure 3. Pin Configuration

Table 4. Pin Function Descriptions Pin No. Mnemonic Description 1, 2, 3, 5, 6,

16, 17, 18, 23, 31

GND Ground. Connect these pins and package bottom to RF and dc ground. See Figure 4 for the GND interface schematic.

4 RFIN RF Input Pin. This pin has a 50 Ω input impedance. 7, 8 DECL1_VCO1,

DECL2_VCO2 LDO Regulator Decoupling Pin. Place a 10 µF capacitor close to this pin.

9 VPOS1_VCO 5 V Power Supply Pin. Place 0.1 µF and 100 pF decoupling capacitors close to this pin. 10, 11, 32 DECL3_PLL,

DECL4_SDM, DECL5_RF

LDO Decoupling Pin. Place a 10 µF capacitor close to this pin.

12 VPOS2_PLL 5 V Power Supply. Place the 0.1 µF and 100 pF decoupling capacitor close to this pin. 13 XTAL2/NC Crystal Input or No Connect. When using an external crystal, place the crystal between the REF/XTAL1 and

XTAL2/DNC pins. When an external reference input signal is applied through the REF/XTAL1 pin, this pin is used as a No Connect pin. Connect this pin to ground with a 1 nF capacitor (ac ground) when an external reference input signal is applied through the REF/XTAL1 pin.

14 REF/XTAL1 External Reference Input or Crystal Input. When using an external crystal, place the crystal between the XTAL1 and XTAL2 pins. When using as external reference input, apply an external reference signal to this pin with a 0.01 µF, dc blocking capacitor. Refer to Figure 121 for the external reference input configuration. This pin is internally biased to 1.65 V.

15 MUXOUT PLL Multiplexer Output. 19 ENBL0 Device Enable 0. For nominal operation, keep this pin tied to 3.3 V. 20 ENBL1 Device Enable 1. For nominal operation, keep this pin tied to 3.3 V 21 VPOS3_CP 5 V Power Supply. Place the 0.1 µF and 100 pF decoupling capacitor close to this pin. 22 CPOUT Synthesizer Charge Pump Output. Connect this pin to VTUNE (Pin 28) through the loop filter 24 SDO Serial Peripheral Interface (SPI) Data Output. 3.3 V logic. 25 SDI SPI Data Input. 3.3 V logic. 26 SCLK SPI Clock. 3.3 V logic. 27 CS SPI Chip Select. 3.3 V logic. Active low.

28 VTUNE VCO Tuning Voltage. This pin is driven by the output of the loop filter. 29 VPOS4_IF 5 V Power Supply. Place 0.1 µF and 100 pF decoupling capacitors close to this pin. 30 IFOUT IF Output. This pin has a 75 Ω output impedance. The output stage of the IF amplifier is an open-collector

configuration and requires a dc bias of 5 V. Use a bias choke inductor. See the IF Output—External Inductor/Biasing section for more details.

EPAD Exposed Pad. The exposed pad must be connected to GND.

Page 9: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

Data Sheet ADMV4420

Rev. A | Page 9 of 61

INTERFACE SCHEMATICS GND

1699

5-00

3

Figure 4. GND Interface Schematic

ESDCLAMP

DECL1_VCO1,DECL2_VCO2,

DECL3_PLL,DECL4_SDM,

DECL5_RF

1699

5-00

4

Figure 5. DECL1_VCO1, DECL2_VCO2, DECL3_PLL, DECL4_SDM, and DECL5_RF Interface Schematic

1699

5-20

5ESD

RFIN

Figure 6. RFIN Interface Schematic

ESDCLAMP

VPOS1_VCO,VPOS2_PLL,VPOS3_CP,VPOS4_IF

1699

5-00

5

Figure 7. VPOS1_VCO, VPOS2_PLL, VPOS3_CP, and VPOS4_IF Interface Schematic

ESDCLAMP

XTAL2/NCREF/XTAL1

1699

5-00

6

Figure 8. XTAL2/NC and REF/XTAL1 Interface Schematic

ESDCLAMP

MUXOUT

VPOS2_PLL

1699

5-00

7

Figure 9. MUXOUT Interface Schematic

500Ω

ESDCLAMP

ENBL0ENBL1

VPOS4_IF

1699

5-00

8

Figure 10. ENBL0 and ENBL1 Interface Schematic

CPOUT

VPOS3_CP

1699

5-00

9

Figure 11. CPOUT Interface Schematic

ESDSDO

VPOS4_IF

1699

5-01

0

Figure 12. SDO Interface Schematic

500Ω

ESDCLAMP

SDI,SCLK,

CS

VPOS4_IF

1699

5-01

1

Figure 13. SDI, SCLK, and CS Interface Schematic

ESDCLAMP

VTUNE

1699

5-01

2

Figure 14. VTUNE Interface Schematic

IFOUT

VPOS4_IF

ESD

1699

5-01

3

Figure 15. IFOUT Interface Schematic

Page 10: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

ADMV4420 Data Sheet

Rev. A | Page 10 of 61

TYPICAL PERFORMANCE CHARACTERISTICS A 0 dBm external reference at 50 MHz is used with VVPOS1_VCO = VVPOS2_PLL = VVPOS3_CP = VVPOS4_IF = 5 V, RF input power = −40 dBm, and the PLL loop filter bandwidth = 60 kHz with 45° of phase margin, unless otherwise noted.

IF = 900 MHz, LOW-SIDE INJECTION LO PERFORMANCE RF minimum and maximum frequencies are limited by the LO frequency = 16.75 GHz to 21.15 GHz.

50

45

40

35

30

25

20

15

10

17.6

5

18.0

5

18.4

5

19.2

5

18.8

5

19.6

5

20.0

5

20.4

5

20.8

5

21.2

5

21.6

5

22.0

5

CONV

ERSI

ON

GAI

N (d

B)

RF FREQUENCY (GHz)

+85°C+25°C–40°C

1699

5-01

4

Figure 16. Conversion Gain vs. RF Frequency at Various Temperatures

20

18

16

14

12

10

8

4

0

6

2

17.6

5

18.0

5

18.4

5

19.2

5

18.8

5

19.6

5

20.0

5

20.4

5

20.8

5

21.2

5

21.6

5

22.0

5

NOIS

E FI

GUR

E (d

B)

RF FREQUENCY (GHz)

+85°C+25°C–40°C

1699

5-01

5

NO FILTERING APPLIED

Figure 17. Noise Figure vs. RF Frequency at Various Temperatures

50

45

40

35

30

25

20

15

10

17.6

5

18.0

5

18.4

5

19.2

5

18.8

5

19.6

5

20.0

5

20.4

5

20.8

5

21.2

5

21.6

5

22.0

5

CONV

ERSI

ON

GAI

N (d

B)RF FREQUENCY (GHz)

5.25V5.00V4.75V

1699

5-01

7

Figure 18. Conversion Gain vs. RF Frequency at Various Supply Voltages,

TA = 25°C

20

18

16

14

12

10

8

4

0

6

2

17.6

5

18.0

5

18.4

5

19.2

5

18.8

5

19.6

5

20.0

5

20.4

5

20.8

5

21.2

5

21.6

5

22.0

5

NOIS

E FI

GUR

E (d

B)

RF FREQUENCY (GHz)

5.25V5.00V4.75V

1699

5-01

8

NO FILTERING APPLIED

Figure 19. Noise Figure vs. RF Frequency at Various Supply Voltages,

TA = 25°C

Page 11: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

Data Sheet ADMV4420

Rev. A | Page 11 of 61

30

28

26

24

22

20

18

14

10

16

12

17.6

5

18.0

5

18.4

5

19.2

5

18.8

5

19.6

5

20.0

5

20.4

5

20.8

5

21.2

5

21.6

5

22.0

5

OUT

PUT

IP3

(dBm

)

RF FREQUENCY (GHz)

+85°C+25°C–40°C

1699

5-02

0

Figure 20. Output IP3 vs. RF Frequency at Various Temperatures

16

14

12

10

8

6

4

2

0

17.6

5

18.0

5

18.4

5

19.2

5

18.8

5

19.6

5

20.0

5

20.4

5

20.8

5

21.2

5

21.6

5

22.0

5

OUT

PUT

P1dB

(dB)

RF FREQUENCY (GHz)

+85°C+25°C–40°C

1699

5-01

6

Figure 21. Output P1dB vs. RF Frequency at Various Supply Voltages,

TA = 25°C

30

28

26

24

22

20

18

14

10

16

12

17.6

5

18.0

5

18.4

5

19.2

5

18.8

5

19.6

5

20.0

5

20.4

5

20.8

5

21.2

5

21.6

5

22.0

5

OUT

PUT

IP3

(dBm

)

RF FREQUENCY (GHz)

5.25V5.00V4.75V

1699

5-02

1

Figure 22. Output IP3 vs. RF Frequency at Various Supply Voltages,

TA = 25°C

16

14

12

10

8

6

4

2

0

17.6

5

18.0

5

18.4

5

19.2

5

18.8

5

19.6

5

20.0

5

20.4

5

20.8

5

21.2

5

21.6

5

22.0

5

OUT

PUT

P1dB

(dB)

RF FREQUENCY (GHz)

5.25V5.00V4.75V

1699

5-01

9

Figure 23. Output P1dB vs. RF Frequency at Various Temperatures

Page 12: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

ADMV4420 Data Sheet

Rev. A | Page 12 of 61

IF = 900 MHz, HIGH-SIDE INJECTION LO PERFORMANCE The RF minimum frequency is limited at 16.95 GHz for optimal performance and the RF maximum frequency is limited at the maximum LO frequency (21.15 GHz).

50

45

40

35

30

25

20

15

10

16.9

5

17.2

5

17.5

5

18.1

5

17.8

5

18.4

5

18.7

5

19.0

5

19.3

5

19.6

5

19.9

5

20.2

5

CONV

ERSI

ON

GAI

N (d

B)

RF FREQUENCY (GHz)

+85°C+25°C–40°C

1699

5-02

2

Figure 24. Conversion Gain vs. RF Frequency at Various Temperatures

20

18

16

14

12

10

8

4

0

6

2

NOIS

E FI

GUR

E (d

B)

RF FREQUENCY (GHz)

+85°C+25°C–40°C

16.9

5

17.2

5

17.5

5

18.1

5

17.8

5

18.4

5

18.7

5

19.0

5

19.3

5

19.6

5

19.9

5

20.2

5

1699

5-02

3

NO FILTERING APPLIED

Figure 25. Noise Figure vs. RF Frequency at Various Temperatures

16

14

12

10

8

6

4

2

0

OUT

PUT

P1dB

(dB)

RF FREQUENCY (GHz)

+85°C+25°C–40°C

16.9

5

17.2

5

17.5

5

18.1

5

17.8

5

18.4

5

18.7

5

19.0

5

19.3

5

19.6

5

19.9

5

20.2

5

1699

5-02

4

Figure 26. Output P1dB vs. RF Frequency at Various Temperatures

50

45

40

35

30

25

20

15

10

16.9

5

17.2

5

17.5

5

18.1

5

17.8

5

18.4

5

18.7

5

19.0

5

19.3

5

19.6

5

19.9

5

20.2

5

CONV

ERSI

ON

GAI

N (d

B)

RF FREQUENCY (GHz)

5.25V5.00V4.75V

1699

5-02

5

Figure 27. Conversion Gain vs. RF Frequency at Various Supply Voltages,

TA = 25°C

20

18

16

14

12

10

8

4

0

6

2

NOIS

E FI

GUR

E (d

B)

RF FREQUENCY (GHz)

16.9

5

17.2

5

17.5

5

18.1

5

17.8

5

18.4

5

18.7

5

19.0

5

19.3

5

19.6

5

19.9

5

20.2

5

5.25V5.00V4.75V

1699

5-02

6

NO FILTERING APPLIED

Figure 28. Noise Figure vs. RF Frequency at Various Supply Voltages,

TA = 25°C

16

14

12

10

8

6

4

2

0

OUT

PUT

P1dB

(dB)

RF FREQUENCY (GHz)

16.9

5

17.2

5

17.5

5

18.1

5

17.8

5

18.4

5

18.7

5

19.0

5

19.3

5

19.6

5

19.9

5

20.2

5

5.25V5.00V4.75V

1699

5-02

7

Figure 29. Output P1dB vs. RF Frequency at Various Supply Voltages,

TA = 25°C

Page 13: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

Data Sheet ADMV4420

Rev. A | Page 13 of 61

30

28

26

24

22

20

18

14

10

16

12

OUT

PUT

IP3

(dBm

)

RF FREQUENCY (GHz)

+85°C+25°C–40°C

16.9

5

17.2

5

17.5

5

18.1

5

17.8

5

18.4

5

18.7

5

19.0

5

19.3

5

19.6

5

19.9

5

20.2

5

1699

5-02

8

Figure 30. Output IP3 vs. RF Frequency at Various Temperatures

30

28

26

24

22

20

18

14

10

16

12

OUT

PUT

IP3

(dBm

)

RF FREQUENCY (GHz)

16.9

5

17.2

5

17.5

5

18.1

5

17.8

5

18.4

5

18.7

5

19.0

5

19.3

5

19.6

5

19.9

5

20.2

5

5.25V5.00V4.75V

1699

5-02

9

Figure 31. Output IP3 vs. RF Frequency at Various Supply Voltages,

TA = 25°C

Page 14: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

ADMV4420 Data Sheet

Rev. A | Page 14 of 61

IF = 1700 MHz, LOW-SIDE INJECTION LO PERFORMANCE The RF minimum frequency is limited at the LO frequency of 16.75 GHz and the RF maximum frequency is limited at 22.05 GHz for optimal performance.

50

45

40

35

30

25

20

15

10

18.4

5

19.2

5

18.8

5

19.6

5

20.0

5

20.4

5

20.8

5

21.2

5

21.6

5

22.0

5

CONV

ERSI

ON

GAI

N (d

B)

RF FREQUENCY (GHz)

+85°C+25°C–40°C

1699

5-03

0

Figure 32. Conversion Gain vs. RF Frequency at Various Temperatures

20

18

16

14

12

10

8

4

0

6

2

NOIS

E FI

GUR

E (d

B)

RF FREQUENCY (GHz)

+85°C+25°C–40°C

18.4

5

19.2

5

18.8

5

19.6

5

20.0

5

20.4

5

20.8

5

21.2

5

21.6

5

22.0

5

1699

5-03

1

NO FILTERING APPLIED

Figure 33. Noise Figure vs. RF Frequency at Various Temperatures

16

14

12

10

8

6

4

2

0

OUT

PUT

P1dB

(dB)

RF FREQUENCY (GHz)

+85°C+25°C–40°C

18.4

5

19.2

5

18.8

5

19.6

5

20.0

5

20.4

5

20.8

5

21.2

5

21.6

5

22.0

5

1699

5-03

2

Figure 34. Output P1dB vs. RF Frequency at Various Temperatures

50

45

40

35

30

25

20

15

10

18.4

5

19.2

5

18.8

5

19.6

5

20.0

5

20.4

5

20.8

5

21.2

5

21.6

5

22.0

5

CONV

ERSI

ON

GAI

N (d

B)

RF FREQUENCY (GHz)

5.25V5.00V4.75V

1699

5-03

3

Figure 35. Conversion Gain vs. RF Frequency at Various Supply Voltages,

TA = 25°C

20

18

16

14

12

10

8

4

0

6

2

NOIS

E FI

GUR

E (d

B)

RF FREQUENCY (GHz)

18.4

5

19.2

5

18.8

5

19.6

5

20.0

5

20.4

5

20.8

5

21.2

5

21.6

5

22.0

5

5.25V5.00V4.75V

1699

5-03

4

NO FILTERING APPLIED

Figure 36. Noise Figure vs. RF Frequency at Various Supply Voltages,

TA = 25°C

16

14

12

10

8

6

4

2

0

OUT

PUT

P1dB

(dB)

RF FREQUENCY (GHz)

18.4

5

19.2

5

18.8

5

19.6

5

20.0

5

20.4

5

20.8

5

21.2

5

21.6

5

22.0

5

5.25V5.00V4.75V

1699

5-03

5

Figure 37. Output P1dB vs. RF Frequency at Various Supply Voltages,

TA = 25°C

Page 15: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

Data Sheet ADMV4420

Rev. A | Page 15 of 61

30

28

26

24

22

20

18

14

10

16

12

OUT

PUT

IP3

(dBm

)

RF FREQUENCY (GHz)

+85°C+25°C–40°C

18.4

5

19.2

5

18.8

5

19.6

5

20.0

5

20.4

5

20.8

5

21.2

5

21.6

5

22.0

5

1699

5-03

6

Figure 38. Output IP3 vs. RF Frequency at Various Temperatures

30

28

26

24

22

20

18

14

10

16

12

OUT

PUT

IP3

(dBm

)

RF FREQUENCY (GHz)

5.25V5.00V4.75V

18.4

5

19.2

5

18.8

5

19.6

5

20.0

5

20.4

5

20.8

5

21.2

5

21.6

5

22.0

5

1699

5-03

7

Figure 39. Output IP3 vs. RF Frequency at Various Supply Voltages,

TA = 25°C

Page 16: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

ADMV4420 Data Sheet

Rev. A | Page 16 of 61

IF = 1700 MHz, HIGH-SIDE INJECTION LO PERFORMANCE The RF minimum frequency is limited at 16.95 GHz for optimum performance and the RF maximum frequency is limited at the maximum LO frequency (21.15 GHz).

50

45

40

35

30

25

20

15

10

16.9

5

17.2

0

17.4

5

17.9

5

17.7

0

18.2

0

18.4

5

18.7

0

18.9

5

19.2

0

19.4

5

CONV

ERSI

ON

GAI

N (d

B)

RF FREQUENCY (GHz)

+85°C+25°C–40°C

1699

5-03

8

Figure 40. Conversion Gain vs. RF Frequency at Various Temperatures

20

18

16

14

12

10

8

4

0

6

2

NOIS

E FI

GUR

E (d

B)

RF FREQUENCY (GHz)

+85°C+25°C–40°C

16.9

5

17.2

0

17.4

5

17.9

5

17.7

0

18.2

0

18.4

5

18.7

0

18.9

5

19.2

0

19.4

5

1699

5-03

9

NO FILTERING APPLIED

Figure 41. Noise Figure vs. RF Frequency at Various Temperatures

16

14

12

10

8

6

4

2

0

OUT

PUT

P1dB

(dB)

RF FREQUENCY (GHz)

+85°C+25°C–40°C

16.9

5

17.2

0

17.4

5

17.9

5

17.7

0

18.2

0

18.4

5

18.7

0

18.9

5

19.2

0

19.4

5

1699

5-04

0

Figure 42. Output P1dB vs. RF Frequency at Various Temperatures

50

45

40

35

30

25

20

15

10

16.9

5

17.2

0

17.4

5

17.9

5

17.7

0

18.2

0

18.4

5

18.7

0

18.9

5

19.2

0

19.4

5

CONV

ERSI

ON

GAI

N (d

B)

RF FREQUENCY (GHz)

5.25V5.00V4.75V

1699

5-04

1

Figure 43. Conversion Gain vs. RF Frequency at Various Supply Voltages,

TA = 25°C

20

18

16

14

12

10

8

4

0

6

2

NOIS

E FI

GUR

E (d

B)

RF FREQUENCY (GHz)

16.9

5

17.2

0

17.4

5

17.9

5

17.7

0

18.2

0

18.4

5

18.7

0

18.9

5

19.2

0

19.4

5

5.25V5.00V4.75V

1699

5-04

2

NO FILTERING APPLIED

Figure 44. Noise Figure vs. RF Frequency at Various Supply Voltages,

TA = 25°C

16

14

12

10

8

6

4

2

0

OUT

PUT

P1dB

(dB)

RF FREQUENCY (GHz)

16.9

5

17.2

0

17.4

5

17.9

5

17.7

0

18.2

0

18.4

5

18.7

0

18.9

5

19.2

0

19.4

5

5.25V5.00V4.75V

1699

5-04

3

Figure 45. Output P1dB vs. RF Frequency at Various Supply Voltages,

TA = 25°C

Page 17: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

Data Sheet ADMV4420

Rev. A | Page 17 of 61

30

28

26

24

22

20

18

14

10

16

12

OUT

PUT

IP3

(dBm

)

RF FREQUENCY (GHz)

+85°C+25°C–40°C

16.9

5

17.2

0

17.4

5

17.9

5

17.7

0

18.2

0

18.4

5

18.7

0

18.9

5

19.2

0

19.4

5

1699

5-04

4

Figure 46. Output IP3 vs. RF Frequency at Various Temperatures

30

28

26

24

22

20

18

14

10

16

12

OUT

PUT

IP3

(dBm

)

RF FREQUENCY (GHz)

16.9

5

17.2

0

17.4

5

17.9

5

17.7

0

18.2

0

18.4

5

18.7

0

18.9

5

19.2

0

19.4

5

5.25V5.00V4.75V

1699

5-04

5

Figure 47. Output IP3 vs. RF Frequency at Various Supply Voltages,

TA = 25°C

Page 18: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

ADMV4420 Data Sheet

Rev. A | Page 18 of 61

IF = 2500 MHz, LOW-SIDE INJECTION LO PERFORMANCE In this configuration, the RF minimum frequency is limited at the LO frequency of 16.75 GHz and the RF maximum frequency is limited at 22.05 GHz for optimal performance.

50

45

40

35

30

25

20

15

10

CONV

ERSI

ON

GAI

N (d

B)

+85°C+25°C–40°C

19.25 22.0521.6521.2520.8520.4520.0519.65RF FREQUENCY (GHz) 16

995-

046

Figure 48. Conversion Gain vs. RF Frequency at Various Temperatures

20

18

16

14

12

10

8

4

0

6

2

NOIS

E FI

GUR

E (d

B)

+85°C+25°C–40°C

19.25 22.0521.6521.2520.8520.4520.0519.65RF FREQUENCY (GHz) 16

995-

047

NO FILTERING APPLIED

Figure 49. Noise Figure vs. RF Frequency at Various Temperatures

16

14

12

10

8

6

4

2

0

OUT

PUT

P1dB

(dB)

+85°C+25°C–40°C

19.25 22.0521.6521.2520.8520.4520.0519.65RF FREQUENCY (GHz) 16

995-

048

Figure 50. Output P1dB vs. RF Frequency at Various Temperatures

50

45

40

35

30

25

20

15

10

CONV

ERSI

ON

GAI

N (d

B)

19.25 22.0521.6521.2520.8520.4520.0519.65RF FREQUENCY (GHz)

5.25V5.00V4.75V

1699

5-04

9

Figure 51. Conversion Gain vs. RF Frequency at Various Supply Voltages,

TA = 25°C

20

18

16

14

12

10

8

4

0

6

2

NOIS

E FI

GUR

E (d

B)

19.25 22.0521.6521.2520.8520.4520.0519.65RF FREQUENCY (GHz)

5.25V5.00V4.75V

1699

5-05

0

NO FILTERING APPLIED

Figure 52. Noise Figure vs. RF Frequency at Various Supply Voltages,

TA = 25°C

16

14

12

10

8

6

4

2

0

OU

TPU

T P1

dB (d

B)

19.25 22.0521.6521.2520.8520.4520.0519.65RF FREQUENCY (GHz)

5.25V5.00V4.75V

1699

5-05

1

Figure 53. Output P1dB vs. RF Frequency at Various Supply Voltages,

TA = 25°C

Page 19: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

Data Sheet ADMV4420

Rev. A | Page 19 of 61

30

28

26

24

22

20

18

14

10

16

12

OUT

PUT

IP3

(dBm

)

+85°C+25°C–40°C

19.25 22.0521.6521.2520.8520.4520.0519.65RF FREQUENCY (GHz) 16

995-

052

Figure 54. Output IP3 vs. RF Frequency at Various Temperatures

30

28

26

24

22

20

18

14

10

16

12

OUT

PUT

IP3

(dBm

)

19.25 22.0521.6521.2520.8520.4520.0519.65RF FREQUENCY (GHz)

5.25V5.00V4.75V

1699

5-05

3

Figure 55. Output IP3 vs. RF Frequency at Various Supply Voltages,

TA = 25°C

Page 20: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

ADMV4420 Data Sheet

Rev. A | Page 20 of 61

IF = 2500 MHz, HIGH-SIDE INJECTION LO PERFORMANCE The RF minimum frequency is limited at 16.95 GHz for optimal performance and the RF maximum frequency is limited at the maximum LO frequency (21.15 GHz).

50

45

40

35

30

25

20

15

10

CONV

ERSI

ON

GAI

N (d

B)

+85°C+25°C–40°C

16.95 18.6518.3117.9717.6317.29RF FREQUENCY (GHz) 16

995-

054

Figure 56. Conversion Gain vs. RF Frequency at Various Temperatures

20

18

16

14

12

10

8

4

0

6

2

NOIS

E FI

GUR

E (d

B)

+85°C+25°C–40°C

16.95 18.6518.3117.9717.6317.29RF FREQUENCY (GHz) 16

995-

055

NO FILTERING APPLIED

Figure 57. Noise Figure vs. RF Frequency at Various Temperatures

16

14

12

10

8

6

4

2

0

OU

TPU

T P1

dB (d

B)

+85°C+25°C–40°C

16.95 18.6518.3117.9717.6317.29RF FREQUENCY (GHz) 16

995-

056

Figure 58. Output P1dB vs. RF Frequency at Various Temperatures

50

45

40

35

30

25

20

15

10

CONV

ERSI

ON

GAI

N (d

B)

16.95 18.6518.3117.9717.6317.29RF FREQUENCY (GHz)

5.25V5.00V4.75V

1699

5-05

7

Figure 59. Conversion Gain vs. RF Frequency at Various Supply Voltages,

TA = 25°C

20

18

16

14

12

10

8

4

0

6

2

NOIS

E FI

GUR

E (d

B)

16.95 18.6518.3117.9717.6317.29RF FREQUENCY (GHz)

5.25V5.00V4.75V

1699

5-05

8

NO FILTERING APPLIED

Figure 60. Noise Figure vs. RF Frequency at Various Supply Voltages,

TA = 25°C

16

14

12

10

8

6

4

2

0

OU

TPU

T P1

dB (d

B)

16.95 18.6518.3117.9717.6317.29RF FREQUENCY (GHz)

5.25V5.00V4.75V

1699

5-05

9

Figure 61. Output P1dB vs. RF Frequency at Various Supply Voltages,

TA = 25°C

Page 21: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

Data Sheet ADMV4420

Rev. A | Page 21 of 61

30

28

26

24

22

20

18

14

10

16

12

OUT

PUT

IP3

(dBm

)

+85°C+25°C–40°C

16.95 18.6518.3117.9717.6317.29RF FREQUENCY (GHz) 16

995-

060

Figure 62. Output IP3 vs. RF Frequency at Various Temperatures

30

28

26

24

22

20

18

14

10

16

12

OUT

PUT

IP3

(dBm

)

16.95 18.6518.3117.9717.6317.29RF FREQUENCY (GHz)

5.25V5.00V4.75V

1699

5-06

1

Figure 63. Output IP3 vs. RF Frequency at Various Supply Voltages,

TA = 25°C

Page 22: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

ADMV4420 Data Sheet

Rev. A | Page 22 of 61

LO = 16.75 GHz, LOW-SIDE INJECTION PERFORMANCE 50

45

40

35

30

25

20

15

10

CO

NV

ER

SIO

N G

AIN

(d

B)

+85°C+25°C–40°C

900 2500230019001500 2100170013001100

IF FREQUENCY (MHz) 16995-062

Figure 64. Conversion Gain vs. IF Frequency at Various Temperatures

20

18

16

14

12

10

8

4

0

6

2

NO

ISE

FIG

UR

E (

dB

)

+85°C+25°C–40°C

900 2500230019001500 2100170013001100

IF FREQUENCY (MHz) 16995-063

NO FILTERING APPLIED

Figure 65. Noise Figure vs. IF Frequency at Various Temperatures

16

14

12

10

8

6

4

2

0

OU

TP

UT

P1d

B (

dB

)

+85°C+25°C–40°C

900 2500230019001500 2100170013001100

IF FREQUENCY (MHz) 16995-064

Figure 66. Output P1dB vs. IF Frequency at Various Temperatures

50

45

40

35

30

25

20

15

10

CO

NV

ER

SIO

N G

AIN

(d

B)

900 2500230019001500 2100170013001100

IF FREQUENCY (MHz)

5.25V5.00V4.75V

16995-065

Figure 67. Conversion Gain vs. IF Frequency at Various Supply Voltages, TA = 25°C

20

18

16

14

12

10

8

4

0

6

2

NO

ISE

FIG

UR

E (

dB

)

900 2500230019001500 2100170013001100

IF FREQUENCY (MHz)

5.25V5.00V4.75V

16995-066

NO FILTERING APPLIED

Figure 68. Noise Figure vs. IF Frequency at Various Supply Voltages, TA = 25°C

16

14

12

10

8

6

4

2

0

OU

TP

UT

P1d

B (

dB

)

900 2500230019001500 2100170013001100

IF FREQUENCY (MHz)

5.25V5.00V4.75V

16995-067

Figure 69. Output P1dB vs. IF Frequency at Various Supply Voltages, TA = 25°C

Page 23: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

Data Sheet ADMV4420

Rev. A | Page 23 of 61

30

28

26

24

22

20

18

14

10

16

12

OUT

PUT

IP3

(dBm

)

+85°C+25°C–40°C

900 2500230019001500 2100170013001100IF FREQUENCY (MHz) 16

995-

068

Figure 70. Output IP3 vs. IF Frequency at Various Temperatures

30

28

26

24

22

20

18

14

10

16

12

OUT

PUT

IP3

(dBm

)

900 2500230019001500 2100170013001100IF FREQUENCY (MHz)

5.25V5.00V4.75V

1699

5-06

9

Figure 71. Output IP3 vs. IF Frequency at Various Supply Voltages,

TA = 25°C

Page 24: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

ADMV4420 Data Sheet

Rev. A | Page 24 of 61

LO = 16.75 GHz, HIGH-SIDE INJECTION PERFORMANCE 50

45

40

35

30

25

20

15

10

CO

NV

ER

SIO

N G

AIN

(d

B)

+85°C+25°C–40°C

900 2500230019001500 2100170013001100

IF FREQUENCY (MHz) 16995-070

Figure 72. Conversion Gain vs. IF Frequency at Various Temperatures

30

25

20

15

10

5

0

NO

ISE

FIG

UR

E (

dB

)

+85°C+25°C–40°C

900 2500230019001500 2100170013001100

IF FREQUENCY (MHz) 16995-071

NO FILTERING APPLIED

Figure 73. Noise Figure vs. IF Frequency at Various Temperatures

16

14

12

10

8

6

4

2

0

OU

TP

UT

P1d

B (

dB

)

+85°C+25°C–40°C

900 2500230019001500 2100170013001100

IF FREQUENCY (MHz) 16995-072

Figure 74. Output P1dB vs. IF Frequency at Various Temperatures

50

45

40

35

30

25

20

15

10

CO

NV

ER

SIO

N G

AIN

(d

B)

900 2500230019001500 2100170013001100

IF FREQUENCY (MHz)

5.25V5.00V4.75V

16995-073

Figure 75. Conversion Gain vs. IF Frequency at Various Supply Voltages, TA = 25°C

30

25

20

15

10

5

0

NO

ISE

FIG

UR

E (

dB

)

900 2500230019001500 2100170013001100

IF FREQUENCY (MHz)

5.25V5.00V4.75V

16995-074

NO FILTERING APPLIED

Figure 76. Noise Figure vs. IF Frequency at Various Supply Voltages, TA = 25°C

16

14

12

10

8

6

4

2

0

OU

TP

UT

P1d

B (

dB

)

900 2500230019001500 2100170013001100

IF FREQUENCY (MHz)

5.25V5.00V4.75V

16995-075

Figure 77. Output P1dB vs. IF Frequency at Various Supply Voltages, TA = 25°C

Page 25: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

Data Sheet ADMV4420

Rev. A | Page 25 of 61

30

28

26

24

22

20

18

14

10

16

12

OUT

PUT

IP3

(dBm

)

+85°C+25°C–40°C

900 2500230019001500 2100170013001100IF FREQUENCY (MHz) 16

995-

076

Figure 78. Output IP3 vs. IF Frequency at Various Temperatures

30

28

26

24

22

20

18

14

10

16

12

OUT

PUT

IP3

(dBm

)

900 2500230019001500 2100170013001100IF FREQUENCY (MHz)

5.25V5.00V4.75V

1699

5-07

7

Figure 79. Output IP3 vs. IF Frequency at Various Supply Voltages,

TA = 25°C

Page 26: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

ADMV4420 Data Sheet

Rev. A | Page 26 of 61

LO = 18.95 GHz, LOW-SIDE INJECTION PERFORMANCE 50

45

40

35

30

25

20

15

10

CO

NV

ER

SIO

N G

AIN

(d

B)

+85°C+25°C–40°C

900 2500230019001500 2100170013001100

IF FREQUENCY (MHz) 16995-078

Figure 80. Conversion Gain vs. IF Frequency at Various Temperatures

20

18

16

14

12

10

8

4

0

6

2

NO

ISE

FIG

UR

E (

dB

)

+85°C+25°C–40°C

900 2500230019001500 2100170013001100

IF FREQUENCY (MHz) 16995-079

NO FILTERING APPLIED

Figure 81. Noise Figure vs. IF Frequency at Various Temperatures

16

14

12

10

8

6

4

2

0

OU

TP

UT

P1d

B (

dB

)

+85°C+25°C–40°C

900 2500230019001500 2100170013001100

IF FREQUENCY (MHz) 16995-080

Figure 82. Output P1dB vs. IF Frequency at Various Temperatures

50

45

40

35

30

25

20

15

10

CO

NV

ER

SIO

N G

AIN

(d

B)

900 2500230019001500 2100170013001100

IF FREQUENCY (MHz)

5.25V5.00V4.75V

16995-081

Figure 83. Conversion Gain vs. IF Frequency at Various Supply Voltages, TA = 25°C

20

18

16

14

12

10

8

4

0

6

2

NO

ISE

FIG

UR

E (

dB

)

900 2500230019001500 2100170013001100

IF FREQUENCY (MHz)

5.25V5.00V4.75V

16995-082

NO FILTERING APPLIED

Figure 84. Noise Figure vs. IF Frequency at Various Supply Voltages, TA = 25°C

16

14

12

10

8

6

4

2

0

OU

TP

UT

P1d

B (

dB

)

900 2500230019001500 2100170013001100

IF FREQUENCY (MHz)

5.25V5.00V4.75V

16995-083

Figure 85. Output P1dB vs. IF Frequency at Various Supply Voltages, TA = 25°C

Page 27: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

Data Sheet ADMV4420

Rev. A | Page 27 of 61

30

28

26

24

22

20

18

14

10

16

12

OUT

PUT

IP3

(dBm

)

+85°C+25°C–40°C

900 2500230019001500 2100170013001100IF FREQUENCY (MHz) 16

995-

084

Figure 86. Output IP3 vs. IF Frequency at Various Temperatures

30

28

26

24

22

20

18

14

10

16

12

OUT

PUT

IP3

(dBm

)

900 2500230019001500 2100170013001100IF FREQUENCY (MHz)

5.25V5.00V4.75V

1699

5-08

5

Figure 87. Output IP3 vs. IF Frequency at Various Supply Voltages,

TA = 25°C

Page 28: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

ADMV4420 Data Sheet

Rev. A | Page 28 of 61

LO = 18.95 GHz, HIGH-SIDE INJECTION PERFORMANCE 50

45

40

35

30

25

20

15

10

CO

NV

ER

SIO

N G

AIN

(d

B)

+85°C+25°C–40°C

900 2500230019001500 2100170013001100

IF FREQUENCY (MHz) 16995-086

Figure 88. Conversion Gain vs. IF Frequency at Various Temperatures

20

18

16

14

12

10

8

4

0

6

2

NO

ISE

FIG

UR

E (

dB

)

+85°C+25°C–40°C

900 2500230019001500 2100170013001100

IF FREQUENCY (MHz) 16995-087

NO FILTERING APPLIED

Figure 89. Noise Figure vs. IF Frequency at Various Temperatures

16

14

12

10

8

6

4

2

0

OU

TP

UT

P1d

B (

dB

)

+85°C+25°C–40°C

900 2500230019001500 2100170013001100

IF FREQUENCY (MHz) 16995-088

Figure 90. Output P1dB vs. IF Frequency at Various Temperatures

50

45

40

35

30

25

20

15

10

CO

NV

ER

SIO

N G

AIN

(d

B)

900 2500230019001500 2100170013001100

IF FREQUENCY (MHz)

5.25V5.00V4.75V

16995-089

Figure 91. Conversion Gain vs. IF Frequency at Various Supply Voltages, TA = 25°C

20

18

16

14

12

10

8

4

0

6

2

NO

ISE

FIG

UR

E (

dB

)

900 2500230019001500 2100170013001100

IF FREQUENCY (MHz)

5.25V5.00V4.75V

16995-090

NO FILTERING APPLIED

Figure 92. Noise Figure vs. IF Frequency at Various Supply Voltages, TA = 25°C

16

14

12

10

8

6

4

2

0

OU

TP

UT

P1d

B (

dB

)

900 2500230019001500 2100170013001100

IF FREQUENCY (MHz)

5.25V5.00V4.75V

16995-091

Figure 93. Output P1dB vs. IF Frequency at Various Supply Voltages, TA = 25°C

Page 29: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

Data Sheet ADMV4420

Rev. A | Page 29 of 61

30

28

26

24

22

20

18

14

10

16

12

OUT

PUT

IP3

(dBm

)

+85°C+25°C–40°C

900 2500230019001500 2100170013001100IF FREQUENCY (MHz) 16

995-

092

Figure 94. Output IP3 vs. IF Frequency at Various Temperatures

30

28

26

24

22

20

18

14

10

16

12

OUT

PUT

IP3

(dBm

)

900 2500230019001500 2100170013001100IF FREQUENCY (MHz)

5.25V5.00V4.75V

1699

5-09

3

Figure 95. Output IP3 vs. IF Frequency at Various Supply Voltages,

TA = 25°C

Page 30: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

ADMV4420 Data Sheet

Rev. A | Page 30 of 61

LO = 21.15 GHz, LOW-SIDE INJECTION PERFORMANCE 50

45

40

35

30

25

20

15

10

CO

NV

ER

SIO

N G

AIN

(d

B)

+85°C+25°C–40°C

900 2500230019001500 2100170013001100

IF FREQUENCY (MHz) 16995-094

Figure 96. Conversion Gain vs. IF Frequency at Various Temperatures

30

25

20

15

10

5

0

NO

ISE

FIG

UR

E (

dB

)

+85°C+25°C–40°C

900 2500230019001500 2100170013001100

IF FREQUENCY (MHz) 16995-095

NO FILTERING APPLIED

Figure 97. Noise Figure vs. IF Frequency at Various Temperatures

16

14

12

10

8

6

4

2

0

OU

TP

UT

P1d

B (

dB

)

+85°C+25°C–40°C

900 2500230019001500 2100170013001100

IF FREQUENCY (MHz) 16995-096

Figure 98. Output P1dB vs. IF Frequency at Various Temperatures

50

45

40

35

30

25

20

15

10

CO

NV

ER

SIO

N G

AIN

(d

B)

900 2500230019001500 2100170013001100

IF FREQUENCY (MHz)

5.25V5.00V4.75V

16995-097

Figure 99. Conversion Gain vs. IF Frequency at Various Supply Voltages, TA = 25°C

30

25

20

15

10

5

0

NO

ISE

FIG

UR

E (

dB

)

900 2500230019001500 2100170013001100

IF FREQUENCY (MHz)

5.25V5.00V4.75V

16995-098

NO FILTERING APPLIED

Figure 100. Noise Figure vs. IF Frequency at Various Supply Voltages, TA = 25°C

16

14

12

10

8

6

4

2

0

OU

TP

UT

P1d

B (

dB

)

900 2500230019001500 2100170013001100

IF FREQUENCY (MHz)

5.25V5.00V4.75V

16995-099

Figure 101. Output P1dB vs. IF Frequency at Various Supply Voltages, TA = 25°C

Page 31: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

Data Sheet ADMV4420

Rev. A | Page 31 of 61

30

28

26

24

22

20

18

14

10

16

12

OUT

PUT

IP3

(dBm

)

+85°C+25°C–40°C

900 2500230019001500 2100170013001100IF FREQUENCY (MHz) 16

995-

100

Figure 102. Output IP3 vs. IF Frequency at Various Temperatures

30

28

26

24

22

20

18

14

10

16

12

OUT

PUT

IP3

(dBm

)

900 2500230019001500 2100170013001100IF FREQUENCY (MHz)

5.25V5.00V4.75V

1699

5-10

1

Figure 103. Output IP3 vs. IF Frequency at Various Supply Voltages,

TA = 25°C

Page 32: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

ADMV4420 Data Sheet

Rev. A | Page 32 of 61

LO = 21.15 GHz, HIGH-SIDE INJECTION PERFORMANCE 50

45

40

35

30

25

20

15

10

CONV

ERSI

ON

GAI

N (d

B)

+85°C+25°C–40°C

900 2500230019001500 2100170013001100IF FREQUENCY (MHz) 16

995-

102

Figure 104. Conversion Gain vs. IF Frequency at Various Temperatures

20

18

16

14

12

10

8

4

0

6

2

NO

ISE

FIG

UR

E (d

B)

+85°C+25°C–40°C

900 2500230019001500 2100170013001100IF FREQUENCY (MHz) 16

995-

103

NO FILTERING APPLIED

Figure 105. Noise Figure vs. IF Frequency at Various Temperatures

16

14

12

10

8

6

4

2

0

OU

TPU

T P1

dB (d

B)

+85°C+25°C–40°C

900 2500230019001500 2100170013001100IF FREQUENCY (MHz) 16

995-

104

Figure 106. Output P1dB vs. IF Frequency at Various Temperatures

50

45

40

35

30

25

20

15

10

CONV

ERSI

ON

GAI

N (d

B)

900 2500230019001500 2100170013001100IF FREQUENCY (MHz)

5.25V5.00V4.75V

1699

5-10

5

Figure 107. Conversion Gain vs. IF Frequency at Various Supply Voltages,

TA = 25°C

20

18

16

14

12

10

8

4

0

6

2

NO

ISE

FIG

UR

E (d

B)

900 2500230019001500 2100170013001100IF FREQUENCY (MHz)

5.25V5.00V4.75V

1699

5-10

6

NO FILTERING APPLIED

Figure 108. Noise Figure vs. IF Frequency at Various Supply Voltages,

TA = 25°C

16

14

12

10

8

6

4

2

0

OU

TPU

T P1

dB (d

B)

900 2500230019001500 2100170013001100IF FREQUENCY (MHz)

5.25V5.00V4.75V

1699

5-10

7

Figure 109. Output P1dB vs. IF Frequency at Various Supply Voltages,

TA = 25°C

Page 33: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

Data Sheet ADMV4420

Rev. A | Page 33 of 61

30

28

26

24

22

20

18

14

10

16

12

OUT

PUT

IP3

(dBm

)

+85°C+25°C–40°C

900 2500230019001500 2100170013001100IF FREQUENCY (MHz) 16

995-

108

Figure 110. Output IP3 vs. IF Frequency at Various Temperatures

30

28

26

24

22

20

18

14

10

16

12

OUT

PUT

IP3

(dBm

)

900 2500230019001500 2100170013001100IF FREQUENCY (MHz)

5.25V5.00V4.75V

1699

5-10

9

Figure 111. Output IP3 vs. IF Frequency at Various Supply Voltages,

TA = 25°C

Page 34: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

ADMV4420 Data Sheet

Rev. A | Page 34 of 61

PHASE NOISE PERFORMANCE –40

–50

–60

–70

–80

–90

–100

–120

–110

–130

–140

CLO

SED-

LOO

P PH

ASE

NOIS

E (d

Bc/H

z)

+85°C+25°C–40°C

10 100 10M100k 1M10k1kOFFSET FREQUENCY (Hz) 16

995-

1 10

Figure 112. Closed-Loop Phase Noise vs. Offset Frequency at Various

Temperatures, IF = 900 MHz, Low-Side Injection LO = 18.95 GHz

10 100 10M100k 1M10k1k

–40

–50

–60

–70

–80

–90

–100

–120

–110

–130

–140

CLO

SED-

LOO

P PH

ASE

NOIS

E (d

Bc/H

z)

+85°C+25°C–40°C

OFFSET FREQUENCY (Hz) 1699

5-11

1

Figure 113. Closed-Loop Phase Noise vs. Offset Frequency at Various

Temperatures, IF = 900 MHz, High-Side Injection LO = 18.95 GHz

10 100 10M100k 1M10k1k

–40

–50

–60

–70

–80

–90

–100

–120

–110

–130

–140

CLO

SED-

LOO

P PH

ASE

NOIS

E (d

Bc/H

z)

LO = 16.75GHz LOW-SIDE INJECTIONLO = 18.95GHz HIGH-SIDE INJECTIONLO = 18.95GHz LOW-SIDE INJECTIONLO = 21.15GHz HIGH-SIDE INJECTION

OFFSET FREQUENCY (Hz) 1699

5-11

2

Figure 114. Closed-Loop Phase Noise vs. Offset Frequency at Various LO

Frequencies, TA = 25°C GHz

0

–40

–60

–20

–80

–100

–120

–140

FREE

RUN

NING

PHA

SE N

OIS

E (d

Bc/H

z)

8375MHz8805MHz9270MHz9720MHz10570MHz10740MHz

100 10M100k 1M10k1kOFFSET FREQUENCY (Hz) 16

995-

113

Figure 115. Free Running Phase Noise vs. Offset Frequency at Various

VCO Frequencies, TA = 25°C

Page 35: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

Data Sheet ADMV4420

Rev. A | Page 35 of 61

RETURN LOSS AND ISOLATION 0

–5

–10

–15

–20

–25

–30

–35

16.9

5

17.5

9

18.2

3

19.5

0

18.8

6

20.1

4

21.4

1

20.7

8

22.0

5

RF R

ETUR

N LO

SS (d

B)

FREQUENCY (GHz)

+85°C+25°C–40°C

1699

5-1 1

4

Figure 116. RF Return Loss vs. Frequency at Various Temperatures,

LO = 18.95 GHz

0

–2

–4

–6

–8

–10

–12

IF R

ETUR

N LO

SS (d

B)

+85°C+25°C–40°C

0.50 3.002.751.751.25 2.25 2.502.001.501.000.75FREQUENCY (GHz) 16

995-

115

Figure 117. IF Return Loss vs. Frequency at Various Temperatures,

LO = 18.95 GHz, Based on 75 Ω Output System

0

–10

–30

–50

–20

–40

–60

–70

–80

–90

–100

16.7

5

17.1

5

17.5

5

18.7

5

17.9

5

19.5

5

20.7

5

20.3

5

18.3

5

19.1

5

19.9

5

21.1

5

LO T

O R

F LE

AKAG

E (d

Bm)

LO FREQUENCY (GHz)

+85°C+25°C–40°C

1699

5-11

6

Figure 118. LO to RF Leakage vs. LO Frequency at Various Temperatures for

Low-Side Injection LO, IF = 900 MHz

0

–10

–30

–50

–20

–40

–60

–70

–80

–90

–100

16.7

5

17.1

5

17.5

5

18.7

5

17.9

5

19.5

5

20.7

5

20.3

5

18.3

5

19.1

5

19.9

5

21.1

5

LO T

O IF

LEA

KAG

E (d

Bm)

LO FREQUENCY (GHz)

+85°C+25°C–40°C

1699

5-11

7

Figure 119. LO to IF Leakage vs. LO Frequency at Various Temperatures for

Low-Side Injection LO, IF = 900 MHz

0

–10

–30

–50

–20

–40

–60

–70

–80

–90

–100

RF T

O IF

ISO

LATI

ON

(dB)

+85°C+25°C–40°C

16.95 22.0520.1418.86 21.4120.7819.5018.2317.59RF FREQUENCY (GHz) 16

995-

118

Figure 120. RF to IF Leakage vs. RF Frequency at Various Temperatures for

LO = 21.15 GHz

Page 36: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

ADMV4420 Data Sheet

Rev. A | Page 36 of 61

SPURIOUS AND HARMONICS PERFORMANCE LO Harmonics

All values are in dBm and are measured at the IF output. Trace and connector losses are de-embedded.

Table 5. LO Harmonics at IF Output LO Harmonics (dBm)

LO Frequency (GHz) 0.25 0.5 1 1.5 2 16.75 −110 −49 −58 −71 −66 18.95 −113 −41 −45 −63 −62 21.15 −111 −34 −58 −85 −69

Reference Input (REFIN) Harmonics

All values are in dBm and measured at the IF output. Trace and connector losses are de-embedded. Reference frequency is at 50 MHz.

Table 6. REFIN Harmonics at the IF Output REFIN Frequency (MHz)

REFIN Harmonics (dBm)

1 2 3 4 5 6 7 8 50 −78 −46 −60 −47 −57 −56 −61 −59

IF Harmonics

All values are in dBm and are measured at the IF output. Trace and connector losses are de-embedded. The downconverted IF frequency is at 900 MHz.

Table 7. IF Harmonics at the IF Output IF Harmonics (dBm) IF Frequency (MHz) 1 2 3 4 5 900 −7 −42 −58 −89 −90

Downconverter Spurious Outputs

Mixer spurious products are measured in dBc from the IF output power level, unless otherwise specified. Trace and connector losses are de-embedded. N/A means not applicable.

RF = 19.85 GHz, LO = 18.95 GHz, IF = 0.9 GHz, RF power = −40 dBm. Spur frequencies are the absolute value of (M × RF) + (N × LO/2)

N × LO 0 1 2 3 4

M × RF

−2 −95 −99 −101 −91 −37

−1 −78 −77 0 −81 −90

0 N/A −46 −50 −65 −56

+1 −78 −98 −80 −88 N/A

+2 −95 −88 N/A N/A N/A

RF = 18.05 GHz, LO = 18.95 GHz, IF = 0.9 GHz, RF power = −40 dBm. Spur frequencies are the absolute value of (M × RF) + (N × LO/2).

N × LO 0 1 2 3 4

M × RF

−2 −77 −70 0 −82 −87

−1 −95 −98 −103 −96 −41

0 N/A −45 −49 −64 −55

+1 −77 −98 −93 −89 N/A

+2 −95 −89 N/A N/A N/A

Page 37: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

Data Sheet ADMV4420

Rev. A | Page 37 of 61

THEORY OF OPERATION REFERENCE INPUT STAGE The reference input stage is shown in Figure 121 and employs a differentially excited, 50 MHz crystal oscillator. Alternatively, the reference input can be driven by an external singled-ended 50 MHz source. Use the REF_IN_MODE bit (Register 0x20E, Bit 1) to select the input configuration. To select crystal oscillator mode, set this bit to 0 to close the SW1 switch and open the SW2 switch. To select single-ended mode, set this bit to 1 to close the SW2 switch and open the SW1 switch.

The selection of a crystal oscillator must be such that the electrical series resistance (ESR) and the load capacitance are well defined. For worst case demonstration purposes, the crystal oscillator selected for the evaluation board uses a maximum ESR of 100 Ω. To ensure the crystal oscillation startup over all temperature and process variations, a maximum ESR of 40 Ω is recommended. The nominal crystal load capacitance (CLOAD) = 10 pF, which is computed from series combination of the C5 and C6 capacitors. It is recommended to keep CLOAD between 8 pF and 12 pF. Additionally, ensure that C21 is not installed for crystal oscillator mode, as this can impact capacitive loading on the crystal, which can in turn prevent the oscillation from starting up.

REFERENCE DOUBLER, R COUNTER, AND RDIV2 Following the reference input stage as shown in Figure 121, there is an internal reference multiply by 2 block (×2 doubler) that allows generation of higher phase frequency detector frequencies (fPFD). A higher fPFD is useful for improving overall system phase noise performance. Typically, doubling the fPFD improves the inband phase noise performance by up to 3 dBc/Hz. Use the EN_REF_X2 bit (Register 0x20E, Bit 2) to enable the reference doubler, which toggles the SW3 switch, as shown in Figure 121.

Following the reference doubler block, there are two frequency dividers: a 10-bit R counter (1 to 1023 allowed) and a divide by 2 block. These dividers allow the input reference frequency (fREF) to be divided down to produce lower fPFD, which helps to minimize fractional-N integer boundary spurs at the output.

The R counter is set using the R_DIV bits in Register 0x20C and Register 0x20D. If the R_DIV = 1, the SW4 switch is in the position shown in Figure 121. Otherwise, the SW4 switch toggles to use the R counter.

The reference divide by 2 block is enabled by using the RDIV2_ SEL bit (Register 0x20E, Bit 0), which toggles the SW5 switch, as shown in Figure 121.

×2DOUBLER

SW3

10-BITR COUNTER

SW4

÷2

SW5

TOPFD

SW1

SW2

C21Y1

C6 C5 R1

XTAL2/NC REF/XTAL1

EXTERNALREFERENCE

1699

5-22

0

Figure 121. Reference Input Path Block Diagram

Page 38: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

ADMV4420 Data Sheet

Rev. A | Page 38 of 61

N COUNTER The N counter allows a division ratio in the PLL feedback path from the VCO. Note that the VCO signal is multiplied by 2 to achieve the LO frequency at the double balanced mixer. The division ratio is determined using the integer-N (INT), fractional-N (FRAC), and modulus (MOD) values that this counter comprises. The applicable registers for setting the INT, FRAC, and MOD values are Register 0x200 to Register 0x20A.

1699

5-22

1FRACVALUE

MODVALUE

INTVALUE

N = INT + FRAC/MODTO PFD

N COUNTERFROM VCO

THIRD-ORDERFRACTIONAL

INTERPOLATOR

Figure 122. N Counter Functional Diagram

INT, FRAC, MOD, AND REFERENCE PATH RELATIONSHIP The INT, FRAC, and MOD values, in conjunction with the reference path, make it possible to generate VCO frequencies spaced by fractions of the fPFD.

The fPFD can be calculated from the reference frequency (fREF) and the reference path configuration parameters,

1(1 )PFD REF

Df f

R T+

= ×× +

(1)

where: D is the reference doubler bit (0 or 1). R is the reference divide ratio of the binary, 10-bit programmable counter (1 to 1023). T is the reference divide by 2 bit (0 or 1).

The VCO frequency (fVCO) is calculated with the following equation:

2LO

VCO PFDff f N= = × (2)

where: fLO is the frequency of the LO driving the mixer. N is the desired value of the N counter.

The N counter value is defined as:

= + = =2

LO VCO

PFD PFD

FRAC f fN INTMOD f f

(3)

where: INT is the 16-bit integer value (75 to 65,535). FRAC is the numerator of the 24-bit primary modulus value (0 to 16,777,215). MOD is the denominator of the 24-bit primary modulus value (1 to 16,777,215).

To obtain the INT portion of the N counter value, round down using the mathematical floor function,

INT = FLOOR(N) (4)

where FLOOR is the mathematical floor function.

To determine the value of the MOD parameter, a channel spacing step size (fCHSP) and the fPFD must be selected first.

The MOD parameter is then computed with the fPFD and the greatest common denominator (GCD),

=( , )

PFD

CHSP PFD

fMODGCD f f

(5)

The FRAC value can be computed for a given an N counter value, INT value, and MOD value,

FRAC = FLOOR(MOD × (N –INT)) (6)

INTEGER-N MODE When the FRAC value is equal to zero, the synthesizer operates in integer-N mode.

PHASE FREQUENCY DETECTOR AND CHARGE PUMP The PFD takes inputs from the R counter and N counter to produce an output that is proportional to the phase and frequency differences between them. This proportional information is then output to a charge pump (CP) circuit that generates current to drive an external loop filter, which is then used to appropriately increase or decrease the VTUNE tuning voltage.

Figure 123 shows a simplified schematic of the PFD and CP. Note that the PFD includes a fixed delay element, which is used to ensure there is no dead zone in the PFD transfer function for consistent reference spur levels.

Page 39: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

Data Sheet ADMV4420

Rev. A | Page 39 of 61

U3

CLR2Q2D2

U2

DOWN

UPHIGH

HIGH

CPOUT

–IN

+IN

CHARGEPUMPDELAY

CLR1

Q1D1

U1

1699

5-22

2

Figure 123. PFD and CP Simplified Schematic

LOOP FILTER Defining a loop filter for a PLL is dependent on several dynamics, such as the PFD frequency, the N counter value, the tuning sensitivity characteristics (kVCO) of the VCO, and the selected CP current. A higher fPFD has the advantage of lowering inband phase noise performance at the expense of integer boundary spur levels when operating in fractional-N mode. Consequently, a lower fPFD can allow the PLL to operate in integer-N mode, which can eliminate integer boundary spurs at the expense of higher inband phase noise performance. Given the trade-offs, care must be taken with frequency planning and fPFD selection to ensure the appropriate inband phase noise performance is met with acceptable spur levels for the end application.

The loop filter, as implemented in the ADMV4420-EVALZ evaluation board, is a third-order passive filter, as shown in Figure 124. The filter is designed with the following simulation input parameters: fPFD = 50 MHz, kVCO = 80 MHz/V, fVCO = 9.4 GHz and ICP = 1.25 mA. The resulting loop filter bandwidth and phase margin are 60 kHz and 45°, respectively.

For additional guidance with loop filter simulations on the ADMV4420, contact Analog Devices, Inc., for technical support.

1699

5-22

3

CPOUT VTUNE

C1470pF

C26.8nF

R1680Ω

R21.5kΩ

C3220pF

C2DNI

R30Ω

Figure 124. Recommended Loop Filter Schematic

CP CURRENT SETUP For a specifically designed loop filter, the CP current (ICP) must be set by adjusting the CP_CURRENT value in Register 0x22E.

The CP current follows the equation,

ICP = (CP_CURRENT + 1) × 312.5 μA (7)

where CP_CURRENT is an integer value (0 to 15).

Note that the default value of CP_CURRENT is 3, which yields a current of 1.25 mA. The applicable range is 312.5 µA to 5 mA, with 312.5 µA steps.

To change the fPFD, if no change has been made to the existing loop filter components, it is recommended to scale the ICP using the following equation:

( ) ( )( )

( ) ( )

1.25 mA 50 MHz× ×= =CP DEFAULT PFD DEFAULT

CP NEWPFD NEW PFD NEW

I fI

f f (8)

where: ICP(NEW) is the new desired ICP. ICP(DEFAULT) is the default ICP. fPFD(DEFAULT) is the default fPFD. fPFD(NEW) is the new desired fPFD.

When ICP(NEW) is obtained, the CP_CURRENT value in Register 0x22E can be updated using the round function,

( )_ ROUND 1312.5 μA

CP NEWICP CURRENT

= −

(9)

where ROUND is the mathematical round function.

BLEED CURRENT (CP_BLEED) SETUP The charge pump includes a binary scaled bleed current (IBLEED), which is set by using the CP_BLEED value in Register 0x22F. The bleed current introduces a slight phase offset in the PFD to improve integer boundary spurs when operating in fractional-N mode.

Generally, the bleed current follows Equation 10 and provides a value that can be applicable for most applications, but there can be additional spur level improvement by empirically determining the appropriate bleed current value from actual measurements for the intended application. The applicable range is 0 µA to 956.25 µA, with 3.75 µA steps.

4_ 3.75 μA CP

BLEEDI

I CP BLEEDN×

= × = (10)

where CP_BLEED is an integer value (0 to 255).

When IBLEED is obtained, the CP_BLEED value in Register 0x22F can be updated using the round function,

_ ROUND3.75 μA

BLEEDICP BLEED

=

(11)

where IBLEED is the desired charge pump bleed current.

MUXOUT The on-chip multiplexer output (MUXOUT) allows access to various internal signals, in addition to providing a digital lock detect function. A representative diagram is shown in Figure 125. The state of the MUXOUT pin is determined from the PLL_MUX_SEL value in Register 0x213. See Table 31 for full details.

Page 40: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

ADMV4420 Data Sheet

Rev. A | Page 40 of 61

1699

5-22

4

MUX MUXOUT

OUTPUT LOWDIGITAL LOCK DETECT

R COUNTER/2N COUNTER/2OUTPUT HIGH

Figure 125. Multiplexer Output Diagram

DIGITAL LOCK DETECT The digital lock detect function that is output on the MUXOUT pin has two adjustable settings in Register 0x214. LD_BIAS adjusts an internal precision window and LD_COUNT adjusts the consecutive cycle count to declare PLL lock. It is recom-mended to keep the 20 µA and 8192 PFD cycle count factory settings. For special applications, contact Analog Devices technical support for guidance on adjusting these settings.

ENABLES Register 0x103 has individual circuit block enables. Setting this register to 0 disables all circuit blocks, resulting in approximately 80 mW of power dissipation. For nominal operation, keep all enables in this register set to 1 (register value of 0x6F). Note that Bit 4 and Bit 7 are reserved and must be set to 0.

IF OUTPUT—EXTERNAL INDUCTOR/BIASING The IF amplifier output is an open-collector configuration and requires an external biasing inductor pulled up to the VPOS4_IF supply. The recommended value of the inductor is approximately 50 nH, which requires a current carrying capability of at least 150 mA. Because this configuration is dc-coupled, it is necessary to place a series capacitor between the IF output and the next stage in the end application. A recommended minimum value for the series capacitor is 1 nF.

SPI CONFIGURATION The SPI of the ADMV4420 allows configuration of the device for specific functions or operations via the 4-pin SPI port. This interface provides users with added flexibility and customization. The SPI consists of four control lines: SCLK, SDI, SDO, and CS. The ADMV4420 protocol consists of a write/read bit followed by 15 register address bits and 8 data bits. The address field and data field are organized MSB first and end with the LSB.

For a write operation, set the MSB to 0, and for a read operation, set the MSB to 1. The write cycle sampling must be done on the rising edge of SCLK. The 24 bits of the serial write address and data are shifted in on the SDI control line, MSB to LSB. The ADMV4420 input logic level for the write cycle supports a 3.3 V interface.

For a read cycle, the R/W bit and the 15 bits of address shift in on the rising edge of SCLK on the SDI control line. Then, 8 bits of serial read data shift out on the SDO control line, MSB first,

on the falling edge of SCLK. The output logic level for a read cycle is 3.3 V. The output drivers of the SDO are enabled after the last rising edge of SCLK of the instruction cycle and remain active until the end of the read cycle. In a read operation, when CS is deasserted, SDO returns to high impedance until the next read transaction. The CS is active low and must be deasserted at the end of the write or read sequence.

An active low input on CS starts and gates a communication cycle. The CS pin allows more than one device to be used on the same serial communications lines. The SDO pin goes to a high impedance state when the CS input is high. During the communication cycle, the chip select must stay low.

The SPI communications protocol follows the Analog Devices SPI standard. For more information, see the ADI-SPI Serial Control Interface Standard (Rev 1.0).

VCO AUTOCALIBRATION AND AUTOMATIC LEVEL CONTROL The multicore VCO uses an internal autocalibration (AUTOCAL) and automatic level control (ALC) routine that optimizes the VCO settings for a particular frequency and allows the PLL to lock in approximately 400 µs after the lower portion of the N counter integer value (INT_L) has been programmed. For nominal applications, maintain the AUTOCAL and ALC default values in the register map (see Table 8).

PROGRAMMING SEQUENCE A number of double buffered registers that take effect only after a write to the lower portion of the N counter integer value (INT_L). The INT_L register applies any changes to these double registers and initiate the autocalibration routine. Additionally, it is recommended to allow 16 SPI clock cycles after writing to the INT_L register.

The following describes the recommended programming sequence:

1. Program the CP_CURRENT register (Register 0x22E). 2. Program the FRAC_H register (Register 0x204). 3. Program the FRAC_M register (Register 0x203). 4. Program the FRAC_L register (Register 0x202). 5. Program the MOD_H register (Register 0x20A). 6. Program the MOD_M register (Register 0x209). 7. Program the MOD_L register (Register 0x208). 8. Program the INT_H register (Register 0x201). 9. Program the INT_L register (Register 0x200). 10. Program 16 SPI clock cycles.

Page 41: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

Data Sheet ADMV4420

Rev. A | Page 41 of 61

CONTROL REGISTERS Table 8. Control Register Map Register Address Name Bits Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset R/W

0x000 ADI_SPI_ CONFIG_1

[7:0] SOFTRESET_ LSB_ FIRST_

ENDIAN_ SDOACTIVE_ SDOACTIVE ENDIAN LSB_FIRST SOFTRESET 0x00 R/W

0x001 ADI_SPI_ CONFIG_2

[7:0] SINGLE_ INSTRUCTION

CSB_ STALL

MASTER_ SLAVE_RB

RESERVED MASTER_SLAVE_ TRANSFER

0x00 R/W

0x003 CHIPTYPE [7:0] CHIPTYPE 0x01 R

0x004 PRODUCT_ ID_L

[7:0] PRODUCT_ID_L 0x03 R

0x005 PRODUCT_ ID_H

[7:0] PRODUCT_ID_H 0x00 R

0x00A SCRATCHPAD [7:0] SCRATCHPAD 0x00 R/W

0x00B SPI_REV [7:0] SPI_REV 0x00 R

0x103 ENABLES [7:0] RESERVED EN_PLL EN_LO RESERVED EN_VCO EN_IFAMP EN_MIXER EN_LNA 0x6F R/W

0x108 SDO_LEVEL [7:0] RESERVED SDO_LEVEL RESERVED 0x05 R/W

0x200 INT_L [7:0] INT[7:0] 0xA7 R/W

0x201 INT_H [7:0] INT[15:8] 0x00 R/W

0x202 FRAC_L [7:0] FRAC[7:0] 0x02 R/W

0x203 FRAC_M [7:0] FRAC[15:8] 0x00 R/W

0x204 FRAC_H [7:0] FRAC[23:16] 0x00 R/W

0x208 MOD_L [7:0] MOD[7:0] 0x04 R/W

0x209 MOD_M [7:0] MOD[15:8] 0x00 R/W

0x20A MOD_H [7:0] MOD[23:16] 0x00 R/W

0x20C R_DIV_L [7:0] R_DIV[7:0] 0x01 R/W

0x20D R_DIV_H [7:0] RESERVED R_DIV[9:8] 0x00 R/W

0x20E REFERENCE [7:0] RESERVED END_REF_ X2

REF_IN_ MODE

RDIV2_SEL 0x00 R/W

0x211 VCO_DATA_ READBACK1

[7:0] VCO_DATA_READBACK[7:0] 0x00 R

0x212 VCO_DATA_ READBACK2

[7:0] RESERVED VCO_DATA_READBACK[10:8] 0x00 R

0x213 PLL_ MUX_SEL

[7:0] PLL_MUX_SEL 0x01 R/W

0x214 LOCK_ DETECT

[7:0] LD_BIAS LD_COUNT RESERVED 0x98 R/W

0x215 VCO_BAND_ SELECT

[7:0] VCO_BAND_SELECT 0x00 R/W

0x216 VCO_ALC_ TIMEOUT

[7:0] RESERVED VCO_ALC_TIMEOUT 0x00 R/W

0x217 VCO_ MANUAL

[7:0] RESERVED VCO_CORE_SELECT VCO_BIAS_ADJUST 0x01 R/W

0x219 ALC [7:0] RESERVED EN_ALC RESERVED 0x13 R/W

0x21C VCO_ TIMEOUT1

[7:0] VCO_TIMEOUT[7:0] 0x90 R/W

0x21D VCO_ TIMEOUT2

[7:0] RESERVED VCO_TIMEOUT[9:8] 0x01 R/W

0x21E VCO_BAND_ DIV

[7:0] VCO_BAND_DIV 0x4B R/W

0x21F VCO_ READBACK_SEL

[7:0] RESERVED VCO_READBACK_SEL 0x18 R/W

0x226 AUTOCAL [7:0] RESERVED EN_ AUTOCAL

RESERVED 0x02 R/W

0x22C CP_STATE [7:0] RESERVED CP_STATE 0x07 R/W

2x22D CP_BLEED_EN [7:0] RESERVED EN_BLEED 0x01 R/W

0x22E CP_CURRENT [7:0] RESERVED CP_CURRENT 0x03 R/W

0x22F CP_BLEED [7:0] BICP 0x0C R/W

Page 42: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

ADMV4420 Data Sheet

Rev. A | Page 42 of 61

REGISTER DETAILS ADDRESS 0x000, RESET: 0x00, NAME: ADI_SPI_CONFIG_1

SoftReset

1: Reset not Asserted.0: Reset Asserted.

SoftReset

1: Reset not Asserted.0: Reset Asserted.

LSB_First

1: MSB Firs t.0: LSB Firs t.

LSB_First

1: MSB Firs t.0: LSB Firs t.

Endian

1: Big Endian.0: Little Endian.

Endian

1: Big Endian.0: Little Endian.

SDOActive

1: SDO Active.0: SDO Inactive.

SDOActive

1: SDO Active.0: SDO Inactive.

0

01

02

03

04

05

06

07

0

[7] SOFTRESET_ (R/W) [0] SOFTRESET (R/W)

[6] LSB_FIRST_ (R/W) [1] LSB_FIRST (R/W)

[5] ENDIAN_ (R/W) [2] ENDIAN (R/W)

[4] SDOACTIVE_ (R/W) [3] SDOACTIVE (R/W)

Table 9. ADI_SPI_CONFIG1 Bit Descriptions Bit Bit Name Description Reset Access 7 SOFTRESET_ Soft reset bit 0x0 R/W 0: Reset asserted 1: Reset not asserted 6 LSB_FIRST_ LSB first bit 0x0 R/W 0: LSB first 1: MSB first 5 ENDIAN_ Endian bit 0x0 R/W 0: Little endian 1: Big endian 4 SDOACTIVE_ SDO active bit 0x0 R/W 0: SDO inactive 1: SDO active 3 SDOACTIVE SDO active bit 0x0 R/W 0: SDO inactive 1: SDO active 2 ENDIAN Endian bit 0x0 R/W 0: Little endian 1: Big endian 1 LSB_FIRST LSB first bit 0x0 R/W 0: LSB first 1: MSB first 0 SOFTRESET Soft reset 0x0 R/W 0: Reset asserted 1: Reset not asserted

Page 43: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

Data Sheet ADMV4420

Rev. A | Page 43 of 61

ADDRESS 0x001, RESET: 0x00, NAME: ADI_SPI_CONFIG_2

Single Instruction

1:CSB.Disable Streaming Regardless of

0: Enable Streaming.Master Slave Transfer

CSB Stall

Master Slave RB

0

01

02

03

04

05

06

07

0

[7] SINGLE_INSTRUCTION (R/W) [0] MASTER_SLAVE_TRANSFER (R/W)

[6] CSB_STALL (R/W)

[4:1] RESERVED

[5] MASTER_SLAVE_RB (R/W)

Table 10. ADI_SPI_CONFIG_2 Bit Descriptions Bit Bit Name Description1 Reset Access 7 SINGLE_INSTRUCTION Single instruction bit 0x0 R/W 0: Enable streaming 1: Disable streaming regardless of CSB 6 CSB_STALL CSB stall bit 0x0 R/W 5 MASTER_SLAVE_RB Master slave readback bit 0x0 R/W [4:1] RESERVED Reserved 0x0 R 0 MASTER_SLAVE_TRANSFER Master slave transfer bit 0x0 R/W 1 Note that CS corresponds to CSB.

Page 44: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

ADMV4420 Data Sheet

Rev. A | Page 44 of 61

ADDRESS 0x003, RESET: 0x01, NAME: CHIPTYPE

Chip Type (Read Only)

0

11

02

03

04

05

06

07

0

[7:0] CHIPTYPE (R)

Table 11. CHIPTYPE Bit Descriptions Bits Bit Name Description Reset Access [7:0] CHIPTYPE Chip type bits, read only. 0x01 R

ADDRESS 0x004, RESET: 0x03, NAME: PRODUCT_ID_L

Product_ID_L, Lower 8 Bits

0

11

12

03

04

05

06

07

0

[7:0] PRODUCT_ID_L (R)

Table 12. PRODUCT_ID_L Bit Descriptions Bits Bit Name Description Reset Access [7:0] PRODUCT_ID_L PRODUCT_ID_L bits, lower 8 bits. 0x03 R

ADDRESS 0x005, RESET: 0x00, NAME: PRODUCT_ID_H

Product_ID_H, Higher 8 Bits

0

01

02

03

04

05

06

07

0

[7:0] PRODUCT_ID_H (R)

Table 13. PRODUCT_ID_H Bit Descriptions Bits Bit Name Description Reset Access [7:0] PRODUCT_ID_H PRODUCT_ID_H bits, higher 8 bits. 0x00 R

ADDRESS 0x00A, RESET: 0x00, NAME: SCRATCHPAD

ScratchPad

0

01

02

03

04

05

06

07

0

[7:0] SCRATCHPAD (R/W)

Table 14. SCRATCHPAD Bit Descriptions Bits Bit Name Description Reset Access [7:0] SCRATCHPAD Scratch pad bits 0x00 R/W

ADDRESS 0x00B, RESET: 0x00, NAME: SPI_REV

SPI Register Map Revis ion

0

01

02

03

04

05

06

07

0

[7:0] SPI_REV (R)

Table 15. SPI_REV Bit Descriptions Bits Bit Name Description Reset Access [7:0] SPI_REV SPI register map revision bits 0x00 R

Page 45: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

Data Sheet ADMV4420

Rev. A | Page 45 of 61

ADDRESS 0x103, RESET: 0x6F, NAME: ENABLES

LNA Enable

1: Power Up LNA.0: Power Down LNA.PLL Enable

1: Power Up PLL.0: Power Down PLL.

Mixer Enable

1: Power Up Mixer.0: Power Down Mixer.LO Enable

1: Power Up LO.0: Power Down LO.

IF Amp Enable

1: Power Up IF Amplifier.0: Power Down IF Amplifier.

VCO Enable

1: Power Up VCO.0: Power Down VCO.

0

11

12

13

14

05

16

17

0

[7] RESERVED [0] EN_LNA (R/W)

[6] EN_PLL (R/W)

[1] EN_MIXER (R/W)

[5] EN_LO (R/W)

[2] EN_IFAMP (R/W)

[4] RESERVED

[3] EN_VCO (R/W)

Table 16. ENABLES Bit Descriptions Bits Bit Name Description Reset Access 7 RESERVED Reserved 0x0 R 6 EN_PLL PLL enable bit 0x1 R/W 0: Power down PLL 1: Power up PLL 5 EN_LO LO enable bit 0x1 R/W 0: Power down LO 1: Power up LO 4 RESERVED Reserved 0x0 R 3 EN_VCO VCO enable bit 0x1 R/W 0: Power down VCO 1: Power up VCO 2 EN_IFAMP IF amplifier enable bit 0x1 R/W 0: Power down IF amplifier 1: Power up IF amplifier 1 EN_MIXER Mixer enable bit 0x1 R/W 0: Power down mixer 1: Power up mixer 0 EN_LNA LNA enable bit 0x1 R/W 0: Power down LNA 1: Power up LNA

ADDRESS 0x108, RESET: 0x05, NAME: SDO_LEVEL

SPI Supply Control

1: 3.3V Read Back.0: 1.8V Read Back.

0

11

02

13

04

05

06

07

0

[7:3] RESERVED [1:0] RESERVED

[2] SDO_LEVEL (R/W)

Table 17. SDO_LEVEL Bit Descriptions Bits Bit Name Description Reset Access [7:3] RESERVED Reserved 0x0 R 2 SDO_LEVEL SPI supply control bit 0x1 R/W 0: 1.8 V readback 1: 3.3 V readback [1:0] RESERVED Reserved 0x1 R/W

Page 46: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

ADMV4420 Data Sheet

Rev. A | Page 46 of 61

ADDRESS 0x200, RESET: 0xA7, NAME: INT_L

Integer-N Word (16-Bit)

0

1

1

1

2

1

3

0

4

0

5

1

6

0

7

1

[7:0] INT[7:0] (R/W)

Table 18. INT_L Bit Descriptions Bits Bit Name Description Reset Access [7:0] INT[7:0] Integer-N word (16-bit) 0xA7 R/W

ADDRESS 0x201, RESET: 0x00, NAME: INT_H

Integer-N Word (16-Bit)

0

0

1

0

2

0

3

0

4

0

5

0

6

0

7

0

[7:0] INT[15:8] (R/W)

Table 19. INT_H Bit Descriptions Bits Bit Name Description Reset Access [7:0] INT[15:8] Integer-N word (16-bit) 0x0 R/W

ADDRESS 0x202, RESET: 0x02, NAME: FRAC_L

Fractional-N Word (24-Bit)

0

0

1

1

2

0

3

0

4

0

5

0

6

0

7

0

[7:0] FRAC[7:0] (R/W)

Table 20. FRAC_L Bit Descriptions Bits Bit Name Description Reset Access [7:0] FRAC[7:0] Fractional-N word (24-bit) 0x2 R/W

ADDRESS 0x203, RESET: 0x00, NAME: FRAC_M

Fractional-N Word (24-Bit)

0

0

1

0

2

0

3

0

4

0

5

0

6

0

7

0

[7:0] FRAC[15:8] (R/W)

Table 21. FRAC_M Bit Descriptions Bits Bit Name Description Reset Access [7:0] FRAC[15:8] Fractional-N word (24-bit) 0x0 R/W

ADDRESS 0x204, RESET: 0x00, NAME: FRAC_H

Fractional-N Word (24-Bit)

0

0

1

0

2

0

3

0

4

0

5

0

6

0

7

0

[7:0] FRAC[23:16] (R/W)

Table 22. FRAC_H Bit Descriptions Bits Bit Name Description Reset Access [7:0] FRAC[23:16] Fractional-N word (24-bit) 0x0 R/W

Page 47: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

Data Sheet ADMV4420

Rev. A | Page 47 of 61

ADDRESS 0x208, RESET: 0x04, NAME: MOD_L

Fractional-N Modulus (24-Bit)

0

01

02

13

04

05

06

07

0

[7:0] MOD[7:0] (R/W)

Table 23. MOD_L Bit Descriptions Bits Bit Name Description Reset Access [7:0] MOD[7:0] Fractional-N modulus (24-bit) 0x4 R/W

ADDRESS 0x209, RESET: 0x00, NAME: MOD_M

Fractional-N Modulus (24-Bit)

0

01

02

03

04

05

06

07

0

[7:0] MOD[15:8] (R/W)

Table 24. MOD_M Bit Descriptions Bits Bit Name Description Reset Access [7:0] MOD[15:8] Fractional-N modulus (24-bit) 0x0 R/W

ADDRESS 0x20A, RESET: 0x00, NAME: MOD_H

Fractional-N Modulus (24-Bit)

0

01

02

03

04

05

06

07

0

[7:0] MOD[23:16] (R/W)

Table 25. MOD_H Bit Descriptions Bits Bit Name Description Reset Access [7:0] MOD[23:16] Fractional-N modulus (24-bit) 0x0 R/W

Page 48: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

ADMV4420 Data Sheet

Rev. A | Page 48 of 61

ADDRESS 0x20C, RESET: 0x01, NAME: R_DIV_L

R-Divider Word (10-Bit)

0

11

02

03

04

05

06

07

0

[7:0] R_DIV[7:0] (R/W)

Table 26. R_DIV_L Bit Descriptions Bits Bit Name Description Reset Access [7:0] R_DIV[7:0] R divider word (10-bit) 0x1 R/W

ADDRESS 0x20D, RESET: 0x00, NAME: R_DIV_H

R-Divider Word (10-Bit)

0

01

02

03

04

05

06

07

0

[7:2] RESERVED [1:0] R_DIV[9:8] (R/W)

Table 27. R_DIV_H Bit Descriptions Bits Bit Name Description Reset Access [7:2] RESERVED Reserved 0x0 R [1:0] R_DIV[9:8] R divider word (10-bit) 0x0 R/W

ADDRESS 0x20E, RESET: 0x00, NAME: REFERENCE

Reference Divide by 2

1: Reference Divide by 2 Enabled.0: Reference Divide by 2 Disabled.Reference Doubler Enable

1: Enable.0: Disable.

Reference Input Mode

1: Single-Ended Mode.0: XTAL Oscillator Mode.

0

01

02

03

04

05

06

07

0

[7:3] RESERVED [0] RDIV2_SEL (R/W)

[2] EN_REF_X2 (R/W)

[1] REF_IN_MODE (R/W)

Table 28. REFERENCE Bit Descriptions Bits Bit Name Description Reset Access [7:3] RESERVED Reserved 0x0 R 2 EN_REF_X2 Reference doubler enable bit 0x0 R/W 0: Disable 1: Enable 1 REF_IN_MODE Reference input mode bit 0x0 R/W 0: Crystal (XTAL) oscillator mode 1: Single-ended mode 0 RDIV2_SEL Reference divide by 2 bit 0x0 R/W 0: Reference divide by 2 disabled 1: Reference divide by 2 enabled

Page 49: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

Data Sheet ADMV4420

Rev. A | Page 49 of 61

ADDRESS 0x211, RESET: 0x00, NAME: VCO_DATA_READBACK1

VCO Data Readback

0

01

02

03

04

05

06

07

0

[7:0] VCO_DATA_READBACK[7:0] (R)

Table 29. VCO_DATA_READBACK1 Bit Descriptions Bits Bit Name Description Reset Access [7:0] VCO_DATA_READBACK[7:0] VCO data readback 0x0 R

ADDRESS 0x212, RESET: 0x00, NAME: VCO_DATA_READBACK2

VCO Data Readback

0

01

02

03

04

05

06

07

0

[7:3] RESERVED [2:0] VCO_DATA_READBACK[10:8] (R)

Table 30. VCO_DATA_READBACK2 Bit Descriptions Bits Bit Name Description Reset Access [7:3] RESERVED Reserved 0x0 R [2:0] VCO_DATA_READBACK[10:8] VCO data readback bits 0x0 R

Page 50: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

ADMV4420 Data Sheet

Rev. A | Page 50 of 61

ADDRESS 0x213, RESET: 0x01, NAME: PLL_MUX_SEL

PLL Mux Select

00001000: Output Logic High.

00000101:VCO/(2 x N)NDiv-by-2 to Mux Out, Frequency =

00000100:REFIN/(2 x R)RDiv-by-2 to Mux Out, Frequency =

00000001: Digital Lock Detect.00000000: Output Logic Low.

0

11

02

03

04

05

06

07

0

[7:0] PLL_MUX_SEL (R/W)

Table 31. PLL_MUX_SEL Bit Descriptions Bits Bit Name Description Reset Access [7:0] PLL_MUX_SEL PLL mux select bits 0x1 R/W 00000000: Output logic low 00000001: Digital lock detect 00000100: R divide by 2 to mux out, frequency = REFIN /2 × R) 00000101: N divide by 2 to mux out, frequency = VCO/(2 × N) 00001000: Output logic high

ADDRESS 0x214, RESET: 0x98, NAME: LOCK_DETECT

Lock Detect Bias

11: 10uA.10: 20uA.01: 30uA.00: 40uA.

Lock Detect Count

011:Declare Lock.8192 Consecutive PFD Cycles to

010:Declare Lock.4096 Consecutive PFD Cycles to

001:Declare Lock.2048 Consecutive PFD Cycles to

000:Declare Lock.1024 Consecutive PFD Cycles to

0

01

02

03

14

15

06

07

1

[7:6] LD_BIAS (R/W) [2:0] RESERVED

[5:3] LD_COUNT (R/W)

Table 32. LOCK_DETECT Bit Descriptions Bits Bit Name Description Reset Access [7:6] LD_BIAS Lock detect bias bits 0x2 R/W 00: 40 μA 01: 30 μA 10: 20 μA 11: 10 μA [5:3] LD_COUNT Lock detect count bits 0x3 R/W 000: 1024 consecutive PFD cycles to declare lock 001: 2048 consecutive PFD cycles to declare lock 010: 4096 consecutive PFD cycles to declare lock 011: 8192 consecutive PFD cycles to declare lock [2:0] RESERVED Reserved 0x0 R/W

Page 51: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

Data Sheet ADMV4420

Rev. A | Page 51 of 61

ADDRESS 0x215, RESET: 0x00, NAME: VCO_BAND_SELECT

Manually Programmed VCO Band

0

0

1

0

2

0

3

0

4

0

5

0

6

0

7

0

[7:0] VCO_BAND_SELECT (R/W)

Table 33. VCO_BAND_SELECT Bit Descriptions Bits Bit Name Description Reset Access [7:0] VCO_BAND_SELECT Manually programmed VCO band 0x0 R/W

ADDRESS 0x216, RESET: 0x00, NAME: VCO_ALC_TIMEOUT

VCO ALC Timeout Divide

0

0

1

0

2

0

3

0

4

0

5

0

6

0

7

0

[7:4] RESERVED [3:0] VCO_ALC_TIMEOUT (R/W)

Table 34. VCO_ALC_TIMEOUT Bit Descriptions Bits Bit Name Description Reset Access [7:4] RESERVED Reserved 0x0 R [3:0] VCO_ALC_TIMEOUT VCO ALC timeout divide 0x0 R/W

ADDRESS 0x217, RESET: 0x01, NAME: VCO_MANUAL

Manually Control VCO Bias

Manually Control VCO Core

10: Core#2.01: Core#1.

0

1

1

0

2

0

3

0

4

0

5

0

6

0

7

0

[7:6] RESERVED [3:0] VCO_BIAS_ADJUST (R/W)

[5:4] VCO_CORE_SELECT (R/W)

Table 35. VCO_MANUAL Bit Descriptions Bits Bit Name Description Reset Access [7:6] RESERVED Reserved 0x0 R [5:4] VCO_CORE_SELECT Manual control of VCO core 0x0 R/W 01: Core 1 10: Core 2 [3:0] VCO_BIAS_ADJUST Manual control of VCO bias 0x1 R/W

ADDRESS 0x219, RESET: 0x13, NAME: ALC

VCO ALC Enable

1: Enable.0: Disable.

0

1

1

1

2

0

3

0

4

1

5

0

6

0

7

0

[7:5] RESERVED [3:0] RESERVED

[4] EN_ALC (R/W)

Table 36. ALC Bit Descriptions Bits Bit Name Description Reset Access [7:5] RESERVED Reserved 0x0 R 4 EN_ACL VCO ALC enable bit 0x1 R/W 0: Disable 1: Enable [3:0] RESERVED Reserved 0x3 R/W

Page 52: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

ADMV4420 Data Sheet

Rev. A | Page 52 of 61

ADDRESS 0x21C, RESET: 0x90, NAME: VCO_TIMEOUT1

Main VCO Calibration Timeout

0

01

02

03

04

15

06

07

1

[7:0] VCO_TIMEOUT[7:0] (R/W)

Table 37. VCO_TIMEOUT1 Bit Descriptions Bits Bit Name Description Reset Access [7:0] VCO_TIMEOUT[7:0] Main VCO calibration timeout 0x90 R/W

ADDRESS 0x21D, RESET: 0x01, NAME: VCO_TIMEOUT2

Main VCO Calibration Timeout

0

11

02

03

04

05

06

07

0

[7:2] RESERVED [1:0] VCO_TIMEOUT[9:8] (R/W)

Table 38. VCO_TIMEOUT2 Bit Descriptions Bits Bit Name Description Reset Access [7:2] RESERVED Reserved 0x0 R [1:0] VCO_TIMEOUT[9:8] Main VCO calibration timeout 0x1 R/W

ADDRESS 0x21E, RESET: 0x4B, NAME: VCO_BAND_DIV

VCO Band Select Divide

0

11

12

03

14

05

06

17

0

[7:0] VCO_BAND_DIV (R/W)

Table 39. VCO_BAND_DIV Bit Descriptions Bits Bit Name Description Reset Access [7:0] VCO_BAND_DIV VCO band select divide 0x4B R/W

ADDRESS 0x21F, RESET: 0x18, NAME: VCO_READBACK_SEL

VCO Read Back Select

101: Read Back Low (Zeros)100: Read Back Core.011: Read Back Bias Code.001: Read Back Core & Band.

000:Test)Read Back Checkered Board (Functionality

0

01

02

03

14

15

06

07

0

[7:3] RESERVED [2:0] VCO_READBACK_SEL (R/W)

Table 40. VCO_READBACK_SEL Bit Descriptions Bits Bit Name Description Reset Access [7:3] RESERVED Reserved 0x3 R [2:0] VCO_READBACK_SEL VCO read back select 0x0 R/W 000: Read back checkered board (functionality test) 001: Read back core and band 011: Read back bias code 100: Read back core 101: Read back low (zeros)

Page 53: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

Data Sheet ADMV4420

Rev. A | Page 53 of 61

ADDRESS 0x226, RESET: 0x02, NAME: AUTOCAL

Enable VCO Auto Cal and Lock PLL

1: Enable.0: Disable.

0

01

12

03

04

05

06

07

0

[7:2] RESERVED [0] RESERVED

[1] EN_AUTOCAL (R/W)

Table 41. AUTOCAL Bit Descriptions Bits Bit Name Description Reset Access [7:2] RESERVED Reserved 0x0 R 1 EN_AUTOCAL Enable VCO autocalibration and lock PLL 0x1 R/W 0: Disable 1: Enable 0 RESERVED Reserved 0x0 R

Page 54: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

ADMV4420 Data Sheet

Rev. A | Page 54 of 61

ADDRESS 0x22C, RESET: 0x07, NAME: CP_STATE

Charge Pump State

3: Normal Operation.2: Force Down.1: Force Up.0: Tri-State (Hi-Z)

0

11

12

13

04

05

06

07

0

[7:2] RESERVED [1:0] CP_STATE (R/W)

Table 42. CP_STATE Bit Descriptions Bits Bit Name Description Reset Access [7:2] RESERVED Reserved 0x1 R [1:0] CP_STATE Charge pump state 0x3 R/W 0: Tristate (high-Z) 1: Force up 2: Force down 3: Normal operation

ADDRESS 0x22D, RESET: 0x01, NAME: CP_BLEED_EN

Bleed CP Current Enable

1: Enable.0: Disable.

0

11

02

03

04

05

06

07

0

[7:1] RESERVED [0] EN_BLEED (R/W)

Table 43. CP_BLEED_EN Bit Descriptions Bits Bit Name Description Reset Access [7:1] RESERVED Reserved 0x0 R 0 EN_BLEED Bleed CP current enable 0x1 R/W 0: Disable 1: Enable

ADDRESS 0x22E, RESET: 0x03, NAME: CP_CURRENT

Main Charge Pump Current

0

11

12

03

04

05

06

07

0

[7:4] RESERVED [3:0] CP_CURRENT (R/W)

Table 44. CP_CURRENT Bit Descriptions Bits Bit Name Description Reset Access [7:4] RESERVED Reserved 0x0 R [3:0] CP_CURRENT Main charge pump current bit 0x3 R/W

ADDRESS 0x22F, RESET: 0x0C, NAME: CP_BLEED

Binary Scaled Bleed Current

0

01

02

13

14

05

06

07

0

[7:0] BICP (R/W)

Table 45. CP_BLEED Bit Descriptions Bits Bit Name Description Reset Access [7:0] BICP Binary scaled bleed current 0xC R/W

Page 55: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

Data Sheet ADMV4420

Rev. A | Page 55 of 61

APPLICATIONS INFORMATION EVALUATION BOARD The ADMV4420-EVALZ evaluation board can be used to evaluate the performance of the ADMV4420. The top and cross sectional layout views of the ADMV4420-EVALZ evaluation board are shown in Figure 126 and Figure 127, respectively. The RF transmission lines were designed using a coplanar waveguide (CPWG) model with a line width (W) of 16 mil and 13 mil of ground spacing for a characteristic impedance of 50Ω for the RF input (RFIN) and the external reference input (REF/XTAL1). The line width and ground spacing for the IF output (IFOUT) are 9 mil and 15 mil, respectively. The PCB is made with Rogers 4350B dielectric material, which offers low loss performance, and isola 370HR dielectric material, which achieves the required thickness of the PCB.

The ADMV4420-EVALZ evaluation board layout consists of four layers. Layer 1 contains the charge pump, IF supplies (VPOS3_CP and VPOS4_IF), and the multiplexer output signal (MUXOUT) trace, which are routed together with the peripheral component placements. Layer 2 is arranged to provide the ground plane for the board. Layer 3 includes the VCO (VPOS1_VCO) supply, the PLL (VPOS2_PLL) supply, and digital SPI control signal (CS, SDI, SDO, and SCLK) traces, and Layer 4 includes the chip enable (ENBL0 and ENBL1) traces on the bottom side of the board. Note that on the evaluation board, CS is indicated by CSB. Figure 128 to Figure 130 show the routing details of Layer 2 to Layer 4. For optimal RF and thermal grounding place as many plated through vias as possible around the RF transmission lines, underneath the exposed pad and throughout the entire PCB (See Figure 128).

1699

5-12

3

Figure 126. ADMV4420-EVALZ Evaluation Board Layout, Top View (Layer 1)

Page 56: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

ADMV4420 Data Sheet

Rev. A | Page 56 of 61

1oz Cu (1.4mil)

0.5oz Cu (0.7mil) LAYER 4

LAYER 3

LAYER 2

LAYER 1

1oz Cu (1.4mil) – POWER LINES0.5oz Cu (0.7mil) – SIGNAL LINES

10mil ROGERS 4350B

ISOLA 370HR

ISOLA 370HR

0.5oz Cu (0.7mil)0.5oz Cu (0.7mil) 0.5oz Cu (0.7mil)

TOTA

L TH

ICKN

ESS

= 62

mil

W = 16mil FOR 50ΩW = 9mil FOR 75Ω

W = 13mil FOR 50ΩW = 15mil FOR 75Ω

1699

5-11

9

Figure 127. ADMV4420-EVALZ PCB, Cross Sectional View

1699

5-12

0

Figure 128. ADMV4420-EVALZ Evaluation Board, Layer 2

1699

5-12

1

Figure 129. ADMV4420-EVALZ Evaluation Board, Layer 3

Page 57: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

Data Sheet ADMV4420

Rev. A | Page 57 of 61

1699

5-12

2

Figure 130. ADMV4420-EVALZ Evaluation Board, Layer 4 (Bottom Side)

Figure 126 shows the ADMV4420-EVALZ evaluation board with component placement. The decoupling capacitors on the LDO decoupling pin and power supply traces to minimize noise effects. The schematic and Pb-free reflow solder profile of the evaluation board are shown in and Figure 2 and Figure 132, respectively.

There are two options to power up the evaluation board. The first option is to apply a 5 V supply to the VPOS1, VPOS2, VPOS3, and VPOS4 test points for the VCO, PLL, CP, and IF blocks (VPOS1_VCO, VPOS2_PLL, VPOS3_CP, and VPOS4_IF pins) respectively, and connect a 0 V supply to one of the GND1, GND2, or GND3 ground test points. In this option, remove the R13, R14, R15, and R16 resistors from the evaluation board. This option allows the user to monitor the currents of each block separately.

The second option to power up the board requires the power supply to be applied through the VCC5P0 test point with the appropriate ground connection. Only the total current of the ADMV4420 can be monitored with this option. After powering up the evaluation board, program the required digital settings for the target configuration through the SDP-S controller board by using the Analysis, Control, Evaluation (ACE) software, which can be downloaded from the Analysis, Control, Evaluation (ACE) product page. See the ADMV4420-EVALZ user guide for details.

There are two different options to apply an external reference input to the ADMV4420, as shown in Figure 132. The required configurations for these options are described in Table 46. When using the Case 1 option, the external reference input is applied through the J2 connector with a signal generator. When using the Case 2 option, the external reference input is provided by the crystal (Y1).

A loop filter circuit generates the VCO control voltage (VTUNE) by applying the CP current output of the ADMV4420 from the charge pump output pin (CPOUT) to obtain the target LO frequency. Figure 131 shows the recommended schematic and Table 47 describes the loop filter components when the phase frequency detector frequency is 50 MHz. Table 48 describes the complete list of materials, which includes the loop filter components. For details about the evaluation board, see the ADMV4420-EVALZ user guide.

Table 46. External Reference Input Configurations Option Component Configuration Case 1 Populate C21. Replace C6 with 1 nF capacitor.

Remove C5 and Y1. Case 2 (Default) C5 = 20 pF, C6 = 20 pF. Do not populate C21.

Page 58: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

ADMV4420 Data Sheet

Rev. A | Page 58 of 61

CPOUT VTUNE

AGND

R11

R5

1.5kΩR4680Ω

C256800pF

C26220pF

C24470pF

1699

5-12

5

Figure 131. Recommended Integer Mode Loop Filter Schematic

Table 47. Recommended Integer Mode Loop Filter Components for Phase Frequency Detector = 50 MHz Component Value C24 470 pF (0402) C25 6800 pF (0402) C26 220 pF (0402) R4 680 Ω (0402) R5 1.5 kΩ (0402) R11 0 Ω (0402)

Table 48. Bill of Materials for ADMV4420-EVALZ Reference Designator Description C1, C3, C14, C32, C33, C35 Power supply decoupling and LDO decoupling capacitor, 10 μF, 0603

C2, C10, C16, C18, C30 Power supply decoupling and LDO decoupling capacitor, 10 pF, 0402 C5, C6 Crystal loading capacitors C7, C8, C11, C12, C13, C22, C27 Power supply decoupling and LDO decoupling capacitor, 0.1 μF, 0402 C15, C19, C20, C23, C29 Power supply decoupling and LDO decoupling capacitor, 100 pF, 0402) C4, C34 Power supply decoupling and LDO decoupling capacitor, 10 μF, 0402 C9 Power supply decoupling and LDO decoupling capacitor, 4.7 μF, 0402 C17, C21 AC coupling capacitor, 0.01 μF, 0402 C24 Loop filter capacitor, 470 pF, 0402 C25 Loop filter capacitor, 6800 pF, 0402 C26 Loop filter capacitor, 220 pF, 0402 CS, ENBL0, ENBL1, MUXOUT, SCLK, SDI, SDO Test point, yellow

DS1 LED, green GND1, GND2, GND3 Test point, black J1 RF connector, SRI, K type, female J2 RF connector, subminiature version a (SMA), female J3 System demonstration platform (SDP) connector J4 RF connector, F type, female L1 Choke inductor, 51 nH, 0402 M1 Heat sink R1 External reference input matching, 49.9 Ω, 0402 R11, R13, R14, R15, R16 Resistor, 0 Ω, 0402 R19, R29 Resistor, 1 kΩ, 0402 R25, R27 Resistor, pull-down, 100 kΩ, 0402 R4 Resistor, loop filter, 680 Ω, 0402 R5 Resistor, loop filter,1.5 kΩ, 0402 U1 K band downconverter with integrated fractional-N PLL and VCO, ADMV4420 U2 Serial EEPROM, 32-bit VCC5P0, VPOS1, VPOS2, VPOS3, VPOS4 Test point, red Y1 Crystal

Page 59: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

Data Sheet ADMV4420

Rev. A | Page 59 of 61

PADDECL5_RF

GNDIFOUT

VPOS4_IFVTUNE

SCLKSDI

3231302928272625

SDO

GND

CPO

UTVP

OS3

_CP

ENBL

1EN

BL0

GND

GND

24 23 22

AGND

AGND

AGND

AGND

AGND

AGND

AGND

VPO

S3

21 20 19 18 17

GNDMUXOUT

XTAL2/NCREF/XTAL1

VPOS2_PLLDECL4_SDMDECL3_PLLVPOS1_VCO

1615

1314

121110

9

DECL

2_VC

O2

DECL

1_VC

O1

GND

GND

RFIN

GND

GND

GND

8765432

43

2

11J4

L1 51nH

1J1

AGND

AGND

AGND

AGND

AGND

A0 A1 A2SD

A5

SCL

WP

1 2 3 6 7

VCC

U28

3P3V

4VSS

AC

DS1

AGND

AGND

C23

100p

FC2

20.

1µF

C18

10pF

C4 10µF

AGND

AGND

C30

10pF

C8 0.1µ

F

C19

100p

FC1

20.

1µF

C34

10µF

C16

10pF

C9 4.7µ

FAG

NDAG

ND

C2 10pF

C14

10µF

AGND

C10

10pF

AGND

C3 10µF

C35

10µF

AGND

C33

10µF

C7 0.1µ

FC1

510

0pF

R16

R14

AGND

VPO

S1

C32

10µF

C13

0.1µ

FC2

010

0pF

R15

VPO

S2

ENBL

1 1

ENBL

0 1

VPO

S4

VCC5

P0

VCC5

P0

AGND

AGND

AGND

U1

54

32

1 AGND

AGND

C520

pFC6 20

pF

GND

13

24

R1 49.9Ω

R27

100kΩ

R25

100kΩ

R26

DNI

C11

0.1µ

F

R29

1kΩ

23

4

AGND

AGND

J3J3

AGND

AGND

3P3V

AGND

AGND

AGND

XTAL

2

XTAL

150

MHz

5

C17

0.01

µF

R19

1kΩ

ADM

V442

0

C21

DNI

0.01

µF

AGND

R13

AGND

GND

1G

ND2

GND

3

CASE

1:US

ING

SMA

POPU

LATE

C21

AND

C6=

1nF.

DNIC

5AN

DY1

CASE

2:US

ING

CRYS

TAL

POPU

LATE

C5AN

DC6

DNIC

21

DEFA

ULT

CONF

IG;U

SECA

SE2

C5=

20pF

C6=

20pF

AGND

C27

0.1µ

FC2

910

0pF

C1 10µFVC

C5P0

AGND

VTUN

ECP

OUT

C25

6800

pF

C26

220p

FC2

447

0pF

C28

DNI

R11

0ΩR5 1.5kΩ

R4 680Ω

60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1VC

C5P0

R28

DNI

TWI_

A0

ENBL

0

GPI

O6_

SDP

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

CS C36

DNI

AGND

SDI

C39

DNI

AGND

SDO

C37

DNI

AGND

SCLK

C38

DNI

GPI

O7_

SDP

ENBL

1SC

L_SD

PSD

A_SD

P

16995-126

TWI_

A0

SDA_

SDP

VCC5

P0

VCC5

P0

CS

Figure 132. ADMV4420-EVALZ Evaluation Board Schematic

Page 60: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

ADMV4420 Data Sheet

Rev. A | Page 60 of 61

OUTLINE DIMENSIONS

0.500.400.30

09-1

2-20

18-C

1

0.50BSC

TOP VIEW

TOP VIEW

32

916

17

24

25

8

0.05 MAX0.02 NOM

0.20 REF

COPLANARITY0.08

0.300.250.18

5.105.00 SQ4.90

0.800.750.70

0.20 MIN

3.753.60 SQ3.55

COMPLIANT TO JEDEC STANDARDS MO-220-WHHD-5PKG-

0045

70

P IN 1IN D ICATO R AR E A OP TIO N S(SEE DETAIL A)

DETAIL A(JEDEC 95)

PIN 1INDICATOR

AREA

SEATINGPLANE

FOR PROPER CONNECTION OFTHE EXPOSED PAD, REFER TOTHE PIN CONFIGURATION ANDFUNCTION DESCRIPTIONSSECTION OF THIS DATA SHEET.

EXPOSEDPAD

Figure 133. 32-Lead Lead Frame Chip Scale Package [LFCSP]

5 mm × 5 mm Body and 0.75 mm Package Height (CP-32-12)

Dimensions shown in millimeters

07-2

3-20

18-A

NOTES:1. MEASURED FROM THE CENTERLINE OF SPROCKET HOLE TO CENTERLINE OF THE POCKET HOLE2. 10 SPROCKET HOLE PITCH CUMUL ATIVE TOLERANCE IS ± 0.203. THICKNESS IS APPLICABLE AS MEASURED AT EDGE OF TAPE4. BLACK POLYSTYRENE MATERIAL5. ALLOWABLE CAMBER TO BE 1 mm PER 100 mm IN LENGHT, NON-CUMULATIVE OVER 250 mm6. MEASUREMENT POINT TO BE 0.3 mm FROM BOTTOM POCKET7. SURFACE RESISTIVITY FROM 105 TO 1011 Ω/SQ8. KO MEASUREMENT POINT SHOULD NOT BE REFERED ON POCKET RIDGE

(NOTE 2)

(NOTE 1)

(NOTE 1)

12.3012.0011.70

5.605.505.40

A

A

DIRECTION OF FEED

Ø 1.50 MIN

TOP VIEW

1.60Ø 1.55

1.50

DETAIL A

2.052.001.95

4.104.003.90

1.851.751.65

8.00

0.500.400.30

DETAIL A

R 0.50

R 0.50

3° BSC(NOTE 6)

SECTION A-A(NOTE 8)

(NOTE 3)

0.350.300.25

5.405.305.20

1.351.251.15

Figure 134. 32-Lead Lead Frame Chip Scale Package [LFCSP] Tape and Reel Outline Dimensions

Dimensions shown in millimeters

ORDERING GUIDE

Model1 Temperature Range

Moisture Sensitivity Level (MSL) Rating2 Package Description Package Option

ADMV4420ACPZ −40°C to +85°C MSL3 32-Lead Lead Frame Chip Scale Package [LFCSP] CP-32-12 ADMV4420ACPZ-R2 −40°C to +85°C MSL3 32-Lead Lead Frame Chip Scale Package [LFCSP] CP-32-12 ADMV4420ACPZ-RL7 −40°C to +85°C MSL3 32-Lead Lead Frame Chip Scale Package [LFCSP] CP-32-12 ADMV4420-EVALZ 1 Z = RoHS Compliant Part. 2 See Table 2 and Figure 2 for the peak reflow temperature.

Page 61: K Band Downconverter with Integrated Fractional-N PLL and ...€¦ · 16995-001 third-order fractional interpolator ×2 n counter 3.3v pll ldo 3.3v vco ldo 1.8v sdm ldo 9 10 13 14

Data Sheet ADMV4420

Rev. A | Page 61 of 61

NOTES

©2018–2019 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D16995-0-4/19(A)