joachim stöhr stanford synchrotron radiation laboratory

43
Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-Ray Absorption Spectroscopy http://www-ssrl.slac.stanford.edu/stohr J. Stöhr, NEXAFS SPECTROSCOPY, Springer Series in Surface Sciences 25, (Springer, Heidelberg, 1992). J. Stöhr and H. C. Siegmann MAGNETISM: FROM FUNDAMENTALS TO NANOSCALE DYNAMICS, Springer Series in Solid State Sciences 152, (Springer, Heidelberg, 2006)

Upload: clancy

Post on 07-Jan-2016

55 views

Category:

Documents


3 download

DESCRIPTION

X-Ray Absorption Spectroscopy. Joachim Stöhr Stanford Synchrotron Radiation Laboratory. http://www-ssrl.slac.stanford.edu/stohr J. Stöhr, NEXAFS SPECTROSCOPY, Springer Series in Surface Sciences 25, ( Springer, Heidelberg, 1992). J. Stöhr and H. C. Siegmann - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Joachim Stöhr      Stanford Synchrotron Radiation Laboratory

Joachim Stöhr Stanford Synchrotron Radiation Laboratory

X-Ray Absorption Spectroscopy

http://www-ssrl.slac.stanford.edu/stohr

J. Stöhr, NEXAFS SPECTROSCOPY,

Springer Series in Surface Sciences 25, (Springer, Heidelberg, 1992).

J. Stöhr and H. C. Siegmann MAGNETISM: FROM FUNDAMENTALS TO NANOSCALE DYNAMICS, Springer Series in Solid State Sciences 152, (Springer, Heidelberg, 2006)

Page 2: Joachim Stöhr      Stanford Synchrotron Radiation Laboratory

Physical Processes

Page 3: Joachim Stöhr      Stanford Synchrotron Radiation Laboratory

Fermi'sGolden rule

Kramers-Heisenbergrelation

Quantum Theoretical X-Ray Interactions with Matter: The Basic Processes

Page 4: Joachim Stöhr      Stanford Synchrotron Radiation Laboratory

Tunable x- rays offer large interaction cross sections

neutrons

electronsoptical light

Photoemission

Page 5: Joachim Stöhr      Stanford Synchrotron Radiation Laboratory

Thomson Cross section

http://www-cxro.lbl.gov/index.php?content=/tools.html

Kortright and Kim, Phys. Rev. B 62, 12216 (2000)

Fe atom

X-Ray Absorption and Scattering Cross Sections per Atom

Experiment Fe metal

f1 and f2 tabulated Henke-Gullikson factors

Page 6: Joachim Stöhr      Stanford Synchrotron Radiation Laboratory

X-ray Absorption Spectra in a Nutshell

tabulatedHenke-Gullikson

Page 7: Joachim Stöhr      Stanford Synchrotron Radiation Laboratory

Absolute absorption coefficients from experimental spectra

(from Henke-Gulliksoncompilation)

Page 8: Joachim Stöhr      Stanford Synchrotron Radiation Laboratory

Names: XAFS – NEXAFS –XANES - EXAFS

Interference of outgoing photoelectron and scattered waves

Nearest neighbor distances

Number of neighbors

or XANES

Page 9: Joachim Stöhr      Stanford Synchrotron Radiation Laboratory

Tunable x-rays offer elemental specificity

Page 10: Joachim Stöhr      Stanford Synchrotron Radiation Laboratory

Experimental Soft X-rayTechniques

Page 11: Joachim Stöhr      Stanford Synchrotron Radiation Laboratory

Experimental X-Ray Absorption Techniques

Page 12: Joachim Stöhr      Stanford Synchrotron Radiation Laboratory

X-Ray Absorption versus Photoemission

Page 13: Joachim Stöhr      Stanford Synchrotron Radiation Laboratory

Electron Yield Sampling Depth

Page 14: Joachim Stöhr      Stanford Synchrotron Radiation Laboratory

Surface sensitivity of total and Auger yield

Page 15: Joachim Stöhr      Stanford Synchrotron Radiation Laboratory

total yield

Page 16: Joachim Stöhr      Stanford Synchrotron Radiation Laboratory
Page 17: Joachim Stöhr      Stanford Synchrotron Radiation Laboratory

Some Fundamental X-Ray Absorption Spectra

-- soft x-rays --

Page 18: Joachim Stöhr      Stanford Synchrotron Radiation Laboratory

NEXAFS spectra of polymers: building block picture

Page 19: Joachim Stöhr      Stanford Synchrotron Radiation Laboratory

Chemical Sensitivity

Core level shifts

and

Molecular orbital shifts

Page 20: Joachim Stöhr      Stanford Synchrotron Radiation Laboratory
Page 21: Joachim Stöhr      Stanford Synchrotron Radiation Laboratory

NEXAFS of Transition Metals

1lDipole selection rule

2p 3d - strong2p 4s - weak

Total intensity reflect number of empty holes

Ebert et. al. Phys. Rev. B 53, 16067 (1996).“white

lines”

Page 22: Joachim Stöhr      Stanford Synchrotron Radiation Laboratory
Page 23: Joachim Stöhr      Stanford Synchrotron Radiation Laboratory

Polarized X-Rays - Dichroism

“dichroism” = pol. dep. absorption

Page 24: Joachim Stöhr      Stanford Synchrotron Radiation Laboratory

Polarization definitions (high energy physics)

Historical note: different “handedness” definitions in optics (space) versus high energy physics (time)

Page 25: Joachim Stöhr      Stanford Synchrotron Radiation Laboratory
Page 26: Joachim Stöhr      Stanford Synchrotron Radiation Laboratory

Polarized x-rays offer orientation sensitivity

Antiferromagnetic order

Orientational order

ChiralityFerromagnetic order

Page 27: Joachim Stöhr      Stanford Synchrotron Radiation Laboratory

X-Ray Natural Linear Dichroism

Page 28: Joachim Stöhr      Stanford Synchrotron Radiation Laboratory
Page 29: Joachim Stöhr      Stanford Synchrotron Radiation Laboratory

C. T. Chen et al. PRL 68, 2543 (1992)

Linear Charge Dichroism in a d-electron system

Page 30: Joachim Stöhr      Stanford Synchrotron Radiation Laboratory

J. Stöhr et al., Science 292, 2299 (2001)

Page 31: Joachim Stöhr      Stanford Synchrotron Radiation Laboratory

X-Ray Magnetic Linear Dichroism

Page 32: Joachim Stöhr      Stanford Synchrotron Radiation Laboratory

sum

Magnetic field splits p-orbitals

Page 33: Joachim Stöhr      Stanford Synchrotron Radiation Laboratory

XMLD – spectra below and above TN

Lüning et al. Phys. Rev. B 67, 214433 (2003)

Page 34: Joachim Stöhr      Stanford Synchrotron Radiation Laboratory

XMLD spectra of two oxides

Page 35: Joachim Stöhr      Stanford Synchrotron Radiation Laboratory

XMLD effects especially strong in multiplet peaks

(Ni 2+,d8)

(Ni 1+,d9)

Page 36: Joachim Stöhr      Stanford Synchrotron Radiation Laboratory

X-ray Magnetic Circular Dichroism

Page 37: Joachim Stöhr      Stanford Synchrotron Radiation Laboratory

Magnetic Circular Dichroism

Page 38: Joachim Stöhr      Stanford Synchrotron Radiation Laboratory

Soft x-rays are best for magnetism

Page 39: Joachim Stöhr      Stanford Synchrotron Radiation Laboratory

XMCD spectra of the pure ferromagnetic metals

Page 40: Joachim Stöhr      Stanford Synchrotron Radiation Laboratory

The sum rules

Page 41: Joachim Stöhr      Stanford Synchrotron Radiation Laboratory
Page 42: Joachim Stöhr      Stanford Synchrotron Radiation Laboratory

=0 for x-raysDipole Chirality

k=k0 /c

X-ray Natural Circular Dichroism

Page 43: Joachim Stöhr      Stanford Synchrotron Radiation Laboratory

Pasteur’s and Faraday’s experiments