jet quenching physics

37
Enke Wang (Institute of Particle Physics, Huazhong Normal University) I. Jet Quenching in QCD-based Model II. Jet Quenching in High-Twist pQCD III.Jet Tomography of Hot and Cold Strong Interaction Matter IV. Modification of Dihadron Frag. Function Jet Quenching Physics

Upload: makan

Post on 05-Jan-2016

62 views

Category:

Documents


1 download

DESCRIPTION

Jet Quenching Physics. Enke Wang (Institute of Particle Physics, Huazhong Normal University) Jet Quenching in QCD-based Model Jet Quenching in High-Twist pQCD Jet Tomography of Hot and Cold Strong Interaction Matter Modification of Dihadron Frag. Function. Fragmentation Function. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Jet Quenching Physics

Enke Wang (Institute of Particle Physics, Huazhong Normal University)

I. Jet Quenching in QCD-based Model

II. Jet Quenching in High-Twist pQCD

III. Jet Tomography of Hot and Cold Strong Interaction Matter

IV. Modification of Dihadron Frag. Function

Jet Quenching Physics

Page 2: Jet Quenching Physics

Fragmentation Function

)],(),()[(

2

1)(

2220

4

42

QzDQzDQ

dz

dWL

q

e

sdz

Qd

hhqh

hq

q

qq

hh

hee

p

pz h

h 2

222

0 3

4)(

Q

eNQ q

cqq

Evolution: DGLAP Equation2Q

),( 2QzD hhq

Page 3: Jet Quenching Physics

hadrons

q

q

hadrons

leadingparticle

leading particle

p-p collision

hadrons

q

q

hadrons

Leading particle suppressed

leading particle suppressedA-A collision

Jet Quenching:

EEE '

E

Modification of Fragmentation Function:

p

hp

S~

q

),( 2QzD hhq

hhh zzz

),(),(),(~ 222 QzDQzDQzD hhhqhhq

Page 4: Jet Quenching Physics

28 YEARS AGO

Page 5: Jet Quenching Physics

I. Jet Quenching in QCD-based Model

G-W (M. Gyulassy, X. –N. Wang) Model:

Static Color-Screened Yukawa Potential

Page 6: Jet Quenching Physics

Opacity Expansion Formulism (GLV)

Double Born Scattering

GLV, Phys. Rev. Lett. 85 (2000) 5535; Nucl. Phys. B594 (2001) 371

Elastic Scattering

Page 7: Jet Quenching Physics

First Order in opacity Correction

Page 8: Jet Quenching Physics

First Order in opacity Correction

Medium-induced radiation intensity distribution:

Induced radiative energy loss:

Induced gluon number distribution:

)cos(1)2)(( 111122

22

)1(

zBCqvqdLC

kdxd

dNx

g

sR

Non-Abelian LPM Effect

2)1( LE LE )1(

QCD:

QED:

Page 9: Jet Quenching Physics

Radiated Energy Loss vs. Opacity

First order in opacity correction is dominant!

Page 10: Jet Quenching Physics

Detailed Balance Formulism (WW)

E. Wang & X.-N. Wang, Phys. Rev. Lett.87 (2001) 142301

k

x0 p

k

x0 p

Stimulated Emission Thermal Absorption

B-E Enhancement Factor

1+N(k)

Thermal Distribution Func.

N(k)

Page 11: Jet Quenching Physics

Final-state Radiation

k

x0 p

k

x0 p

Energy loss induced by thermal medium:

0

)0()0(

)0(

T

abs d

dp

d

dpdE

22

2 )2('62

4ln

3

E

FsET

E

TC=

Net contribution: Energy gain

Stimulated emission increase E loss Thermal absorption decrease E loss

Page 12: Jet Quenching Physics

First Order in Opacity Correction

Single direct rescattering:

k

y0 y1 p

k

y0 y1 p

y0 y1 p

k

Double Born virtual interaction:

k

y0 y1 y1 p

y0 y1 y1 p

k

k

y0 y1 y1 p

y0 y1 y1 p

k

Key Point: Non-Abelian LPM Effect—destructive Interference!

Page 13: Jet Quenching Physics

Energy Loss in First Order of Opacity

Energy loss induced by rescattering in thermal medium: )1()1()1(

absradEEE

Take limit:

1EL E LT 2

Zero Temperature Part:

0

)0(

)1(

T

rad d

dpdE

048.0

2ln

4 2

2

L

EC

g

Fs

L2

GLV ResultTemperature-dependent Part:

0

)1()1(

)1(

T

abs d

dp

d

dpdE

2

22 )2('61ln

3

E

g

Fs

T

L

E

LTC

Energy gain

Page 14: Jet Quenching Physics

Numerical Result for Energy Loss

3.0S

)1()1()0(

radabsabsEEEE

• Intemediate large E, absorption is important

•Energy dependence becomes strong

•Very high energy E, net energy gain can be neglected

Page 15: Jet Quenching Physics

Parameterization of Jet Quenching with Detailed Balance Effect

)/5.7/()6.1/( 02.1

001

EEdL

dE

d

Average parton energy loss in medium at formation time:

Energy loss parameter proportional to the initial gluon density 2

00

1

ARd

dN

Modified Fragmentation Function (FF)

),(

)],(/),()[1(),,(

2'0/

/

2'0/

'2'0

/

'/2

/

cchL

gghc

gcch

c

cLccch

zDe

zDz

zLzD

z

zeEzD

(X. -N. Wang , PRC70(2004)031901)

,//),/( ''cTgcTcTc EpLzEppz

Page 16: Jet Quenching Physics

Comparison with PHENIX Data

PHENIX,

Nucl. Phys. A757 (2005) 184

Page 17: Jet Quenching Physics

II. Jet Quenching in High-Twist pQCD

e-

, )) (( ,( )qh

q h hHdW

d f x p q Dxd

zz

x

pypedy

xf yixpBq )()0(

2

1

2)(

/( ) 0 (0) , , ( ) 02 2 2

h hip y zhq h h q h h q

S

z dyD z e Tr p S p S y

Frag. Func.

22 )(2)(2

1),,( xpqxpqpTreqpxH q

Page 18: Jet Quenching Physics

Modified Fragmentation Function

2 2 2( , ) ( , ) ( , )h h hD z Q D z Q D z Q

Cold nuclear matter or hot QGP medium lead to the modification of fragmentation function

Page 19: Jet Quenching Physics

Jet Quenching in e-A DISX.-N. Wang, X. Guo, NPA696 (2001); PRL85 (2000) 3591

e-

Page 20: Jet Quenching Physics

Modified Frag. Function in Cold Nuclear Matter

2 2 2( , ) ( , ) ( , )h h hD z Q D z Q D z Q 2 12

24

0

( , ) ( , )2

h

Q

S hq h h L q h

z

zd dzD z Q z x D

z z

2 ( , ) 21( , ) (virtual)

(1 ) ( )

Aqg L A S

L Aq c

T x x Czz x

z f x N

Modified splitting functions

_2 1(

1 2 1 2

2)

1

( , ) (0) ( ) ( ) ( )2 2

( ) ( )1 1

B

L Lix p y ix

ix p yA

y

g

y

q L

pe

dyT x x dy dy e A F y F y y A

y y ye

Two-parton correlation:

LPM

Page 21: Jet Quenching Physics

Modified Frag. Function in Cold Nuclear Matter

hadrons

ph

parton

E

),,()(0 EzDzD ahah

)(0 zDah

are measured, and its QCD evolutiontested in e+e-, ep and pp collisions

Suppression of leading particles

Fragmentation function without medium effect:

Fragmentation function with medium effect:

),1

(1

1),( 0

z

zD

zEzD ahah

Page 22: Jet Quenching Physics

Heavy Quark Energy Loss in Nuclear MediumB. Zhang, E. Wang, X.-N. Wang, PRL93 (2004) 072301; NPA757 (2005) 493

Mass effects:

1) Formation time of gluon radiation time become shorter

222 )1(

)1(2

Mzl

qzz

T

f

LPM effect is significantly reduced for heavy quark

2) Induced gluon spectra from heavy quark is suppressed by

“dead cone” effect

4

2

2

04

222

2

/]1[][

Mzl

lf

T

T

qQ

zq

l

q

M

T

0

Dead cone Suppresses gluon radiation amplitude at 0

Page 23: Jet Quenching Physics

Heavy Quark Energy Loss in Nuclear Medium

)]},,(),,()[1(),,(2

1{

~)~~(~

)1(

1~

),(

22

2

22

1

/~22

3

4

2~

~

1

0

2

2

2

2

22

MlzcMlzceMlzc

x

xxxd

zz

zdz

xQN

xCCQxz

TT

xx

T

L

ML

x

xL

Ac

BsA

B

Q

g

AL

M

LPM Effect

,~~

2

2

Qx

Mx

x

x

A

B

A

L

AN

A Rmx

1

1) Larg or small :

Bx

2Q

A

A

B

c

SAQ

gR

Qx

x

N

CCz

2

2~~

2) Larg or small :2Q

2

22

2~~

A

A

B

c

SAQ

gR

Qx

x

N

CCz

Bx

Page 24: Jet Quenching Physics

Heavy Quark Energy Loss in Nuclear Medium

The dependence of the ratio between charm quark and light quark energy loss in a large nucleus

2Q

The dependence of the ratio between charm quark and light quark energy loss in a large nucleus

Bx

Page 25: Jet Quenching Physics

III. Jet Tomography of Hot and Cold Strong Interaction Matter

E. Wang, X.-N. Wang, Phys. Rev. Lett. 89 (2002) 162301

2 21 1 22 2

22 2 2 2

0 0 0 0

1 (1 )( ,

()

, )

( )2

Q Qs A sT

g L T

Aqg

T cT T T

L

Aq

Cd zz dz z z x d dz

Nk

T x x

f x

Cold Nuclear Matter:Quark energy loss = energy carried by radiated gluon

2 2 13ln

2A

s N Ac B

CE C m R

N x

Energy loss

3/2AE

Page 26: Jet Quenching Physics

Comparison with HERMES Data

HERMES Data: Eur. Phys. J. C20 (2001) 479

22 0060.0)(~

GeVQC 33.0)( 2 Qs 22 3GeVQ , ,

Page 27: Jet Quenching Physics

Initial Parton Density and Energy Loss

jet1

jet2

0

32

2( ) ln

R

s

EE d

00( ) ( )R r

01 0

2d

A

E ER

Initial energy loss in a static medium with density 0

:0E

0 0.1 fm 015

2AR

1

0.5 GeV/fmd

dE

dx

6.140

dx

dEGeV/fm

Initial parton density (Energy loss ) is 15~30 times that in cold Au nuclei !

Page 28: Jet Quenching Physics

Comparison with STAR data

STAR, Phys. Rev. Lett. 91 (2003) 172302

Page 29: Jet Quenching Physics

IV. Modification of Dihadron Frag. Function

h1 h2

jet

A. Majumder, Enke Wang, X. –N. Wang, Phys. Rev. Lett. 99 (2007) 152301

Dihadron fragmentation:

h1

h2

Page 30: Jet Quenching Physics

DGLAP for Dihadron Fragmentation

2

1

1

1

2

2

2 11 2

1 222

21

2

( , , )( ) ( )

ln( , , )q

qh h

q q hg

z z

h

D z z Q dyP

z zD Q

y yy g h h

Q y

h1h2

h1h2

h1

h2

1

1 2

2

22

121ˆ ( ) (( , )

1)

(,

)( )

1q

z

q

z

hg hqgz

Dz

D Qy

dyP y q g

yQ

y y

Page 31: Jet Quenching Physics

Evolution of Dihadron Frag. Function

Page 32: Jet Quenching Physics

Evolution of Dihadron Frag. Function

)()(),( 21212121 zDzDzzD h

qhq

hhq

Page 33: Jet Quenching Physics

Medium Modi. of Dihadron Frag. Function

Page 34: Jet Quenching Physics

Nuclear Modification of Dihadron Frag. Func.

)(

)()(

212

2222 zN

zNzR

h

Ah

h

e-A DIS

Page 35: Jet Quenching Physics

Hot Medium Modification

Page 36: Jet Quenching Physics

Thank YouThank You

Page 37: Jet Quenching Physics