jechiel lichtenstadt tel aviv university

38
QCD analysis of the nucleon spin structure function data in next to leading order in α S The polarized gluon distribution in the nucleon Jechiel Lichtenstadt Tel Aviv University

Upload: fulton-lancaster

Post on 30-Dec-2015

41 views

Category:

Documents


6 download

DESCRIPTION

QCD analysis of the nucleon spin structure function data in next to leading order in α S The polarized gluon distribution in the nucleon. Jechiel Lichtenstadt Tel Aviv University. Outline. World data of nucleon spin structure functions Q 2 evolution with DGLAP equations Results - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Jechiel Lichtenstadt Tel Aviv University

QCD analysis of the nucleon spin structure function data in next to

leading order in αS

The polarized gluon distribution

in the nucleon

Jechiel LichtenstadtTel Aviv University

Page 2: Jechiel Lichtenstadt Tel Aviv University

World data of nucleon spin structure functionsQ2 evolution with DGLAP equationsResultsContribution of the polarized gluon distributionDirect measurements of the polarized gluon distribution Prospective future measurements of the spin structure functionsConclusions

Outline

Page 3: Jechiel Lichtenstadt Tel Aviv University

History

SLAC-YALE E80/E130

G. Baum et al. 1983

0.2 < x < 0.7EMC 1988

J. Ashman et al; 198

0.01 < x < 0.7

Determine the first moment :

xxg d)(1

0 1p

1

Page 4: Jechiel Lichtenstadt Tel Aviv University

World data of theSpin Structure Functions

Proton:EMC, SMC, SLAC-E143, E154, HERMES, JLAB-CLAS

Deuteron: SMC, SLAC-E143, E155, HERMES, JLAB-CLAS

Neutron: SLAC-E142, HERMES,JLAB-MIT

Page 5: Jechiel Lichtenstadt Tel Aviv University

Spin structure function data

Page 6: Jechiel Lichtenstadt Tel Aviv University

QCD Evolution - DGLAP equations

• In the parton model, the spin structure function g1 is related to the polarized quark and gluon distributions in the nucleon by an integral equation involving quark and gluon coefficient functions Ci

q and Cg

(Dokshitzer, Gribov, Lipatov, Altarelli and Parisi)

Page 7: Jechiel Lichtenstadt Tel Aviv University

QCD Evolution - DGLAP equations (Cont.)

)],())(,( ),())(,(2

),())(,([d

2

1),(

1

1

2

1

tyqty

xtyGt

y

xCn

tyty

x

y

ytx

NS

s

NS

qsgf

s

S

qx

n

k f

k

C

Cnef

g

)],(),([),(1

txqtxqtx i

n

ii

f

Where: t = ln(Q2/Λ2), and Λ is a scale parameter

ΔG(x) - the polarized gluon distribution

(singlet)

(non-singlet)

),(),(),(1 1

22

1

1

2

txqtxqn

ee

n

etxq ii

n

i

n

k f

ki

n

k f

kNSf ff

Page 8: Jechiel Lichtenstadt Tel Aviv University

QCD analysis- DGLAP equations (Cont.)

• Parameterization at initial scale (1 (GeV/c)2 )

∆f(x)= η N(αf,βf,af,bf) xα (1-x)β(1+ax+bx1/2)

for ΔΣ(x), ΔG(x), ∆qpNS(x), ∆qn

NS(x)

• Normalization ∫Nxα(1-x)β(1+ax+bx1/2)dx =1 η the first moment of the parton distribution

• Fit procedure: Set parameters at initial scale Evolve parton distributions –using the DGLAP equations and calculate g1(x,Q2) for each data Modify parameters and obtain best fit

Page 9: Jechiel Lichtenstadt Tel Aviv University

QCD analysis- DGLAP equations (Cont.)

QCD analysis in the Adler-Bardeen scheme:First moment of Cg -

(G. Altarelli, R. Ball, DS. Forte and G. Ridolfi Nucl. Phys. B 496 (1997) 337.)

Compare also to the scheme – C1g = 0.

The first moments of the singlet distributions differ by:

(a0 – the singlet axial current matrix element)

MS

4

1 s

gC

)(2

)()( 2

22

0 QGQ

nQa sfABMS

Page 10: Jechiel Lichtenstadt Tel Aviv University

QCD analysis in NLO- results

• Fit to data (shown at measured Q2)

Page 11: Jechiel Lichtenstadt Tel Aviv University

QCD analysis in NLO - results

• 12 parameters• 286 data 2=251

(C.L.=84%)

at Q2=1 (GeV/c)2

stat.)(62.0d)( 13.012.0

1

0

xxGG

Page 12: Jechiel Lichtenstadt Tel Aviv University

1) Open charm production:

q = c

charm fragmentation:- D0, D* (60%)

- D+ (20%)

- DS+, ΛC

+ (10% each)

2) High-Pt hadron pair production:

q=u,d,s

ΔG/G from photon gluon fusion

Page 13: Jechiel Lichtenstadt Tel Aviv University

Measurements of ΔG/G

• Determination of ΔG/G from high PT

hadron pairs

-

PGF QCD Compton Leading order DIS

Page 14: Jechiel Lichtenstadt Tel Aviv University

Measurements of the gluon polarization ∆G/G(x)

Photoproduction of High PT hadron pairs

SMC: Phys. Rev C D70 (2004) 012002 ∆G/G(xg=0.07; μ2=3 GeV2) =-0.20 ± 0.28 ± 0.10

HERMES: Phys. Rev. Lett. 84 (2000) 2584

∆G/G(xg=0.17; μ2=2 GeV2) =0.41 ± 0.18 ± 0.03

Page 15: Jechiel Lichtenstadt Tel Aviv University

Determination of ΔG/G from open charm production

D0 K-+BR = 4%

D*+ Ds+ ~ 30%(*)

K-+s+

c

c

COMPASS at CERN

Page 16: Jechiel Lichtenstadt Tel Aviv University

Measurements of the gluon polarization ∆G/G(x) (Cont.)

• COMPASS: High PT (low Q2) ∆G/G(xg=0.085; μ2=3 GeV2) =0.016 ± 0.058 ±

0.055

High PT (high Q2) ∆G/G(xg=0.13; μ2=3 GeV2) =0.06 ± 0.31 ± 0.06

Open Charm ∆G/G(xg=0.15; μ2=13 GeV2) =-0.57 ± 0.41 ± 0.17 Use CTEQ parameterization of G(x) to obtain ∆G(x)

Page 17: Jechiel Lichtenstadt Tel Aviv University

Comparison of best-fit polarized gluon distribution

with G measurements

Best fit compatible with presently measured G values

Including G data in fit has a very small effect.

G = 0.57 0.11 (stat.)

Page 18: Jechiel Lichtenstadt Tel Aviv University

x dependence of the polarized gluon distribution

• Fit data with 11 parameters: no mid-range node

• 286 data 2=261 (C.L.=72%) G = 0.480.14

• Not quite compatible with measured G• (C.L. -> 67%)• Additional measurements of G are essential

Page 19: Jechiel Lichtenstadt Tel Aviv University

PHENIX at RHICAsymmetry in 0 production

from p+p collisions

GeVsatpp 200

Calculations: NLO with

pQCD

Glück, Reya, Stratmann and

Vogelsang

0.02 < Xg< 0.3 for each PT bin.

Page 20: Jechiel Lichtenstadt Tel Aviv University

Sensitivity to G x=(0.02-0.3)

• Compare data with LL(pT) calculated

with different G(x) and

3.0

02.0

)3.002.0( d)( xxGG xGRSV

Page 21: Jechiel Lichtenstadt Tel Aviv University

ALL( 0) with G from best-fit to world g1 data

Caculation by W. Vogelsang

Page 22: Jechiel Lichtenstadt Tel Aviv University

Systematic errors

Preliminary (rough) estimates

• Systematic errors in g1 data ~ 0.10

• Factorization and renormalization scales ~ 0.05 • Functional form ~ 0.15

• Total estimate ~ 0.20

Page 23: Jechiel Lichtenstadt Tel Aviv University

Measurements with a future Electron Ion Collider

• Extend kinematic range:

• High luminosity

• Ee = 10 GeV

• Ep= 250 GeV

• ∫L = 2fb-1

GeVs 100

Page 24: Jechiel Lichtenstadt Tel Aviv University

Projected EIC data in QCD analysis

• Use best-fit distributions to calculate asymmetries over EIC

kinematic region• Randomize data • Repeat QCD analysis with projected data

G = 0.64 0.05 (stat.)

Page 25: Jechiel Lichtenstadt Tel Aviv University

CONCLUSIONS (I)

• New measurements of the polarized gluon distribution are compatible with g1 data.

• Need more g1 data at low x (proton, deuteron).

• Need more precise G data to determine the x dependence of the gluon distribution

(Expected in near future)

Page 26: Jechiel Lichtenstadt Tel Aviv University

CONCLUSIONS (II)• Determine the axial vector coupling

constant – The Bjorken sum-rule.

with

Note: The non-singlet distribution evolves independently! (Measurements at same (x,Q2)

),())(,(

d

2

1),(),( 1

122

12

1 tyqty

xC

y

yeQxgQxg NSs

NS

x

np

)1()1(2

3),( 2/12 bxaxxNx

g

gQxq

V

ANS

Page 27: Jechiel Lichtenstadt Tel Aviv University

CONCLUSIONS (III)

Remaining tasks:• Evaluate systematic error. Future tasks• Introduce model-independent SF’s

(Fourier-Bessel, Sum of Gaussians) to get a realistic estimate on the uncertainty (G is not determined at low x)

• Incorporate RHIC measurement (G(x:0.02-

0.3)) in the analysis (iterative procedure)• Fit strong coupling constant s

Page 28: Jechiel Lichtenstadt Tel Aviv University

The last slide

• Thanks to many people who were involved and contributed to this work:

• A. Deshpande • W. Vogelsang• R. Windmolders

Page 29: Jechiel Lichtenstadt Tel Aviv University

History – EMC 1988• Measurement of the proton spin structure

function and determination of its first moment: Γ= ∫g1

P(x)dx (Ellis and Jaffe Sum

rule)

0.01 ≤ X ≤ 0.7

Page 30: Jechiel Lichtenstadt Tel Aviv University

The t dependence of the distributions follows the DGLAP equations:Gluon and singlet:

Note: The non-singlet evolves independently of the singlet and the gluon distributions:

The coefficient functions Ciq, Cg, and splitting functions Pi,j can be

expanded in powers of αs .

Use next to leading order (NLO) coefficient functions.

QCD Evolution - DGLAP equations (Cont.)

Page 31: Jechiel Lichtenstadt Tel Aviv University

QCD Evolution - DGLAP equations (Cont.)

The t dependence of the distributions follows the DGLAP equations:Singlet and gluon distributions:

t)G(y,))(,(),())(,(d

2),(G

d

d

t)G(y,))(,(2),())(,(d

2),(

d

d

1

1

ty

xPtyt

y

xP

y

ytx

t

ty

xPntyt

y

xP

y

ytx

t

sggsSgq

x

s

sqgfsSqq

x

s

),())(,(

d

2),(

d

d 1

tyqty

xP

y

ytxq

tNS

sNSqq

x

sNS

Note: The non-singlet evolves independently of the singlet and the gluon distributions:

The coefficient functions Ciq, Cg, and splitting functions Pi,j can be expanded in

powers of αs .

Use next to leading order (NLO) coefficient functions.

Page 32: Jechiel Lichtenstadt Tel Aviv University

Spin structure function data- deuteron

Page 33: Jechiel Lichtenstadt Tel Aviv University

Spin structure function data - proton

Page 34: Jechiel Lichtenstadt Tel Aviv University

Spin structure function data- deuteron (301)

Page 35: Jechiel Lichtenstadt Tel Aviv University

Spin structure function data - neutron

Page 36: Jechiel Lichtenstadt Tel Aviv University

1) Open charm production:

q = c

charm fragmentation:- D0, D* (60%)

- D+ (20%)

- DS+, ΛC

+ (10% each)

2) High-Pt hadron pair production:

q=u,d,s

ΔG/G from photon gluon fusion

Page 37: Jechiel Lichtenstadt Tel Aviv University
Page 38: Jechiel Lichtenstadt Tel Aviv University