isolated bidirectional converter

Upload: ahmed58seribegawan

Post on 04-Jun-2018

238 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 Isolated Bidirectional Converter

    1/66

    Unified Analysis of IsolatedBidirectional Converters

    for Battery Charging

    Simone Buso, Giorgio Spiazzi

    University of Padova - DEI

  • 8/13/2019 Isolated Bidirectional Converter

    2/66

    S. Buso, G. Spiazzi - University of Padova - DEI 2/66

    Outline

    Introduction

    Review of Considered Converter TopologiesSingle-Phase Dual Active Bridge (DAB)

    Single-Phase Series Resonant DAB (SR-DAB)

    Three-Phase Dual Active Bridge (DAB)Three-Phase Series Resonant DAB (SR-DAB)

    Interleaved Boost with Coupled Inductor (IBCI)

    Unified AnalysisSoft-switching conditions

    Transferred Power Calculation

  • 8/13/2019 Isolated Bidirectional Converter

    3/66

    S. Buso, G. Spiazzi - University of Padova - DEI 3/66

    Introduction

    +

    + + + +

    - - - -

    V IN

    Z IN

    V 1 V 2 V OUT V BATT

    Z OUT I OUT

    ISOLATED DC-DC(STAGE #1)

    CURRENT SOURCE(STAGE #2)

    DC-LINK

    Focus on the isolated stage

    (V 1 = high voltage port, V 2 = low voltage port)

  • 8/13/2019 Isolated Bidirectional Converter

    4/66

    S. Buso, G. Spiazzi - University of Padova - DEI 4/66

    Isolated Bidirectional Topologies

    topologies with reduced switch count

    Flyback

    Cuk

    Sepic

    .

    topologies with dual bridge (or half-bridge or push-pull)

    configurationDual Active Bridge (DAB)

    Interleaved Boost with Coupled Inductors (IBCI)

    .

    topologies with dual bridge configuration and highfrequency resonant networks

    Series Resonant DAB (SR-DAB)

    .

  • 8/13/2019 Isolated Bidirectional Converter

    5/66

    S. Buso, G. Spiazzi - University of Padova - DEI 5/66

    ug

    +

    uo

    +

    -S 2S 1

    L1

    i1 i2

    Ro

    +u1

    Co

    L2C1

    u2

    C2+

    Lm

    Ld

    1:n1:n

    Reduced Switch Count Topologies

    High voltage and/or current stress on active components

    Limited soft-switching operation

    Transformer leakage inductance requires suitable snubbercircuits

    Example: bidirectional Cuk converter

    Switch overvoltage!

  • 8/13/2019 Isolated Bidirectional Converter

    6/66

    S. Buso, G. Spiazzi - University of Padova - DEI 6/66

    Dual Active Bridge (DAB)

    Simple phase-shift modulation

    Extended soft-switching operationExploitation of transformer leakage inductance

    Optimum design for constant port voltages V 1 and V 2

    Single-phase:

    V2V1

    i2

    n:1

    S 1aL S 1bL

    Li1S 1aH S 1bH

    S 2aL S 2bL

    S2aH

    SS2bHiL

  • 8/13/2019 Isolated Bidirectional Converter

    7/66

    S. Buso, G. Spiazzi - University of Padova - DEI 7/66

    Dual Active Bridge (DAB)

    Simple phase-shift modulation

    Extended soft-switching operationExploitation of transformer leakage inductance

    Optimum design for constant port voltages V 1 and V 2

    Reduced input and output current ripples

    Three-phase:

    V2V1

    i2

    n:1S 1aL S 1bL

    i1iLa

    S 1cL

    iLb

    iLc

    va1

    vb1

    vc1

    va2

    vb2

    vc2

    S 1aH S 1bH S 1cH

    S 2aL S 2bL S 2cL

    S 2aH S 2bH S 2cH

    o1 o 2

    L

    L

    L

  • 8/13/2019 Isolated Bidirectional Converter

    8/66

    S. Buso, G. Spiazzi - University of Padova - DEI 8/66

    Series Resonant Dual Active Bridge(SR-DAB)

    Same characteristics as single-phase DAB

    Higher degree of freedom (two parameters: L and C)Inherent protection against transformer saturation (withC split between primary and secondary)

    Single-phase:

    vC V2V1

    i2

    n:1

    S 1aL S 1bL

    Li1

    CS

    1aH S 1bH iL

    S 2aL S 2bL

    S 2aH S 2bH

  • 8/13/2019 Isolated Bidirectional Converter

    9/66

    S. Buso, G. Spiazzi - University of Padova - DEI 9/66

    Series Resonant Dual Active Bridge(SR-DAB)

    Same characteristics as three-phase DAB

    Higher degree of freedom (two parameters: L and C)Inherent protection against transformer saturation (withC split between primary and secondary)

    Three-phase:

    V2V1

    i2

    n:1S 1aL S 1bL

    i1LiLa

    S 1cL

    iLb

    iLc

    va1

    vb1

    vc1

    va2

    vb2

    vc2

    S 1aH S 1bH S 1cH

    S 2aL S 2bL S 2cL

    S 2aH S 2bH S 2cH

    o1 o 2

    L

    L

    C

    C

    C

  • 8/13/2019 Isolated Bidirectional Converter

    10/66

    S. Buso, G. Spiazzi - University of Padova - DEI 10/66

    Interleaved Boost with CoupledInductors (IBCI)

    Simple phase-shift modulation

    Extended soft-switching operation

    Exploitation of mutual inductor leakage inductance

    Duty-cycle control of port 2 switches for variable portvoltages V 1 and V 2Reduced port 2 current ripple (low-voltage high-current

    port)

    S 1aH

    L

    S 2aL

    V1

    S 2bL

    V2

    iL

    ib

    i1

    S 1aL

    np

    npiaS 2aH S 2bH

    Lm ima

    Lm imb

    nsnsi2

    VCL

    CCL C CLVCL

    S 1bH

    S 1bL

  • 8/13/2019 Isolated Bidirectional Converter

    11/66

    S. Buso, G. Spiazzi - University of Padova - DEI 11/66

    Unified Analysis

    All the aforementioned topologies control the powertransfer between the two ports by modulating the voltageapplied to a current shaping impedance

    ZiL

    vA vB

    For DAB and IBCI topologies, Z is a simple inductor whilefor SR-DAB topologies Z is a series resonant L-C tank

  • 8/13/2019 Isolated Bidirectional Converter

    12/66

    S. Buso, G. Spiazzi - University of Padova - DEI 12/66

    Phase-Shift Modulation

    LiL

    vA vB

    2

    2f sw t

    2f sw t

    2f sw t

    vA

    vB

    iL

    2

    2

    iL(0)

    iL() iL() = - i L(0)

    V A

    -V A

    V B

    -V B

    Single-phase DAB

    VA > V B

    Example: power transfer from v A to v B

  • 8/13/2019 Isolated Bidirectional Converter

    13/66

  • 8/13/2019 Isolated Bidirectional Converter

    14/66

    S. Buso, G. Spiazzi - University of Padova - DEI 14/66

    Plus Phase-Shift Modulation

    LiL

    vA vB

    (D-1/2)

    (3/2-D)- (D-1/2)

    VA

    VB

    vA()

    vB()

    S 2aL S 2aH

    S 2bH S 2bL

    S1aH

    = S1bL

    S 1aL = S 1bH

    1 2 30

    2(1-D)

    4 5 6 2

    IBCI converter

    (D-1/2) < < /2

    Case B:

    0 < < (D-1/2)

    Case A:

    D > 0.5

  • 8/13/2019 Isolated Bidirectional Converter

    15/66

    S. Buso, G. Spiazzi - University of Padova - DEI 15/66

    Plus Phase-Shift Modulation

    (D-1/2)

    (3/2-D)- (D-1/2)

    VA

    VB

    vA()

    vB()

    S 2aL S 2aH

    S 2bH S 2bL

    S 1aH = S 1bL

    S 1aL = S 1bH

    1 2 30

    2(1-D)

    4 5 6 2

    IBCI converter

    0 1

    L

    S 2aL

    V1

    V2

    iL

    ib

    i1

    S 1aL

    np

    npia

    Lm ima

    Lm imb

    ns n si2

    S 1bH

    S 2bL

    0v A =

    1B Vv =

  • 8/13/2019 Isolated Bidirectional Converter

    16/66

    S. Buso, G. Spiazzi - University of Padova - DEI 16/66

    Plus Phase-Shift Modulation

    (D-1/2)

    (3/2-D)- (D-1/2)

    VA

    VB

    vA()

    vB()

    S 2aL S 2aH

    S 2bH S 2bL

    S 1aH = S 1bL

    S 1aL = S 1bH

    1 2 30

    2(1-D)

    4 5 6 2

    IBCI converter

    1 2

    L

    S2aL

    V1

    V2

    iL

    ib

    i1

    S 1aL

    np

    npiaS 2bH

    Lm ima

    Lm imb

    ns n si2

    CCLVCL

    S 1bH

    ( )

    ACLp

    s

    CLggp

    sA

    VVn

    n

    VVVnnv

    ==

    +=

    1B Vv =

  • 8/13/2019 Isolated Bidirectional Converter

    17/66

    S. Buso, G. Spiazzi - University of Padova - DEI 17/66

    Plus Phase-Shift Modulation

    (D-1/2)

    (3/2-D)- (D-1/2)

    VA

    VB

    vA()

    vB()

    S 2aL S 2aH

    S 2bH S 2bL

    S 1aH = S 1bL

    S 1aL = S 1bH

    1 2 30

    2(1-D)

    4 5 6 2

    IBCI converter

    2 3

    S 1aH

    L

    S 2aL

    V1

    V2

    iL

    ib

    i1

    S 1aL

    np

    npiaS 2bH

    Lm ima

    Lm imb

    ns n si2

    CCLVCL

    S 1bH

    S 1bL

    ( )

    ACLp

    s

    CLggp

    sA

    VVn

    n

    VVVnnv

    ==

    +=

    1B Vv =

  • 8/13/2019 Isolated Bidirectional Converter

    18/66

    S. Buso, G. Spiazzi - University of Padova - DEI 18/66

    Plus Phase-Shift Modulation

    (D-1/2)

    (3/2-D)- (D-1/2)

    VA

    VB

    vA()

    vB()

    S 2aL S 2aH

    S 2bH S 2bL

    S 1aH = S 1bL

    S 1aL = S 1bH

    1 2 30

    2(1-D)

    4 5 6 2

    IBCI converter

    3

    S 1aH

    L

    S 2aL

    V1

    S 2bL

    V2

    iL

    ib

    i1

    S 1aL

    np

    npia

    Lm ima

    Lm imb

    ns n si2

    S 1bH

    S 1bL

    0v A =

    1B Vv =

  • 8/13/2019 Isolated Bidirectional Converter

    19/66

    S. Buso, G. Spiazzi - University of Padova - DEI 19/66

    Plus Phase-Shift Modulation

    v A is a three-level voltage of amplitude V A while v B is asquare wave voltage of amplitude V B

    The duty-cycle of port 2 switches is controlled so as toobtain the condition V A=V BThe power transfer between ports 1 and 2 is controlledthrough the phase-shift angle

    Inductor current has a piecewise linear behavior

    0 /2 v A v BP

    - /2 0 v A v BP

    D1V

    nn

    Vnn

    V 2p

    sCL

    p

    sA

    == 1B VV =

    ( )( )D1

    VVD1VVDV gCLgCLg

    ==

  • 8/13/2019 Isolated Bidirectional Converter

    20/66

    S. Buso, G. Spiazzi - University of Padova - DEI 20/66

    Plus Phase-Shift Modulation

    LiL

    vA vB

    (D-1/2)-

    (D-1/2)+

    VA

    VB

    I1

    I2

    1

    2

    3

    0

    2(1-D)

    I4 = -I1

    I0

    4

    5

    6

    2

    vA()

    vB()

    iL()

    S 2aL S 2aH

    S 2bH S 2bL

    S 1aH = S 1bL

    S 1aL = S 1bH

    0 < < (D-1/2)

    (VA

    = VB)

    IBCI converterD > 0.5

    Case A:

    Power flow

  • 8/13/2019 Isolated Bidirectional Converter

    21/66

    S. Buso, G. Spiazzi - University of Padova - DEI 21/66

    Plus Phase-Shift Modulation

    (D-1/2) < < /2

    1 2 30

    2(1-D)

    I2

    I1

    4 5 6

    I0 I4 = -I1

    I5 = -I2

    (D-1/2)

    (3/2-D)- (D-1/2)

    VA

    VB

    vA()

    vB()

    iL()

    2

    S 2aL S 2aH

    S 2bH S 2bL

    S 1aH = S 1bL

    S 1aL = S 1bH

    (VA

    = VB)

    D > 0.5

    Case B:

    LiL

    vA vB

    IBCI converter

    Power flow

  • 8/13/2019 Isolated Bidirectional Converter

    22/66

    S. Buso, G. Spiazzi - University of Padova - DEI 22/66

    Phase-Shift Modulation in Three-Phase Converters

    V1 /3

    2V1 /3

    nV2 /32nV 2 /3

    vao1

    = vA

    nvao2 = v B

    va1

    vb1

    vc1

    vo1 2V 1 /3V1 /3

    /3-

    0 /3 2/3

    V1

    < /3 < /3 < /3 < /3

    Phase a voltages(Hp: symmetry)

    V1

    S 1aL S 1bL

    i1iLa

    S 1cL

    iLb

    iLc

    va1

    vb1

    vc1

    S 1aH S 1bH S 1cH

    o1

    L

    L

    L

  • 8/13/2019 Isolated Bidirectional Converter

    23/66

    S. Buso, G. Spiazzi - University of Padova - DEI 23/66

    Phase-Shift Modulation in Three-Phase ConvertersDecoupled phase behavior (perfect symmetry)

    v A and v B are six-step voltage waveforms

    The power transfer between ports 1 and 2 is controlled

    through the phase-shift angle

    Two different situations (power from port 1 to port 2):

    0 /3

    /3 /2

    Inductor current has a piecewise linear behavior (DAB)

    0 /2 v A v BP

    - /2 0 v A v BP

  • 8/13/2019 Isolated Bidirectional Converter

    24/66

    S. Buso, G. Spiazzi - University of Padova - DEI 24/66

    Systematic Steady-State Analysis

    The analytical determination of the current waveformsrequires a systematic method for complex topologies (e.g.three-phase resonant DAB).

    The outcome is the mathematical expression of phasecurrents as a function of phase-shift and other designparameters.

    In addition, soft switching conditions can be analyzed in

    detail by extracting current values at the moment ofswitch commutations.

    N

    BA

    N

    Z

    Vvv

    Vv

    ==A

    B

    VV

    k =

    General case:Z

    iL

    vA vB

  • 8/13/2019 Isolated Bidirectional Converter

    25/66

    S. Buso, G. Spiazzi - University of Padova - DEI 25/66

    The half switching period is divided into m subintervals. For eachsubinterval ( i = 1 m ), the values of the current shapingimpedance state variables x i at the end of the interval arecalculated, in normalized form, as a function of their value x i-1 at

    the beginning, i.e.:

    Systematic Steady-State Analysis

    i1 += iiii NxMx

    FxMNNMxMx ii +=+

    +=

    =+ 01,mmm

    1m

    1ii1,m01,mm

    i j

    j

    ik k i, j = = MM

    [ ]Tm21 = L

    We can iterate, obtaining

    where

    and is a column vector containing m i elements, i.e.

  • 8/13/2019 Isolated Bidirectional Converter

    26/66

    S. Buso, G. Spiazzi - University of Padova - DEI 26/66

    Systematic Steady-State Analysis

    from which the initial state variable values are found:

    001,mm xFxMx

    =+=

    ( ) FMIx 11,m0 =

    Exploiting the waveform symmetry, we can write:

    that can be used to derive the current waveform expressionsand to discuss soft-switching conditions

  • 8/13/2019 Isolated Bidirectional Converter

    27/66

    S. Buso, G. Spiazzi - University of Padova - DEI 27/66

    Example: IBCI

    Base voltage: V N = V A

    Base impedance: Z N = sw LBase current: I N = V N /Z NBase power: P N = V N 2 / Z N

    Base variables:

    The half switching period is subdivided into 4subintervals ( m = 4 ).

    Two situations has to be considered:Case A : 0 < < (D-1/2)

    Case B : (D-1/2) < < /2

  • 8/13/2019 Isolated Bidirectional Converter

    28/66

    S. Buso, G. Spiazzi - University of Padova - DEI 28/66

    Example: IBCI

    1 2 3 4

    A k -k

    21

    D 1-k ( )D12 -k

    21

    D

    B k

    21

    D 1+k

    21

    D 1-k

    D23

    -k

    21

    D

    i=

    (D-1/2)

    (3/2-D)- (D-1/2)

    VA

    VB

    vA()

    vB()

    S 1aH = S 1bL

    S 1aL = S 1bH

    1 2 30

    2(1-D)

    4 5 6 2

    Case B

  • 8/13/2019 Isolated Bidirectional Converter

    29/66

    S. Buso, G. Spiazzi - University of Padova - DEI 29/66

    Example: IBCI

    Defining j( ) = i( )/I N as the normalized inductorcurrent:

    m,,1iforJJ ii1ii K=+=

    i1 += iiii NxMxComparing with:

    m,,1iforN

    1M

    ii

    iK=

    ==

  • 8/13/2019 Isolated Bidirectional Converter

    30/66

    S. Buso, G. Spiazzi - University of Padova - DEI 30/66

    Example: IBCI

    From:

    the normalized initial inductor current value is:

    For both cases A and B we have:

    =

    =4

    1iii0 2

    1J

    ( )

    +=

    2kD1J 0

    ( ) FMIx 11,m0 =

    For plus phase-shift modulation k = 1 :

    =21

    DJ 0

  • 8/13/2019 Isolated Bidirectional Converter

    31/66

    S. Buso, G. Spiazzi - University of Padova - DEI 31/66

    Example: SR-DAB

    Base voltage: V N = V A

    Base impedance: Z N = Z rBase current: I N = V N /Z NBase power: P N = V N 2 / Z N

    Base frequency: N = r

    Base variables:

    C

    LZr =

    LC

    1r =

    ZiL

    vA vB

  • 8/13/2019 Isolated Bidirectional Converter

    32/66

    S. Buso, G. Spiazzi - University of Padova - DEI 32/66

    Example: SR-DAB

    Current shaping impedance state variables:

    ( )

    ( )

    +

    +

    =

    +

    =

    n

    0L

    n

    0C

    n

    C

    n0L

    n0C

    nL

    f

    sinJ

    f

    cosU

    f

    cos1u

    fcosJ

    fsinU

    fsin j

    =C

    L

    u j

    xNormalized state variable vector:

    C LiLuC

  • 8/13/2019 Isolated Bidirectional Converter

    33/66

    S. Buso, G. Spiazzi - University of Padova - DEI 33/66

    Example: SR-DAB

    10 2

    VA

    VB

    vA()

    vB()

    2

    The half switching period is subdivided into 2subintervals ( m = 2 ).

    i = 1 i = 2 1+k 1-k

  • 8/13/2019 Isolated Bidirectional Converter

    34/66

    S. Buso, G. Spiazzi - University of Padova - DEI 34/66

    Example: SR-DAB

    Current shaping impedance state variables:

    {

    Matrix M

    i

    n

    i

    n

    i

    1Ci

    1Li

    n

    i

    n

    i

    n

    i

    n

    i

    Ci

    Li

    fcos1

    fsinUJ

    fcos

    fsin

    fsinfcosUJ

    +

    =

    for i = 1,2

    {

    Matrix N

    ==

    nn

    nn1,21,m

    fcos

    fsin

    fsinfcosMM

  • 8/13/2019 Isolated Bidirectional Converter

    35/66

    S. Buso, G. Spiazzi - University of Padova - DEI 35/66

    Example: SR-DAB

    k1

    fcos

    fcos2

    fsin2

    fsin

    fcos1

    fsin

    nn

    nn

    n

    n

    +

    =F

    Fx

    1

    nn

    nn0

    fcos1

    fsin

    fsinfcos1

    =

    Matrix F:

    Initial conditions:

  • 8/13/2019 Isolated Bidirectional Converter

    36/66

    S. Buso, G. Spiazzi - University of Padova - DEI 36/66

    Example: SR-DAB

    +

    +

    +

    = k

    fcos

    fcos

    fcos1

    fsinfsin

    0f

    sin

    fcos1

    1

    nnn

    nnn

    n

    0x

    Initial conditions:

    ( )

    +

    +

    =

    n

    nnn0L

    f

    cos1

    fsinfsinkfsinJ

  • 8/13/2019 Isolated Bidirectional Converter

    37/66

    S. Buso, G. Spiazzi - University of Padova - DEI 37/66

    Example: Three-Phase DAB

    V1 /3

    2V1 /3

    nV2 /32nV 2 /3

    vao1 = v A

    nvao2 = v B

    /3-

    0 /3 2/3

    The half switching period is subdivided into 6subintervals ( m = 6 ).Two situations has to be considered:

    Case A : 0 < < /3

  • 8/13/2019 Isolated Bidirectional Converter

    38/66

    Example: Three Phase DAB

  • 8/13/2019 Isolated Bidirectional Converter

    39/66

    S. Buso, G. Spiazzi - University of Padova - DEI 39/66

    Example: Three-Phase DABand SR-DAB

    1 2 3 4 5 6

    A3

    k 1+ 3

    k 1

    3

    3k 2

    ( )

    3k 12

    3

    3

    k 21

    3

    k 1

    3

    B 3k 21+

    3

    3

    k 1+

    3

    2

    3

    k 2 +

    3

    3

    k 2

    3

    2

    3

    k 1 3

    3

    k 21

    3

    2

    i=

    V1 /3

    2V1 /3

    nV2 /32nV 2 /3

    vao1 = v A

    nvao2 = v B

    /3

    0 /3 2/3

    Case B

  • 8/13/2019 Isolated Bidirectional Converter

    40/66

    S. Buso, G. Spiazzi - University of Padova - DEI 40/66

    Soft-switching conditions

    Single phase DAB: port 1

    1k1

    2

    ( ) 0k12

    k)0( jL

    =

    Power flow

    2

    2f sw

    2f sw t

    2f sw t

    vA

    vB

    iL

    2

    2

    iL(0)

    iL() iL() = - i L(0)

    VA

    -V A

    V B

    -V B

    V1

    S 1aL S 1bL

    Li1S 1aH S 1bH iL

  • 8/13/2019 Isolated Bidirectional Converter

    41/66

    S. Buso, G. Spiazzi - University of Padova - DEI 41/66

    Soft-switching conditions

    ( )k12

    ( ) 0k12

    )( jL

    =

    Power flow

    2

    2f sw

    2f sw t

    2f sw t

    vA

    vB

    iL

    2

    2

    iL(0)

    iL() iL() = - i L(0)

    VA

    -V A

    V B

    -V B

    V2

    i2

    n:1

    iLs

    S 2aL S 2bL

    S 2aH S 2bH

    Single phase DAB: port 2

  • 8/13/2019 Isolated Bidirectional Converter

    42/66

    S. Buso, G. Spiazzi - University of Padova - DEI 42/66

    Soft-switching conditions

    Single phase DAB

    For a power flow from port 1 to port 2 the phase-shiftinterval is 0 /2. Thus , if k 1 the soft switchingcondition is satisfied for any value and for bothbridge switches.

    1k12

    The same consideration holds for a power flow fromport 2 to port 1 where voltages v A and v B are sweptand k = 1/k. Now, if k 1 ( k 1 ) the soft switchingcondition is satisfied for any value.

    Port 1:

    ( )k12

    Port 2:

  • 8/13/2019 Isolated Bidirectional Converter

    43/66

    S. Buso, G. Spiazzi - University of Padova - DEI 43/66

    Soft-switching conditions

    Single phase DAB

    V1

    S 1aL S 1bL

    Li1S 1aH S 1bH iL

    For a bidirectional power flow, if k = 1

    the soft switching condition is satisfiedfor any value between /2 and /2.

    1k12

    Port 1:

    ( )k12

    Port 2:

    f h d

  • 8/13/2019 Isolated Bidirectional Converter

    44/66

    S. Buso, G. Spiazzi - University of Padova - DEI 44/66

    Soft-switching conditions

    Single phase SR-DAB converter: port 1

    vC V2V1

    i2

    n:1

    S1aL

    S1bL

    Li1 CS 1aH S 1bH iL

    S2aL

    S2bL

    S 2aH S 2bH

    0 0.333 0.667 14

    3.2

    2.4

    1.6

    0.8

    0

    0.8

    1.6

    2.4

    3.2

    4

    NORMALIZED W LH

    J L0()

    J L1()

    ( ) 0

    fcos1

    fsinfsinkfsinJ

    n

    nnn0L <

    +

    +

    =

    Power flow

    S f i hi di i

  • 8/13/2019 Isolated Bidirectional Converter

    45/66

    S. Buso, G. Spiazzi - University of Padova - DEI 45/66

    Soft-switching conditions

    Single phase SR-DAB converter: port 2

    vC V2V1

    i2

    n:1

    S1aL

    S1bL

    Li1 CS 1aH S 1bH iL

    S2aL

    S2bL

    S 2aH S 2bH

    0 0.333 0.667 14

    3.2

    2.4

    1.6

    0.8

    0

    0.8

    1.6

    2.4

    3.2

    4

    NORMALIZED W LH

    J L0()

    J L1()

    ( ) 0k

    fcos1

    fsin

    fcos1

    fsin

    fsin

    J

    n

    n

    n

    nn1L >

    +

    +

    +

    =

    Power flow

    S f i hi di i

  • 8/13/2019 Isolated Bidirectional Converter

    46/66

    S. Buso, G. Spiazzi - University of Padova - DEI 46/66

    Soft-switching conditions

    Single phase SR-DAB converter

    vC V2V1

    i2

    n:1

    S1aL

    S1bL

    Li1 CS 1aH S 1bH iL

    S2aL

    S2bL

    S 2aH S 2bH

    ( ) ( ) ( )1k

    f cos1

    f sin0J0J

    n

    n1L0L

    +

    ==

    0 0.333 0.667 14

    3.2

    2.4

    1.6

    0.8

    0

    0.8

    1.6

    2.4

    3.2

    4

    NORMALIZED W LH

    J L0()

    J L1()

    Worst case: = 0

    K = 1

    Power flow

    S ft it hi diti

  • 8/13/2019 Isolated Bidirectional Converter

    47/66

    S. Buso, G. Spiazzi - University of Padova - DEI 47/66

    Soft-switching conditions

    Interleaved Boost with Coupled Inductors

    S 1aH

    L

    S 2aL

    V1

    S 2bL

    V2

    iL

    ib

    i1

    S 1aL

    np

    npiaS 2aH S 2bHL

    m ima

    Lm imb

    n snsi2

    VCL

    CCL C CLVCL

    S 1bH

    S 1bL

    Power flow

    Lets analyze the port 1 switch commutations first

    Soft switching conditions

  • 8/13/2019 Isolated Bidirectional Converter

    48/66

    S. Buso, G. Spiazzi - University of Padova - DEI 48/66

    Soft-switching conditions

    S 1aH

    LV1

    iL

    i1

    S 1aL

    n s n s

    S 1bH

    S 1bL

    D > 0.5

    (D-1/2)-

    (D-1/2)+

    VA

    VB

    I1

    I2

    1 2 30

    2(1-D)

    I4 = -I1

    I0

    4 5 6

    2

    vA()

    vB()

    iL()

    S 2aL S 2aH

    S 2bH S 2bL

    S 1aH = S 1bL

    S 1aL = S 1bH

    ( )D12k

    ( ) 02

    kD1

    kJJ 01

    +=

    +=

    Case A : 0 < < (D-1/2)

    Soft switching conditions

  • 8/13/2019 Isolated Bidirectional Converter

    49/66

    S. Buso, G. Spiazzi - University of Padova - DEI 49/66

    Soft-switching conditions

    S 1aH

    LV1

    iL

    i1

    S 1aL

    n s n s

    S 1bH

    S 1bL

    1 2 30

    2(1-D)

    I2

    I1

    4 5 6

    I0 I4 = -I1

    I5 = -I2

    (D-1/2)

    (3/2-D)- (D-1/2)

    VA

    VB

    vA()

    vB()

    iL()

    2

    S 2aL S 2aH

    S 2bH S 2bL

    S 1aH = S 1bL

    S 1aL = S 1bH

    D > 0.5

    ( )

    ( ) 0k12

    21Dk1JJ 12

    =

    ++=

    2

    1k

    Case B : (D-1/2) < < /2

    Soft switching conditions

  • 8/13/2019 Isolated Bidirectional Converter

    50/66

    S. Buso, G. Spiazzi - University of Padova - DEI 50/66

    Soft-switching conditions

    S 1aH

    LV1

    iL

    i1

    S 1aL

    n s n s

    S 1bH

    S 1bL

    21kCase B : (D-1/2) < < /2

    ( )D12k Case A : 0 < < (D-1/2)

    Case B is included in case A!

    Same condition holds for reversed power flow

    k = 1 is used to minimize the inductorcurrent crest factor

    Soft switching conditions

  • 8/13/2019 Isolated Bidirectional Converter

    51/66

    S. Buso, G. Spiazzi - University of Padova - DEI 51/66

    Soft-switching conditions

    Interleaved Boost with Coupled Inductors

    S 1aH

    L

    S 2aL

    V1

    S 2bL

    V2

    iL

    ib

    i1

    S 1aL

    np

    npiaS 2aH S 2bHLm ima

    Lm imb

    n snsi2

    VCL

    CCL C CLVCL

    S 1bH

    S 1bL

    Power flow

    For port 2 switch commutations we have to analyze thecurrents i a and i b which depend also on duty-cycle:

    Lp

    smaa in

    nii += L

    p

    smbb in

    nii =

    Soft-switching conditions

  • 8/13/2019 Isolated Bidirectional Converter

    52/66

    S. Buso, G. Spiazzi - University of Padova - DEI 52/66

    Soft-switching conditions

    IBCI

    ( ) 0Inn

    Ii 2p

    smpk2b =

    D > 0.5

    (D-1/2)-

    (D-1/2)+

    VA

    VB

    I1

    I2

    1 2 30

    2(1-D)

    I4 = -I1

    I0

    4 5 6

    2

    vA()

    vB()

    iL()

    S 2aL S 2aH

    S 2bH S 2bL

    S 1aH = S 1bL

    S 1aL = S 1bH

    Case A: 0 < < (D-1/2)

    S 2aL S 2bL

    V2 ibnp

    np

    iaS 2bH

    Lm ima

    Lm imb

    i2

    CCLVCL

    Soft-switching conditions

  • 8/13/2019 Isolated Bidirectional Converter

    53/66

    S. Buso, G. Spiazzi - University of Padova - DEI 53/66

    Soft switching conditions

    IBCI

    ( ) 0Inn

    Ii 3p

    smvl3b =

    D > 0.5

    (D-1/2)-

    (D-1/2)+

    VA

    VB

    I1

    I2

    1 2 30

    2(1-D)

    I4 = -I1

    I0

    4 5 6

    2

    vA(

    )

    vB()

    iL()

    S 2aL S 2aH

    S 2bH S 2bL

    S 1aH = S 1bL

    S 1aL = S 1bH

    Case A: 0 < < (D-1/2)

    S 2aL S 2bL

    V2 ibnp

    np

    iaS 2bH

    Lm ima

    Lm imb

    i2

    CCLVCL

    Soft-switching conditions

  • 8/13/2019 Isolated Bidirectional Converter

    54/66

    S. Buso, G. Spiazzi - University of Padova - DEI 54/66

    Soft switching conditions

    IBCI

    ( ) 0Inn

    Ii 1p

    smpk1b =

    D > 0.5

    1 2 30

    2(1-D)

    I2

    I1

    4 5 6

    I0 I4 = -I1

    I5 = -I2

    (D-1/2)

    (3/2-D)- (D-1/2)

    VA

    VB

    vA()

    vB()

    iL()

    2

    S 2aL S 2aH

    S 2bH S 2bL

    S 1aH = S 1bL

    S 1aL = S 1bH

    Case B: (D-1/2) < < /2

    S 2aL S 2bL

    V2 ibnp

    npiaS 2bH

    Lm ima

    Lm imb

    i2

    CCLVCL

  • 8/13/2019 Isolated Bidirectional Converter

    55/66

    Soft-switching conditions

  • 8/13/2019 Isolated Bidirectional Converter

    56/66

    S. Buso, G. Spiazzi - University of Padova - DEI 56/66

    Soft switching conditions

    The active clamp operation requires the clamp current tohave zero average value. This means that the upperswitch current must reverse polarity during their

    conduction interval ( help soft-switching )A non negligible magnetizing inductor ripple helps tosatisfy the soft-switching conditions especially at lowpower levels

    Considerations:

    S 1aH

    L

    S2aL

    V1

    S2bL

    V2

    iL

    ib

    i1

    S 1aL

    np

    npia

    S 2aH S 2bHLm ima

    Lm imb

    nsnsi2

    VCL

    CCL C CLVCL

    S 1bH

    S 1bL

    Normalized Transferred Power

  • 8/13/2019 Isolated Bidirectional Converter

    57/66

    S. Buso, G. Spiazzi - University of Padova - DEI 57/66

    ( ) ( )

    ( )

    =

    =

    0L

    N

    d j1P

    P

    LiL

    vA vB

    Single-phase DAB

    2

    2f sw

    2f sw t

    2f sw t

    vA

    vB

    iL

    2

    2

    iL(0)

    iL() iL() = - i L(0)

    VA

    -V A

    V B

    -V B Power flow

    Normalized Transferred Power

  • 8/13/2019 Isolated Bidirectional Converter

    58/66

    S. Buso, G. Spiazzi - University of Padova - DEI 58/66

    ( )

    = 1k

    0 0.25 0.5 0.75 10

    0.2

    0.4

    0.6

    0.8

    NORMALIZED TRANSFERRED POWER

    NORMALIZED PHASE-SHIFT ANGLE

    1

    0

    ( )

    10

    A

    B

    VV

    k =

    Single-phase DAB

    LiL

    vA vB

    Power flow

    Normalized Transferred Power

  • 8/13/2019 Isolated Bidirectional Converter

    59/66

    S. Buso, G. Spiazzi - University of Padova - DEI 59/66

    4k2max

    =

    =

    0 0.25 0.5 0.75 10

    0.2

    0.4

    0.6

    0.8

    NORMALIZED TRANSFERRED POWER

    NORMALIZED PHASE-SHIFT ANGLE

    1

    0

    ( )

    10

    Single-phase DAB

    LiL

    vA vB

    max

    Power flow

    Normalized Transferred Power

  • 8/13/2019 Isolated Bidirectional Converter

    60/66

    S. Buso, G. Spiazzi - University of Padova - DEI 60/66

    Single-phase SR-DAB LiL

    vA vB

    C

    vC

    0 0.125 0.25 0.375 0.50

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    NORMALIZED TRANSFERRED POWER

    NORMALIZED PHASE-SHIFT ANGLE

    ( )

    =

    =

    1

    f2cos

    f2 2coskf2

    P)(P)(

    n

    nn

    N

    Power flow

    Normalized Transferred Power

  • 8/13/2019 Isolated Bidirectional Converter

    61/66

    S. Buso, G. Spiazzi - University of Padova - DEI 61/66

    0 0.125 0.25 0.375 0.50

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    NORMALIZED TRANSFERRED POWER

    NORMALIZED PHASE-SHIFT ANGLE

    ( )

    =

    =

    1

    f2cos

    1kf2

    2

    n

    n

    max

    max

    Single-phase SR-DAB LiL

    vA vB

    C

    vC

    Power flow

  • 8/13/2019 Isolated Bidirectional Converter

    62/66

    Normalized Transferred Power

  • 8/13/2019 Isolated Bidirectional Converter

    63/66

    S. Buso, G. Spiazzi - University of Padova - DEI 63/66

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    0.5

    0.55

    0.6

    NORMALIZED TRANSFERRED POWER

    NORMALIZED PHASE-SHIFT ANGLE

    Dtest,( )

    ( ) ( )

    =

    221

    -D for 21

    Dk1k

    21

    -D0 for D1k22

    LiL

    vA vB

    IBCI

    Power flow

    Normalized Transferred Power

  • 8/13/2019 Isolated Bidirectional Converter

    64/66

    S. Buso, G. Spiazzi - University of Padova - DEI 64/66

    LiL

    vA vB

    Three-phase DAB

    ( )

    =

    2318

    323

    2

    2

    0 0.125 0.25 0.375 0.50

    0.2

    0.4

    0.6

    0.8NORMALIZED TRANSFERRED POWER

    NORMALIZED PHASE-SHIFT ANGLE

    ( )

    Power flow

    Normalized Transferred Power

  • 8/13/2019 Isolated Bidirectional Converter

    65/66

    S. Buso, G. Spiazzi - University of Padova - DEI 65/66

    Three-phase SR-DAB

    0 0.083 0.167 0.25 0.333 0.417 0.50

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    NORMALIZED TRANSFERRED POWER

    1 ( )

    No closed formexpression for ()

    LiL

    vA vB

    C

    vC

    Power flow

    Conclusions

  • 8/13/2019 Isolated Bidirectional Converter

    66/66

    S. Buso, G. Spiazzi - University of Padova - DEI 66/66

    Different isolated bidirectional topologies, belonging tothe family of dual active bridge structures, have beenconsidered

    A unified analysis has been carried out to calculate thesteady-state current waveform responsible for the powertransfer

    Soft-switching conditions have been investigated for eachconverter topology

    The transferred power and its relation with the phase-shift angle has been calculated