irrigation and fertigation control - purdue university

30
1/18/2017 1 Irrigation and Fertigation Control Marc van Iersel Irrigation: Why worry? Overlooked, but critical task Has major impact on quality Affects fertilization

Upload: others

Post on 29-Oct-2021

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Irrigation and Fertigation Control - Purdue University

1/18/2017

1

Irrigation and Fertigation ControlMarc van Iersel

Irrigation: Why worry?

• Overlooked, but critical task

• Has major impact on quality

• Affects fertilization

Page 2: Irrigation and Fertigation Control - Purdue University

1/18/2017

2

What determines water use?

• Plant size

• Environmental conditions

Two components to water use

Page 3: Irrigation and Fertigation Control - Purdue University

1/18/2017

3

High water use Low water use

Transpiration and stomates

Stomatal opening depends on light

VPD

Page 4: Irrigation and Fertigation Control - Purdue University

1/18/2017

4

Vapor pressure deficit

Temperature (oFahrenheit)

30 40 50 60 70 80 90 100 110

Vap

or p

ress

ure

(kilo

Pas

cals

)

0

1

2

3

4

5

6

7

Saturation vapor pressure

Vapor pressure deficit

Temperature (oFahrenheit)

30 40 50 60 70 80 90 100 110

Vap

or p

ress

ure

(kilo

Pas

cals

)

0

1

2

3

4

5

6

7

Saturation vapor pressureActual vapor pressure (40% RH)

VPD

Page 5: Irrigation and Fertigation Control - Purdue University

1/18/2017

5

Vapor pressure deficit

Temperature (oFahrenheit)

30 40 50 60 70 80 90 100 110

Vap

or p

ress

ure

(kilo

Pas

cals

)

0

1

2

3

4

5

6

7

Saturation vapor pressureActual vapor pressure (40% RH)Vapor pressure deficit (40% RH)

VPD

Irrigation practices

• Based on grower judgment• Likely results in overwatering

• Timers• Don’t adjust for crop size or weather

• Light or VPD accumulator• Doesn’t adjust for crop size

Page 6: Irrigation and Fertigation Control - Purdue University

1/18/2017

6

This project is all about water

Providing real‐time information to growers

About their microclimatic conditions

To schedule irrigation applications

Based on specific crop requirements

SCRI-MINDS Managing Irrigation and Nutrition via Distributed Sensing

What we have done:• Developed Wireless Sensor Networks, with 

monitoring and control capabilities (hardware)

• Developed a Graphic User Interface, for intuitive decision making (software)

• Developed guidelines to Manage Irrigation

• Quantified impact on production (Quality, fertilization, runoff)

• Determined the Economic Impact of better irrigation management ($$$)

Page 7: Irrigation and Fertigation Control - Purdue University

1/18/2017

7

What is a Wireless Sensor Network?

Production areasIrrigation Controller

Sensors Valves

RadioCommunication

Local Computer

Grower Input

Graphic user interface

Remote Computeror  Smartphone

What is a Wireless Sensor Network?

• Hardware • Sensors• Nodes• Valves

• Software• Data visualization• Decision making

nR5

Page 8: Irrigation and Fertigation Control - Purdue University

1/18/2017

8

SolenoidValve

H2O

DRY! GOOD !

Automated Irrigation System

Observed benefits

• Water savings• Plant quality• Faster growth• Fertilizer savings• Environmental

Page 9: Irrigation and Fertigation Control - Purdue University

1/18/2017

9

Precision Control of IrrigationWater use reductions between 40 and 85%

Precision Control of Irrigation

• A 50% reduction in irrigation saved over 43 million gallons of water in one nursery in 2012

• Saved $6,500 in pumping costs

• In California (water costs are ~$750 / acre foot), this water costs ~$100,000

Page 10: Irrigation and Fertigation Control - Purdue University

1/18/2017

10

Impact on Water Availability

• Cost of water is low compared to other variable costs

• Some operations are limited by the well or pump capacity

• Tree nursery was able to install an additional 30-acre production

Cut Snapdragons (Flowers by Bauers)

Page 11: Irrigation and Fertigation Control - Purdue University

1/18/2017

11

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

GROUP 1/2 GROUP 2 GROUP 2/3 GROUP 3 GROUP 3/4

82%

32%39%

31%

5%

Economic Analysis: Total Stems

Pre-Sensor: (2007 – 2009) Post-Sensor: (2010 – 2012)

Lichtenberg et al, 2015

$0.00

$0.10

$0.20

$0.30

$0.40

$0.50

$0.60

$0.70

GROUP 1/2 GROUP 2 GROUP 2/3 GROUP 3 GROUP 3/4

Economic Analysis: $ /stem

Pre-Sensor: (2007 – 2009) Post-Sensor: (2010 – 2012)

Lichtenberg et al, 2015

Page 12: Irrigation and Fertigation Control - Purdue University

1/18/2017

12

2007 -2009 2010- 2012 Difference Change

Crops/ year 37 38 1 3 %

Stems/ year 106,308 139,382 33,074 31 %

Price/ stem $ 0.59 $ 0.62 $ 0.03 5 %

Labor costs $ 15,905 $ 17,893 $ 1,988 12 %

Electricity $ 4,109 $2,923 $ 1,186 -29 %

Sensor system $ 0 $7,147 $ 7,147 ---

Revenue $63,094 $ 85,679 22,585 36 %

Profit $43,080 $57,716 $14,636 34 %

Payback period on upfront costs <16 months

Economic Analysis: Annual Profitability

Pre-Sensor: (2007 – 2009) Post-Sensor: (2010 – 2012)

Lichtenberg et al, 2015

• Increased yields • Improved quality

= more profit

Cut Snapdragons (Flowers by Bauers)

Page 13: Irrigation and Fertigation Control - Purdue University

1/18/2017

13

Alternative to Plant Growth Regulators

• Reduced substrate water content reduces elongation

Tracking curves to monitor poinsettia height

7

8

9

10

11

12

13

14

15

16

17

18

19

25‐Aug 1‐Sep 8‐Sep 15‐Sep 22‐Sep 29‐Sep 6‐Oct 13‐Oct 20‐Oct 27‐Oct 3‐Nov 10‐Nov 17‐Nov 24‐NovHei

gh

t fr

om t

he

Ben

ch T

op (

inch

es)

Date

Cultivar: Classic Red

Page 14: Irrigation and Fertigation Control - Purdue University

1/18/2017

14

0 20 40 60 80

Height (inches)

8

10

12

14

16

18

20

Days after pinching

0 20 40 60 80

Height (inches)

8

10

12

14

16

18

208

10

12

14

16

18

20

Lower limit 

Upper limits 

Height 

8

10

12

14

16

18

2014"

17"

15.5"

Control

Growth tracking curves

Days after pinching

‐20 0 20 40 60 80

Substrate volumetric water content (%)

10

20

30

40

5017"

‐20 0 20 40 60 80

Control 

10

20

30

40

50

60

14" 15.5"

Page 15: Irrigation and Fertigation Control - Purdue University

1/18/2017

15

Final plant height35.6 cm 39.4 cm 43.2 cm control

Bract size35.6 cm 39.4 cm 43.2 cm control

Page 16: Irrigation and Fertigation Control - Purdue University

1/18/2017

16

Better Growth

Month

Feb

201

1

Mar

ch 2

011

Apr

il 20

11

May

201

1

June

201

1

July

201

1

Aug

ust

201

1

Sep

t 20

11

Oct

201

1

Nov

201

1

Dec

201

1

Jan

2012

Feb

201

2

Mar

ch 2

012

Apr

il 20

12

Num

ber

of p

lant

s

0

2000

4000

6000

8000

10000

Forecast sales

Faster production cycle

Page 17: Irrigation and Fertigation Control - Purdue University

1/18/2017

17

Month

Fe

b 20

11

Mar

ch 2

011

Apr

il 20

11

May

20

11

Jun

e 20

11

July

20

11

Au

gust

20

11

Sep

t 20

11

Oct

20

11

No

v 20

11

De

c 20

11

Jan

2012

Fe

b 20

12

Mar

ch 2

012

Apr

il 20

12

Num

ber

of p

lant

s

0

2000

4000

6000

8000

10000

Forecast salesActual sales

Faster production cycle

23,400 plants

New Crop - 2012

Ready Oct. 20124 month 

production cycle

Is it real?

Page 18: Irrigation and Fertigation Control - Purdue University

1/18/2017

18

Disease Management

• Sensor-based irrigation decreased disease-related shrinkage in Gardenia from 30% to virtually zero

Profitability of Wireless Sensor Networks

Potential benefits found include:• Water/energy/labor savings• Reduced losses• Reduced management time• Accelerated production time

Analysis by Erik Lichtenberg, Univ. of Maryland

Page 19: Irrigation and Fertigation Control - Purdue University

1/18/2017

19

No Sensors

Sensor-Based

Irrigation

Annualized Revenue $66,297 $ 145,505 Annualized Production Expenditures $30,539 $50,039 Annualized Sensor System Cost (3-year Lifetime, 6% Interest) $ 0.00 $3,755

Annualized Profit $35,758 $91,710

Annualized Profit per Acre $78,000 $ 200,000

Percent Change from Base Case +156%

System payback: less than one month!

Water & fertilizer interactions

• Fertigation; water soluble fertilizer• excessive irrigation result in high fertilizer

application • Excessive watering leaches nutrients from

containers• Nutrients movement in the substrate:

• mass flow • diffusion

• dependent on water in the substrate

• Thus plant nutrient uptake depends on substrate water content

Page 20: Irrigation and Fertigation Control - Purdue University

1/18/2017

20

Water & fertilizer interactions

Bigger plantsless flowers

Bestplants

Water & fertilizer interactions

• Can fertilizer concentrations be decreased with more efficient irrigation?

• Because of less leaching

• Or do fertilizer concentrations need to be increased?

• Because less water is applied

Page 21: Irrigation and Fertigation Control - Purdue University

1/18/2017

21

Materials and methods

• Petunia ‘Apple blossom’ was grown in 6” pots

Treatments

• Fertigation at two fertilizer concentrations100 and 200 ppm N (15–5–15 Cal-Mag)

• Soil moisture sensor-based drip irrigation system used

Solenoid valve

Page 22: Irrigation and Fertigation Control - Purdue University

1/18/2017

22

Treatments

• Four irrigation treatments (volumes): • Control,• Low,• Medium &• High leaching

• Leachate collected weekly

Data collection

Page 23: Irrigation and Fertigation Control - Purdue University

1/18/2017

23

Irrigation volume

Control Low Medium High

Tot

al le

achi

ng v

olum

e (m

L/p

lant

)

0

500

1000

1500

2000

2500

3000

3500

100 mg·L-1

200 mg·L-1

b

ab

a

aFertilizer Nconcentration

Leaching volume

Irrigation volume

Control Low Medium High

Sho

ot d

ry m

ass

(g/p

lant

)

0

20

40

60

100 mg·L-1

a aa a

Shoot dry mass

Page 24: Irrigation and Fertigation Control - Purdue University

1/18/2017

24

Irrigation volume

Control Low Medium High

Sho

ot d

ry m

ass

(g/p

lant

)

0

20

40

60

100 mg·L-1 200 mg·L-1

b bb

b

a aa a

Shoot dry mass

CONCLUSIONS

• Irrigation and leaching volumes did not affect plant growth

• No evidence fertilizer concentrations can be reduced with more efficient irrigation

Page 25: Irrigation and Fertigation Control - Purdue University

1/18/2017

25

Reduced fertilization

• Water-soluble fertilizers:• Less water = less fertilizer

• CRFs: • Less water = less leaching

• Less runoff

• Financial savings $5 – 10 million/year in Georgia alone

Towards commercializationDecagon’s PlantPoint system, being released now

Page 26: Irrigation and Fertigation Control - Purdue University

1/18/2017

26

Page 27: Irrigation and Fertigation Control - Purdue University

1/18/2017

27

http://horttech.ashspublications.org/content/23/6.toc

HortTechnologySpecial Series:

Improving Irrigation with Sensor Networks:Implementation and Impact

Page 28: Irrigation and Fertigation Control - Purdue University

1/18/2017

28

Low-cost alternative: Arduino

http://hortphys.uga.edu/irrigationcontrol.html

Build your own irrigation controller• Open source microcontroller (Arduino)

Page 29: Irrigation and Fertigation Control - Purdue University

1/18/2017

29

http://hortphys.uga.edu/irrigationcontrol.html

Environmental Benefits

50% industry adoption rate in the ornamental industry:• Save enough water for 400,000

households a year• Prevent 620,000 lbs. of nitrogen and

400,000 lbs. of phosphorus from entering the environment

Page 30: Irrigation and Fertigation Control - Purdue University

1/18/2017

30

Benefits

• Control over plant quality

• Reduced disease pressure

• Less leaching and runoff

• Water and fertilizer savings

• Higher profits

Funding provided by 

USDA‐NIFA‐SCRI  Award no. 2009‐51181‐05768

SCRI-MINDS Managing Irrigation and Nutrition via Distributed Sensing