ip packet switching - sharif university of...

45
CE443 – Computer Networks IP Packet Switching Behnam Momeni Computer Engineering Department Sharif University of Technology Acknowledgments: Lecture slides are from Computer networks course thought by Jennifer Rexford at Princeton University. When slides are obtained from other sources, a reference will be noted on the bottom of that slide. A full list of references is provided on the last slide.

Upload: others

Post on 19-Mar-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

CE443 – Computer Networks

IP Packet Switching

Behnam MomeniComputer Engineering Department

Sharif University of Technology

Acknowledgments: Lecture slides are from Computer networks coursethought by Jennifer Rexford at Princeton University. When slides areobtained from other sources, a reference will be noted on the bottom ofthat slide. A full list of references is provided on the last slide.

Page 2: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

3

Simple Network: Nodes and a Link

• Node: computer–End host: general-purpose computer, cell phone, PDA–Network node: switch or router

• Link: physical medium connecting nodes–Twisted pair: the wire that connects to telephones–Coaxial cable: the wire that connects to TV sets–Optical fiber: high-bandwidth long-distance links–Space: propagation of radio waves, microwaves, …

Node Link Node

Page 3: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

4

Fibers

Coaxial Cable

Links Interfaces Switches/routers

Ethernet card

Wireless card

Large router

Telephoneswitch

Network Components

Page 4: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

5

Links: Delay and Bandwidth• Delay–Latency for propagating data along the link–Corresponds to the “length” of the link–Typically measured in seconds

• Bandwidth–Amount of data sent (or received) per unit time–Corresponds to the “width” of the link–Typically measured in bits per second

bandwidth

delay

delay x bandwidth

Page 5: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

6

Connecting More Than Two Hosts• Multi-access link: Ethernet, wireless –Single physical link, shared by multiple nodes–Limitations on distance and number of nodes

• Point-to-point links: fiber-optic cable–Only two nodes (separate link per pair of nodes)–Limitations on the number of adapters per node

multi-access link point-to-point links

Page 6: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

7

Beyond Directly-Connected Networks

• Switched network–End hosts at the edge–Network nodes that switch traffic–Links between the nodes

• Multiplexing–Many end hosts communicate over the network–Traffic shares access to the same links

Page 7: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

8

Circuit Switching (e.g., Phone Network)

• Source establishes connection to destination–Node along the path store connection info–Nodes may reserve resources for the connection

• Source sends data over the connection–No destination address, since nodes know path

• Source tears down connection when done

Page 8: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

9

Circuit Switching With Human Operator

Page 9: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

10

Circuit Switching: Multiplexing a Link

• Time-division–Each circuit allocated

certain time slots

• Frequency-division–Each circuit allocated

certain frequencies

timefreq

uency

time

Page 10: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

11

Advantages of Circuit Switching• Guaranteed bandwidth –Predictable communication performance–Not “best-effort” delivery with no real guarantees

• Simple abstraction–Reliable communication channel between hosts–No worries about lost or out-of-order packets

• Simple forwarding –Forwarding based on time slot or frequency–No need to inspect a packet header

• Low per-packet overhead–Forwarding based on time slot or frequency–No IP (and TCP/UDP) header on each packet

Page 11: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

12

Disadvantages of Circuit Switching• Wasted bandwidth–Bursty traffic leads to idle connection during silent period–Unable to achieve gains from statistical multiplexing

• Blocked connections–Connection refused when resources are not sufficient–Unable to offer “okay” service to everybody

• Connection set-up delay –No communication until the connection is set up–Unable to avoid extra latency for small data transfers

• Network state–Network nodes must store per-connection information–Unable to avoid per-connection storage and state

Page 12: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

13

Packet Switching (e.g., Internet)• Data traffic divided into packets–Each packet contains a header (with address)

• Packets travel separately through network–Packet forwarding based on the header–Network nodes may store packets temporarily

• Destination reconstructs the message

Page 13: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

14

Packet Switching: Statistical Multiplexing

Packets

Page 14: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

15

IP Service: Best-Effort Packet Delivery

• Packet switching–Divide messages into a sequence of packets–Headers with source and destination address

• Best-effort delivery–Packets may be lost–Packets may be corrupted–Packets may be delivered out of order

source destination

IP network

Page 15: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

16

IP Service Model: Why Packets?• Data traffic is bursty– Logging in to remote machines–Exchanging e-mail messages

• Don’t want to waste bandwidth–No traffic exchanged during idle periods

• Better to allow multiplexing–Different transfers share access to same links

• Packets can be delivered by most anything–RFC 1149: IP Datagrams over Avian Carriers (aka birds)

• … still, packet switching can be inefficient–Extra header bits on every packet

Page 16: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

17

IP Service Model: Why Best-Effort?• IP means never having to say you’re sorry…–Don’t need to reserve bandwidth and memory–Don’t need to do error detection & correction–Don’t need to remember from one packet to next

• Easier to survive failures–Transient disruptions are okay during failover

• … but, applications do want efficient, accurate transfer of data in order, in a timely fashion

Page 17: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

18

IP Service: Best-Effort is Enough• No error detection or correction–Higher-level protocol can provide error checking

• Successive packets may not follow the same path–Not a problem as long as packets reach the destination

• Packets can be delivered out-of-order–Receiver can put packets back in order (if necessary)

• Packets may be lost or arbitrarily delayed–Sender can send the packets again (if desired)

• No network congestion control (beyond “drop”)–Sender can slow down in response to loss or delay

Page 18: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

19

Layering in the IP Protocols

Internet Protocol

Transmission ControlProtocol (TCP)

User Datagram Protocol (UDP)

TelnetHTTP

SONET ATMEthernet

RTPDNSFTP

Page 19: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

20

History: Why IP Packets?• IP proposed in the early 1970s–Defense Advanced Research Project Agency (DARPA)

• Goal: connect existing networks–To develop an effective technique for multiplexed

utilization of existing interconnected networks–E.g., connect packet radio networks to the ARPAnet

• Motivating applications –Remote login to server machines– Inherently bursty traffic with long silent periods

• Prior ARPAnet experience with packet switching–Previous DARPA project–Demonstrated store-and-forward packet switching

Page 20: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

21

Other Main Driving Goals (In Order)• Communication should continue despite failures–Survive equipment failure or physical attack–Traffic between two hosts continue on another path

• Support multiple types of communication services–Differing requirements for speed, latency, & reliability–Bidirectional reliable delivery vs. message service

• Accommodate a variety of networks–Both military and commercial facilities–Minimize assumptions about the underlying network

Page 21: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

22

Other Driving Goals, Somewhat Met• Permit distributed management of resources–Nodes managed by different institutions–… though this is still rather challenging

• Cost-effectiveness–Statistical multiplexing through packet switching–… though packet headers and retransmissions wasteful

• Ease of attaching new hosts–Standard implementations of end-host protocols–… though still need a fair amount of end-host software

• Accountability for use of resources–Monitoring functions in the nodes–… though this is still fairly limited and immature

Page 22: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

IP Packet Structure

4-bitVersion

4-bitHeaderLength

8-bitType of Service

(TOS)16-bit Total Length (Bytes)

16-bit Identification 3-bitFlags 13-bit Fragment Offset

8-bit Time to Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

Page 23: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

24

IP Header: Version, Length, ToS• Version number (4 bits)– Indicates the version of the IP protocol–Necessary to know what other fields to expect–Typically “4” (for IPv4), and sometimes “6” (for IPv6)

• Header length (4 bits)–Number of 32-bit words in the header–Typically “5” (for a 20-byte IPv4 header)–Can be more when “IP options” are used

• Type-of-Service (8 bits)–Allow packets to be treated differently based on needs–E.g., low delay for audio, high bandwidth for bulk transfer

Page 24: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

25

IP Header: Length, Fragments, TTL• Total length (16 bits)–Number of bytes in the packet–Maximum size is 63,535 bytes (216 -1)–… though underlying links may impose harder limits

• Fragmentation information (32 bits)–Packet identifier, flags, and fragment offset–Supports dividing a large IP packet into fragments–… in case a link cannot handle a large IP packet

• Time-To-Live (8 bits)–Used to identify packets stuck in forwarding loops–… and eventually discard them from the network

Page 25: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

26

IP Header: More on Time-to-Live (TTL)• Potential robustness problem–Forwarding loops can cause packets to cycle forever–Confusing if the packet arrives much later

• Time-to-live field in packet header–TTL field decremented by each router on the path–Packet is discarded when TTL field reaches 0…–…and “time exceeded” message is sent to the source

Page 26: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

5

ICMP

● The Internet Control Message Protocol (ICMP) is a helper protocol that supports IP with facility for – Error reporting– Simple queries

• ICMP messages are encapsulated as IP datagrams:

[Liebeherr]

Page 27: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

6

ICMP message format

additional informationor

0x00000000

type code checksum

bit # 0 15 23 248 317 16

4 byte header:• Type (1 byte): type of ICMP message• Code (1 byte): subtype of ICMP message• Checksum (2 bytes): similar to IP header checksum.

Checksum is calculated over entire ICMP messageIf there is no additional data, there are 4 bytes set to zero.

each ICMP messages is at least 8 bytes long

[Liebeherr]

Page 28: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

7

ICMP Query message

ICMP query: • Request sent by host to a router or host• Reply sent back to querying host

Host

ICMP Request

Host or router

ICMP Reply

[Liebeherr]

Page 29: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

8

Example of ICMP Queries

Type/Code: Description

8/0 Echo Request0/0 Echo Reply

13/0 Timestamp Request14/0 Timestamp Reply

10/0 Router Solicitation9/0Router Advertisement

The ping command uses Echo Request/ Echo Reply

[Liebeherr]

Page 30: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

9

● Ping’s are handled directly by the kernel● Each Ping is translated into an ICMP Echo Request● The Ping’ed host responds with an ICMP Echo Reply

Example of a Query: Echo Request and Reply

Hostor

Router

Hostor

Router

ICMP ECHO REQUEST

Host or

router

Host or

router

ICMP ECH

O REPLY

[Liebeherr]

Page 31: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

10

Example of a Query: ICMP Timestamp ● A system (host or router) asks

another system for the current time.

● Time is measured in milliseconds after midnight UTC (Universal Coordinated Time) of the current day

● Sender sends a request, receiver responds with reply

Type(= 17 or 18)

Code(=0)

Checksum

32-bit sender timestamp

identifier sequence number

32-bit receive timestamp

32-bit transmit timestamp

Sender Sender

ReceiverReceiver

TimestampRequest

TimestampReply

[Liebeherr]

Page 32: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

11

ICMP Error message

• ICMP error messages report error conditions • Typically sent when a datagram is discarded• Error message is often passed from ICMP to the

application program

Host

IP datagram

Host or router

ICMP ErrorMessage

IP datagramis discarded

[Liebeherr]

Page 33: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

12

ICMP Error message

• ICMP error messages include the complete IP header and the first 8 bytes of the payload (typically: UDP, TCP)

Unused (0x00000000)

IP header ICMP header IP header 8 bytes of payload

ICMP Message

from IP datagram that triggered the error

type code checksum

[Liebeherr]

Page 34: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

13

Frequent ICMP Error message

Type Code Description

3 0–15 Destination unreachable

Notification that an IP datagram could not be forwarded and was dropped. The code field contains an explanation.

5 0–3 Redirect Informs about an alternative route for the datagram and should result in a routing table update. The code field explains the reason for the route change.

11 0, 1 Time exceeded

Sent when the TTL field has reached zero (Code 0) or when there is a timeout for the reassembly of segments (Code 1)

12 0, 1 Parameterproblem

Sent when the IP header is invalid (Code 0) or when an IP header option is missing (Code 1)

[Liebeherr]

Page 35: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

14

Some subtypes of the “Destination Unreachable”

Code Description Reason for Sending

0 Network Unreachable

No routing table entry is available for the destination network.

1 Host Unreachable

Destination host should be directly reachable, but does not respond to ARP Requests.

2 Protocol Unreachable

The protocol in the protocol field of the IP header is not supported at the destination.

3 Port Unreachable

The transport protocol at the destination host cannot pass the datagram to an application.

4 Fragmentation Needed and DF Bit Set

IP datagram must be fragmented, but the DF bit in the IP header is set.

[Liebeherr]

Page 36: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

15

Example: ICMP Port Unreachable

• RFC 792: If, in the destination host, the IP module cannot deliver the datagram because the indicated protocol module or process port is not active, the destination host may send a destination unreachable message to the source host.

• Scenario:

Client Client

Request a serviceat a port 80

Server Server

No process is waiting at port 80

Port

Unreacha

ble

[Liebeherr]

Page 37: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

27

IP Header: Use of TTL in Traceroute• Time-To-Live field in IP packet header–Source sends a packet with a TTL of n–Each router along the path decrements the TTL– “TTL exceeded” sent when TTL reaches 0

• Traceroute tool exploits this TTL behavior

source destination

TTL=1Time

exceeded

TTL=2

Send packets with TTL=1, 2, … and record source of “time exceeded” message

Page 38: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

28

Example Traceroute: Berkeley to CNN

1 169.229.62.1

2 169.229.59.225

3 128.32.255.169

4 128.32.0.249

5 128.32.0.66

6 209.247.159.109

7 *

8 64.159.1.46

9 209.247.9.170

10 66.185.138.33

11 *

12 66.185.136.17

13 64.236.16.52

Hop number, IP address, DNS nameinr-daedalus-0.CS.Berkeley.EDU

soda-cr-1-1-soda-br-6-2

vlan242.inr-202-doecev.Berkeley.EDU

gigE6-0-0.inr-666-doecev.Berkeley.EDU

qsv-juniper--ucb-gw.calren2.net

POS1-0.hsipaccess1.SanJose1.Level3.net

?

?

pos8-0.hsa2.Atlanta2.Level3.net

pop2-atm-P0-2.atdn.net

?

pop1-atl-P4-0.atdn.net

www4.cnn.com

No responsefrom router

No name resolution

Page 39: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

Example Traceroute: Sharif to Googletraceroute google.com

traceroute: Warning: google.com has multiple addresses; using 74.125.67.100

traceroute to google.com (74.125.67.100), 64 hops max, 40 byte packets

1 CE-GW.GIG3-2.V302.RSP.sharif.edu (213.233.168.1) 0.788 ms 0.322 ms 0.310 ms

2 ge4-8.core-router.sharif.ir (81.31.160.1) 0.439 ms 0.358 ms 0.545 ms

3 78.38.255.5 (78.38.255.5) 12.618 ms 14.014 ms 9.951 ms

4 217.218.127.34 (217.218.127.34) 12.872 ms 11.257 ms 10.940 ms

5 195.146.63.70 (195.146.63.70) 10.874 ms 8.875 ms 11.475 ms

6 pal5-tci-4.pal.seabone.net (195.22.198.77) 246.117 ms 243.905 ms 240.006 ms

7 72.14.217.144 (72.14.217.144) 266.452 ms 235.764 ms 229.588 ms

.........

16 72.14.239.127 (72.14.239.127) 259.490 ms 260.632 ms 72.14.239.131 (72.14.239.131) 276.943 ms

17 64.233.174.46 (64.233.174.46) 260.158 ms 209.85.255.190 (209.85.255.190) 262.709 ms 262.892 ms

18 gw-in-f100.google.com (74.125.67.100) 260.377 ms 252.729 ms 262.514 ms29

Page 40: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

30

Try Running Traceroute Yourself• On UNIX machine–Traceroute–E.g., “traceroute google.com” or

“traceroute 74.125.67.100”

• On Windows machine–Tracert–E.g., “tracert google.com” or “tracert 74.125.67.100”

• Common uses of traceroute–Discover the topology of the Internet–Debug performance and reachability problems

Page 41: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

IP Packet Structure

4-bitVersion

4-bitHeaderLength

8-bitType of Service

(TOS)16-bit Total Length (Bytes)

16-bit Identification 3-bitFlags 13-bit Fragment Offset

8-bit Time to Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

Page 42: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

32

IP Header Fields: Transport Protocol

• Protocol (8 bits)–Identifies the higher-level protocol

E.g., “6” for the Transmission Control Protocol (TCP) E.g., “17” for the User Datagram Protocol (UDP)

–Important for demultiplexing at receiving host Indicates what kind of header to expect next

IP header IP header

TCP header UDP header

protocol=6 protocol=17

Page 43: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

33

IP Header: Checksum on the Header• Checksum (16 bits)–Sum of all 16-bit words in the IP packet header–If any bits of the header are corrupted in transit–… the checksum won’t match at receiving host–Receiving host discards corrupted packets

Sending host will retransmit the packet, if needed

134+ 212

= 346

134+ 216

= 350

Mismatch!

Page 44: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

34

IP Header: To and From Addresses• Two IP addresses–Source IP address (32 bits)–Destination IP address (32 bits)

• Destination address–Unique identifier for the receiving host–Allows each node to make forwarding decisions

• Source address–Unique identifier for the sending host–Recipient can decide whether to accept packet–Enables recipient to send a reply back to source

Page 45: IP Packet Switching - Sharif University of Technologyce.sharif.edu/~b_momeni/ce443/resources/02-ip-packet-switching.pdf• Successive packets may not follow the same path –Not a

Acknowledgments/References

● [Liebeherr] Jorg Liebeherr, “Internet Engineering Course”, University of Virginia, 2005.Online: http://www.cs.virginia.edu/~cs458/slides/module08-icmp.ppt