ionic conduction in polymer composite

22
10/30/2010 1 University of University of Sulaimani Sulaimani College of Science College of Science Physics Department Physics Department Ionic Conduction in Ionic Conduction in Polymers Composite Polymers Composite Polymers Composite Polymers Composite Omed Omed Gh Gh. Abdullah . Abdullah STUDY THE EFFECT OF TEMPERATURE AND FREQUENCY ON THE DIELECTRIC PROPERTIES OF SOME COMMERCIAL POLYMERS A THESIS SUBMITTED TO THE COUNCIL OF COLLEGE OF SCIENCE UNIVERSITY OF SULAIMANI STUDY THE EFFECT OF TEMPERATURE AND FREQUENCY ON THE DIELECTRIC PROPERTIES OF SOME COMMERCIAL POLYMERS A THESIS SUBMITTED TO THE COUNCIL OF COLLEGE OF SCIENCE UNIVERSITY OF SULAIMANI IN PARTIAL FULFILMENT OF REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN PHYSICS BY SHUJAHALDEEN BAKIR AZIZ B.Sc. IN PHYSICS2003 (Sulaimani University) IN PARTIAL FULFILMENT OF REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN PHYSICS BY SHUJAHALDEEN BAKIR AZIZ B.Sc. IN PHYSICS2003 (Sulaimani University) UNDER SUPERVISION OF: Prof. Dr. HAMEED MAJID AHMED September Gelawezh 2007 2707 UNDER SUPERVISION OF: Prof. Dr. HAMEED MAJID AHMED September Gelawezh 2007 2707

Upload: omed-ghareb

Post on 07-Apr-2015

368 views

Category:

Documents


5 download

DESCRIPTION

Autumnal Seminars of the Physics Department, College of Science, University of Sulaimani, by Dr. Omed Gh. Abdullah, at 30/10/2010

TRANSCRIPT

Page 1: Ionic Conduction in Polymer Composite

10/30/2010

1

University of University of SulaimaniSulaimani

College of ScienceCollege of Science

Physics DepartmentPhysics Department

Ionic Conduction in Ionic Conduction in Polymers CompositePolymers CompositePolymers CompositePolymers Composite

Omed Omed GhGh. Abdullah. Abdullah

STUDY THE EFFECT OF TEMPERATURE AND FREQUENCY ON THE DIELECTRIC PROPERTIES OF 

SOME COMMERCIAL POLYMERS

A THESIS SUBMITTED TO THE COUNCIL OF 

COLLEGE OF SCIENCE UNIVERSITY OF SULAIMANI

STUDY THE EFFECT OF TEMPERATURE AND FREQUENCY ON THE DIELECTRIC PROPERTIES OF 

SOME COMMERCIAL POLYMERS

A THESIS SUBMITTED TO THE COUNCIL OF 

COLLEGE OF SCIENCE UNIVERSITY OF SULAIMANIIN PARTIAL FULFILMENT OF REQUIREMENTS FOR 

THE DEGREE OF MASTER OF SCIENCE IN PHYSICS

BYSHUJAH‐ALDEEN BAKIR AZIZ

B.Sc. IN PHYSICS‐2003(Sulaimani University)

IN PARTIAL FULFILMENT OF REQUIREMENTS FOR THE DEGREE OF MASTER OF 

SCIENCE IN PHYSICS

BYSHUJAH‐ALDEEN BAKIR AZIZ

B.Sc. IN PHYSICS‐2003(Sulaimani University)

UNDER SUPERVISION OF:Prof. Dr. HAMEED MAJID AHMED

September Gelawezh2007                                              2707

UNDER SUPERVISION OF:Prof. Dr. HAMEED MAJID AHMED

September Gelawezh2007                                              2707

Page 2: Ionic Conduction in Polymer Composite

10/30/2010

2

OPTICAL AND ELECTRICAL PROPERTIES OF SEMICONDUCTING OXIDE GLASSES

A THESISSUBMITTED TO THE COUNCIL OF 

COLLEGE OF SCIENCE UNIVERSITY OF SULAIMANIIN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

OPTICAL AND ELECTRICAL PROPERTIES OF SEMICONDUCTING OXIDE GLASSES

A THESISSUBMITTED TO THE COUNCIL OF 

COLLEGE OF SCIENCE UNIVERSITY OF SULAIMANIIN PARTIAL FULFILLMENT OF THE REQUIREMENTS FORIN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN PHYSICS

BYDANA ABDULLA TAHIR

(M. Sc.) in physics Salahaddin University‐1995

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN PHYSICS

BYDANA ABDULLA TAHIR

(M. Sc.) in physics Salahaddin University‐1995

UNDER SUPERVISION OF:MANAF ABD HASSAN                              AHMAD AL‐ANIAssistant Professor                                         Lecturer

September                                        September                                         GalawezhGalawezh2007                                                               2007                                                               2707 2707 

UNDER SUPERVISION OF:MANAF ABD HASSAN                              AHMAD AL‐ANIAssistant Professor                                         Lecturer

September                                        September                                         GalawezhGalawezh2007                                                               2007                                                               2707 2707 

Dielectric analysis of Polystyrene Dielectric analysis of Polystyrene polymer filmpolymer film

Dana A. Tahir, Omed Gh. Abdullah, and Shuja‐Aldeen B. AzizD f Ph i C ll f S i S l i i U i iDepartment of Physics, College of Science, Sulaimani University

AbstractIn this work an attempt has been made to study the various dielectric

parameters of polystyrene film. The dielectric constant , dielectric loss andloss tangent have been determined in the frequency range (1‐000)KHz atdifferent temperatures. The frequency dependent conductivity was alsomeasured to characterize the polymer. The complex impedance plot (cole‐cole plot) was used to calculate the static dielectric constant , infinitely largecole plot) was used to calculate the static dielectric constant , infinitely largefrequency dielectric constant and relaxation times. Finally the results areanalyzed in terms of different parameters.

Key words:Key words: polymer film, dielectric constant, dielectric loss, relaxation, activation polymer film, dielectric constant, dielectric loss, relaxation, activation energyenergy

Page 3: Ionic Conduction in Polymer Composite

10/30/2010

3

Optical and Electrical Properties of Optical and Electrical Properties of PolyvinylPolyvinyl‐‐chloride (PVC) filmschloride (PVC) films

Omed Gh. Abdullah, Dana A. Tahir, and Shuja‐Aldeen B. AzizDepartment of Physics College of Science Sulaimani UniversityDepartment of Physics, College of Science, Sulaimani University

AbstractThe optical properties of the polyvinyl‐chloride thin films were studied which

include their absorbance, transmittance, reflectance spectra, band gap, and refractiveindex, before and after annealing at T=75oC for 24hrs. The films were found to exhibithigh transmittance, low absorbance and low reflectance in the visible, and nearinfrared region up to 1100nm. However, the absorbance of the films was found to behigh in the ultra violet region with peak around 306nm. The dielectric constant,dielectric loss, and ac conductivity of polyvinyl‐chloride were obtained at differentf i d h i l l h h ’ d ”frequencies and temperatures. The experimental results show that ’ and ”decreased with increasing frequency, which indicates that the major contribution tothe polarization comes from orientation polarization. The value of ’ increased withincreasing temperature, which is due to great freedom of movement of the dipolemolecular chains at high temperature.

Key words: thin film, optical properties, electrical properties, complex permittivityKey words: thin film, optical properties, electrical properties, complex permittivity..

Debye behaviorDebye behavior

0.4

0.45T=25 C0.4

0.45T=25 C

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Die

lect

ric

loss

T=50 C

T=75 C

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Die

lect

ric

loss

T=50 C

T=75 C

Cole‐Cole plot for Polystyrene at different temperatures.

1.6 1.8 2 2.2 2.4 2.6

Dielectric constant

1.6 1.8 2 2.2 2.4 2.6

Dielectric constant

Page 4: Ionic Conduction in Polymer Composite

10/30/2010

4

International Journal of Materials ScienceISSN 0973‐4589 Volume 5, Number 4 (2010), pp. 537–545© Research India Publicationshttp://www.ripublication.com/ijoms.htm

Physical Properties of Pure and Copper Oxide DopedPolystyrene FilmsPolystyrene Films

Omed Gh. Abdullah and Dana S. MuhammadDepartment of Physics, College of Science, University of Sulaimani ‐ Iraq

AbstractAbstract

The UV/VIS optical absorption for difference compositions copper oxide dopedpolystyrene thin films were studied in the wavelength 200‐1000 nm. It was found thatthe optical absorption is due to direct allowed transitions, and the energy gaps showsnonlinear behavior with copper oxide concentration, optical energy gap showed anonlinear behavior with copper oxide concentration, optical energy gap showed adecreasing trend with increased dopant concentration up to 10% of the dopant, forfurther increase in dopant concentration this value started increasing again due tosegregation effects. The annealing of the samples at temperature 90oC for 4 hr, causedthe decrease in energy gaps. The studies of the real and imaginary parts of thedielectric constants showed that they are also affected by copper oxide concentration.

Key words: optical properties, polymer composite, doping, complex dielectric constant.

Page 5: Ionic Conduction in Polymer Composite

10/30/2010

5

Absorption SpectrumAbsorption Spectrum

0.45

0.5

PSPS--0%CuO0%CuO

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4A

bso

rban

cePSPS--5%CuO5%CuO

PSPS--10%CuO10%CuO

PSPS--15%CuO15%CuO

PSPS--2020%CuO%CuO

Optical absorption for PS with different CuO content, as a function of wavelength.

265 285 305 325 345 365

Wavelength (nm)

Optical Band GapsOptical Band Gaps

0 2

0.254.49

0

0.05

0.1

0.15

0.2

4.46

4.47

4.48

0 5 10 15 20 25

EtE

opt

Optical energy gap  of direct allowed transition, and tail localized state energy  against copper oxide concentration, of pure and doped polymer film before (solid line), and after annealing 

(dashed line).

0 5 10 15 20 25

CuO concentration %

Page 6: Ionic Conduction in Polymer Composite

10/30/2010

6

Effect of Zirconia concentration on optical properties of Polystyrene films

Omed Gh. Abdullah and Dlear R. SaberDepartment of Physics, College of Science, University of Sulaimani ‐ Iraq

AbstractAbstractOptical properties of prepared Polystyrene (PS) films with different filling levels of

Zirconia have been investigated in the visible and ultraviolent wavelength regions. Itwas found that the optical absorption is due to direct‐allowed transitions, and theenergy gaps decrease with increasing Zirconia content for all transitions, while thewidth of the tail localized states increase with increasing Zirconia content. The bandgap of all films shows to be decrease after thermal treatment. The optical constantsrefractive index n, extinction coefficient K, have been also calculated. The refractiveindex increased in the composite samples as compared with the pure PS samplep p p p pprepared by the same method.

Key words: polymer, optical properties, filler, extinction coefficient, annealing. PACS: 78.20.Ci

Refractive indexRefractive index

2 5

3

ex) PSPS‐‐20% ZrO20% ZrO22

1

1.5

2

2.5

250 350 450 550 650 750 850 950 1050

n (

Ref

rect

ive

Ind

e

PSPS‐‐0% ZrO0% ZrO22

PSPS‐‐5% ZrO5% ZrO22

PSPS‐‐10% ZrO10% ZrO22

PSPS‐‐15% ZrO15% ZrO22

Refractive index as a function of wavelength for PS for different Zirconia content.

250 350 450 550 650 750 850 950 1050

Wavelength (nm)

Page 7: Ionic Conduction in Polymer Composite

10/30/2010

7

Refractive indexRefractive index

2 5

3

ex) PSPS‐‐20% ZrO20% ZrO22

Since the refractive index of this composite was controllable 

b

1

1.5

2

2.5

250 350 450 550 650 750 850 950 1050

n (

Ref

rect

ive

Ind

e

PSPS‐‐0% ZrO0% ZrO22

PSPS‐‐5% ZrO5% ZrO22

PSPS‐‐10% ZrO10% ZrO22

PSPS‐‐15% ZrO15% ZrO22

it can be used to fabricate waveguides  with the desired refractive index contrast

Refractive index as a function of wavelength for PS for different Zirconia content.

250 350 450 550 650 750 850 950 1050

Wavelength (nm)

contrast between the core and the cladding

Optical band GapOptical band Gap

0.3

0.35

0.4

4.46

4.48

0

0.05

0.1

0.15

0.2

0.25

0.3

4 36

4.38

4.4

4.42

4.44

E t(eV)

E opt(eV)

The optical gap, and tail localized state as a function of Zirconiacontent, before (solid line) and after annealing (dashed line).

04.36

0 5 10 15 20 25

ZrO2 %

Page 8: Ionic Conduction in Polymer Composite

10/30/2010

8

Variation of Optical Band Gap Width of PVA films Doped with Aluminum Iodide

Omed Gh. Abdullah and Sarkawt Abubakr HussenDepartment of Physics, College of Science, University of Sulaimani ‐ Iraq

AbstractAbstractPolymer composite of polyvinyl alcohol (PVA), Aluminum Iodide have been prepared by solution cast

method for different doping concentrations The absorption of pure and doped films have beenmethod for different doping concentrations. The absorption of pure and doped films have beeninvestigated in the visible and ultraviolent wavelength regions. It was found that the optical absorptionis due to direct and indirect transitions, and the optical energy gaps values shifted to lower energies onAluminum Iodide doping concentration for all transitions, while the band edge width of the tail localizedstates increase with increasing Aluminum Iodide concentration. The band gap of all films shows to bedecrease after thermal treatment. The optical constants refractive index n, extinction coefficient K, thecomplex dielectric constant have been also calculated. The dielectric constant increased in thecomposite samples as compared with the pure PVA sample prepared by the same method.

Key words: polymer composite, optical properties, doping, complex dielectric constant.

Absorption SpectrumAbsorption Spectrum

0 35

0.4

0.45

a.u

.) PVA-0%AlI

PVA 5%AlI

PVAPVA‐‐0%AlI0%AlI33PVAPVA 5%AlI5%AlI

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

200 220 240 260 280 300

Ab

sorb

ance

(a PVA-5%AlI

PVA-10%AlI

PVA-15%AlI

PVA-20%AlI

PVAPVA‐‐5%AlI5%AlI33PVAPVA‐‐10%AlI10%AlI33PVAPVA‐‐15%AlI15%AlI33PVAPVA‐‐20%AlI20%AlI33

Optical absorption as a function of wavelength for PVA at different Aluminum Iodide content.

200 220 240 260 280 300

Wavelength (nm)

Page 9: Ionic Conduction in Polymer Composite

10/30/2010

9

Direct Optical Band GapsDirect Optical Band Gaps

80

90

10004 )

PVAPVA--00%AlI%AlI

PVAPVA--5%AlI5%AlI

0

10

20

30

40

50

60

70

5 5.25 5.5 5.75 6 6.25 6.5

h

v2

(1

0 PVAPVA--5%AlI5%AlI

PVAPVA--10%AlI10%AlI

PVAPVA--15%AlI15%AlI

PVAPVA--20%AlI20%AlI

Direct optical band gaps for PVA with Aluminum Iodide content.

hv (eV)

Indirect Optical Band GapsIndirect Optical Band Gaps

35

40PVAPVA--0%AlI0%AlI

PVAPVA--5%AlI5%AlI

0

5

10

15

20

25

30

5 5.25 5.5 5.75 6 6.25 6.5

h

v1/

2 PVAPVA--1010%AlI%AlI

PVAPVA--15%AlI15%AlI

PVAPVA--20%AlI20%AlI

Indirect optical band gaps of PVA with Aluminum Iodide content.

5 5.25 5.5 5.75 6 6.25 6.5

hv (eV)

Page 10: Ionic Conduction in Polymer Composite

10/30/2010

10

Band tails Band tails of localized statesof localized states

5

5.5

6PVAPVA--0%AlI40%AlI4

PVAPVA--55%AlI%AlI44

PVAPVA 10%AlI410%AlI4

1

1.5

2

2.5

3

3.5

4

4.5

5

5.1 5.15 5.2 5.25 5.3 5.35 5.4

ln

PVAPVA--10%AlI410%AlI4

PVAPVA--15%AlI415%AlI4

PVAPVA--20%AlI420%AlI4

Natural logarithm of absorption coefficient as a function of photon energy.

5.1 5.15 5.2 5.25 5.3 5.35 5.4

hv (eV)

Dielectric properties of Polyester reinforced with Carbon black particles

Omed Gh. Abdullah, Gelas M. Jamal, Dana A. Tahir, and Salah Raza SaeedD t t f Ph i C ll f S i U i it f S l i i IDepartment of Physics, College of Science, University of Sulaimani ‐ Iraq

AbstractAbstractDielectric constant and conductivity of Polyester doped with carbon black

are investigated in the frequency range (0.5‐1000) KHz and within thetemperature range (28‐80)oC. Dielectric permittivity and loss tangent arefound to be decrease with increasing frequency and increase with increasingtemperature. The ac conductivity is found to be frequency‐independent forlow frequency however vary with frequency as ws, beyond a critical value. Theq y y q y , yfrequency exponential factor was estimated and it was found to vary between0.63 and 0.77, indicating a dominant hopping process at low temperatures.From the temperature dependence of dc conductivity, the increase ofactivation energy was observed with carbon black concentrations.

Key words: ac conductivity, polyester, carbon black, dielectric constant.

Page 11: Ionic Conduction in Polymer Composite

10/30/2010

11

Complex Dielectric Constant

’Permittivity or Dielectric

At high frequencies dipoles cannot return rapidly enough - charging cannot occur/dielectric constant is lowAt low frequencies

dipoles can align --

log f

”fmax

Dielectric Constant Frequency at

which dipoles respond to the field

At high frequencies, dipoles cannot move rapidly enough to respond –losses

Losses

dipoles can align dielectric constantis high

log f

lossesare low

’ and ” as a functionof frequency – at constant temperature

Permanent dipoles FOLLOW variations in the AC field –hence current and voltage out of phase – losses low

Frequency at which permittivity drops and losses increase is where the polymer is said to show dispersionFrequency at which permittivity drops and losses increase is where the polymer is said to show dispersion

acac conductivity virus concentrationconductivity virus concentration

60

70t=26 C

t=40 C

t 60 C

10

20

30

40

50

ac   (s/m 10‐6)

t=60 C

t=80 C

ac conductivity dependence on black carbon concentration at different temperatures

0

0 5 10 15 20

BC % Concentration

Page 12: Ionic Conduction in Polymer Composite

10/30/2010

12

acac conductivity virus frequencyconductivity virus frequency

-4.5

-4

T=26 C

T=40 C

-6

-5.5

-5

4.5lo

g(

ac) T=60 C

T=80 C

,

Dependence of frequency on the ac conductivity at different temperatures of Polyester film doped with  of Carbon black

-6.5

3.25 3.75 4.25 4.75 5.25 5.75 6.25 6.75

log(w)

,

Page 13: Ionic Conduction in Polymer Composite

10/30/2010

13

acac conductivity virus frequencyconductivity virus frequency

,  

The variation of the exponent with temperature gives information on the specific mechanism involved. The exponential factor was calculated from slope of Fig. at high frequency, and it was found to be . , . , . , and . for the temperature

, , ,    respectively; indicating that is weakly decreasing function of temperature. This could be attributed that g pat higher temperature, high mobility of free charges make them more frequency independent conductivity which as a result increases conductivity. 

acac conductivity virus temperatureconductivity virus temperature

‐5.50

‐5.00

‐8.50

‐8.00

‐7.50

‐7.00

‐6.50

‐6.00

log(dc)

0%CB

6%CB

12%CB

18%CB

 

Semilogarithmic plots of dc conductivity against reciprocal of temperature at different Carbon black concentrations

‐9.00

2.8 2.9 3 3.1 3.2 3.3 3.4

1000/T  (1/K)

18%CB

Page 14: Ionic Conduction in Polymer Composite

10/30/2010

14

acac conductivity virus temperatureconductivity virus temperature

 

From the slope of parallel straight line with negative slope,the activation energy is calculated. The values of isessentially dependent of black carbon concentrations and of avalue . , . , . , .   for the , , , %CB, respectively. It was clear that activation energy valueincreases with increasing the CB content. The addition of CBincreases with increasing the CB content. The addition of CBto Polyester host enhances the electrical conduction ofPolyester host due to the electronic and impurity contributionsarising from the CB. 

OCH2CH2OC(CH2)CO

O O nCH2CH2CO

On

ConclusionConclusion

The main observation in this study worth tobe mentioned relates to the relative value ofbe mentioned relates to the relative value ofelectrical conductivity versus the carbon blackcontents; it was observed that even lowamount of carbon black able to maximize theconductivity of the composite up to threeorders of magnitude, we conclude thatorders of magnitude, we conclude thatpolyester carbon black composite is a goodcandidate and alternative way for obtainingconducting organic composites at low cost.

Page 15: Ionic Conduction in Polymer Composite

10/30/2010

15

Optical absorption of polyvinyl alcohol films doped with Nickel Chloride

Omed Gh. Abdullah, and Dlear R. SaberDepartment of Physics, College of Science, University of Sulaimani ‐ Iraq

AbstractAbstractFilms of pure and doped Polyvinyl alcohol (PVA) with different concentration of

Nickel Chloride (NiCl2) were prepared using the casting technique, in order toinvestigate effect of NiCl2 additions on the optical properties of PVA host. Thedispersion studies of pure PVA film and PVA films doped with NiCl2 were investigatedusing complex refractive index in the wavelength range 190‐1100 nm. The absorptionspectral analysis showed that the optical band was from the direct and indirectallowed optical transitions. The optical band gap of the films decreases withincreasing NiCl2 contents, while the Urbach energy called the width of localized statesincreasing NiCl2 contents, while the Urbach energy called the width of localized statesin the optical band gap decreases from 0.7414 to 0.1891 eV. Consequently, the opticalconstants and optical band gap of the samples change with the annealingtemperatures.

Key words: absorbance, PVA, dopand, optical band gap.

UV/VISUV/VIS Optical Absorption SpectraOptical Absorption Spectra

0 04

0.05

PVA-0%NiCl2

PVA 5%NiCl2

PVA‐0%NiCl2PVA 5%NiCl

0

0.01

0.02

0.03

0.04

Ab

sorb

ance

(a

.u.) PVA-5%NiCl2

PVA-10%NiCl2

PVA-15%NiCl2

PVA‐5%NiCl2PVA‐10%NiCl2PVA‐15%NiCl2

The optical absorption coefficient spectrum of PVA‐NiCl2composites

190 240 290 340 390 440 490

Wavelength (nm)

Page 16: Ionic Conduction in Polymer Composite

10/30/2010

16

UV/VISUV/VIS Optical Absorption SpectraOptical Absorption Spectra

0 04

0.05

PVA-0%NiCl2

PVA 5%NiCl2

PVA‐0%NiCl2PVA 5%NiCl

0

0.01

0.02

0.03

0.04A

bso

rban

ce (

a.u

.) PVA-5%NiCl2

PVA-10%NiCl2

PVA-15%NiCl2

PVA‐5%NiCl2PVA‐10%NiCl2PVA‐15%NiCl2

The optical absorption coefficient spectrum of PVA‐NiCl2composites

190 240 290 340 390 440 490

Wavelength (nm)

UV/VISUV/VIS Optical Absorption SpectraOptical Absorption Spectra

0 04

0.05

PVA-0%NiCl2

PVA 5%NiCl2

PVA‐0%NiCl2PVA 5%NiCl

0

0.01

0.02

0.03

0.04

Ab

sorb

ance

(a

.u.) PVA-5%NiCl2

PVA-10%NiCl2

PVA-15%NiCl2

PVA‐5%NiCl2PVA‐10%NiCl2PVA‐15%NiCl2

The optical absorption coefficient spectrum of PVA‐NiCl2composites

190 240 290 340 390 440 490

Wavelength (nm)

Page 17: Ionic Conduction in Polymer Composite

10/30/2010

17

TwoTwo conditionsconditions toto becomebecome conductiveconductive::1‐The first condition for this is that the polymer consists of 

alternating single and double bonds, called conjugated doublebonds.

In conjugation, the bonds between the carbon atoms are alternately single and double. Every bond contains a localised“sigma” (σ) bond which forms a strong chemical bond. In addition, every double bond also contains a less stronglylocalised “pi” (π) bond which is weaker.

Page 18: Ionic Conduction in Polymer Composite

10/30/2010

18

2-The second condition is that the plastic has to be disturbed -either by removing electrons from (oxidation), or insertingthem into (reduction) the material The process is known as

TwoTwo conditionsconditions toto becomebecome conductiveconductive::

them into (reduction), the material. The process is known as

Doping.There are two types of doping:

1-oxidation with halogen (or p-doping).

32

3ICHI

xCH nn

2- Reduction with alkali metal (called n-doping).

xNaCHxNaCH xnn

2

FactorsFactors thatthat affectaffect thethe conductivityconductivity

11‐‐Denesity of Denesity of chargecharge carrierscarriers..

22‐‐ ThierThier mobilitymobility..

33‐‐The The directiondirection..

44‐‐ PresencePresence of doping of doping materialsmaterials ((additivesadditives thatthatfacilitatefacilitate thethe polymerpolymer conductivityconductivity))

55‐‐Temperature.Temperature.

Page 19: Ionic Conduction in Polymer Composite

10/30/2010

19

Electrical characterization of polyvinyl alcohol films doped with sodium iodide

Omed Gh. AbdullahDepartment of Physics, College of Science, University of Sulaimani ‐ Iraq

AbstractAbstractPolyvinyl alcohol (PVA) films doped with sodium iodide up to (30wt%) were

prepared in order to investigate the effect of sodium iodide additions on the electricalproperties of PVA host. The dielectric permittivity, dielectric loss, electric modulus andac conductivity were studied in the frequency range 20KHZ‐1MHz and in temperaturerange 300‐350 K. Upon increasing the contents of sodium iodide an increase in thedielectric permittivity, dielectric loss and ac conductivity of PVA host are observed. Theac conductivity is found to obey power law Bws. The frequency exponential factor swas estimated and it was found to vary between 0.92 and 0.34, dependence onwas estimated and it was found to vary between 0.92 and 0.34, dependence onsodium iodide contents. From the temperature dependence of ac conductivity, theincrease of activation energy was observed with dopant concentration.

Key words: ac conductivity, electric modulus, complex dielectric constants, doping.

acac conductivity virus frequencyconductivity virus frequency

90

100

0

10

20

30

40

50

60

70

80

ac

s/m

(10

-6)

PVA-0%NaI

PVA-10%NaI

PVA-20%NaI

PVA-30%NaI

CC CC

HH OHOH

HH HH

nn

Variation of ac conductivity   with frequency for PVA‐NaIcomposites

0

0 200 400 600 800 1000

f (KHz)

Page 20: Ionic Conduction in Polymer Composite

10/30/2010

20

Activation EnergyActivation Energy

-1

0PVA-0%NaI

PVA-10%NaI

 -6

-5

-4

-3

-2lo

g(

dc)

PVA 10%NaI

PVA-20%NaI

PVA-30%NaI

Semilogarithmic plots of dc conductivity against reciprocal of temperature at different NaI concentrations

-6

2.8 2.9 3 3.1 3.2 3.3 3.4

1000/T (K-1)

Activation EnergyActivation Energy

 

Table(1): Values of activation energy (Ea) and the exponential factor (s) for PVA‐NaI composites.

Table(1): Values of activation energy (Ea) and the exponential factor (s) for PVA‐NaI composites.

Samples ( )0% . 0.92

,

10% . 0.87 20% . 0.6330% . 0.34

 

Page 21: Ionic Conduction in Polymer Composite

10/30/2010

21

Electric ModulusElectric Modulus

0 025

0.03

0.035

0.04

0.045

0.05

M"

(a)

0 025

0.03

0.035

0.04

0.045

0.05

M"

(b)

0

0.005

0.01

0.015

0.02

0.025

0 0.1 0.2 0.3 0.4

M'

T=300 K

T=310 K

T=320 K

T=330 K

T=340 K

T=350 K

0

0.005

0.01

0.015

0.02

0.025

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

M'

T=300 KT=310 KT=320 KT=330 KT=340 KT=350 K

0.04

0.05

0.06

0.07

M"

(c)

0.06

0.08

0.1

0.12

M"

T 300 K

(d)

Argand plots of (a) pure PVA, (b) 10 wt%, (c) 20 wt% and

(d) 30 wt% NaI‐PVA composites.

Argand plots of (a) pure PVA, (b) 10 wt%, (c) 20 wt% and

(d) 30 wt% NaI‐PVA composites.

0

0.01

0.02

0.03

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

M'

T=300 K

T=310 K

T=320 K

T=330 K

T=340 K

T=350 K

0

0.02

0.04

0 0.1 0.2 0.3 0.4

M'

T=300 K

T=310 K

T=320 K

T=330 K

T=340 K

T=350 K

Page 22: Ionic Conduction in Polymer Composite

10/30/2010

22