introduction to pdes and numerical methods lecture 1 ... · introduction to pdes and numerical...

32
Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Dr. Noemi Friedman, 28.10.2015. Introduction to PDEs and Numerical Methods Lecture 1: Introduction

Upload: truongque

Post on 27-Aug-2018

224 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Introduction to PDEs and Numerical Methods Lecture 1 ... · Introduction to PDEs and Numerical Methods Lecture 1: Introduction. 28. 10. ... Boundary Value Problem ... =0is a solution

Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen

Dr. Noemi Friedman, 28.10.2015.

Introduction to PDEs and Numerical Methods

Lecture 1:

Introduction

Page 2: Introduction to PDEs and Numerical Methods Lecture 1 ... · Introduction to PDEs and Numerical Methods Lecture 1: Introduction. 28. 10. ... Boundary Value Problem ... =0is a solution

28. 10. 2015. | PDE lecture | Seite 2

Basic information on the course

Course Title:

Introduction to PDEs and Numerical Methods

Lecturer:

Noémi Friedman

[email protected]

Mühlenpfordtstr. 23, 8th floor

Room: 819

Assistant (exercises):

Jaroslav Vondřejc

[email protected]

Mühlenpfordtstr. 23, 8th floor

Room: 822

Assistant2 (small tutorials):

Stephan Lenz (CSE student)

Page 3: Introduction to PDEs and Numerical Methods Lecture 1 ... · Introduction to PDEs and Numerical Methods Lecture 1: Introduction. 28. 10. ... Boundary Value Problem ... =0is a solution

28. 10. 2015. | PDE lecture | Seite 3

Basic information on the course

Credits and work load:

5 credits: 6-7 hours/week

Pre-requisits:

Differential operators,

elementary knowledge of PDEs,

basics of linear algebra,

basic MATLAB coding skills

Requisits:

Weekly assignments in group of two or three (min 50%)

Written exam: 29.2.2016., 10:30 - 12:00, room ZI 24.1

Script, recommended literature:

See webpage: https://www.tu-braunschweig.de/wire/lehre/ws15/pde1

Software used:

MATLAB, FEniCS (Python interface)

Page 4: Introduction to PDEs and Numerical Methods Lecture 1 ... · Introduction to PDEs and Numerical Methods Lecture 1: Introduction. 28. 10. ... Boundary Value Problem ... =0is a solution

28. 10. 2015. | PDE lecture | Seite 4

Information about the assignments

Homework assignments in groups (max. group of three)

Submission of homework

Written homework

Submit on the beginning of the tutorial

(include cover sheet with subject name (PDE1), names and matriculation

number of students, assignment number)

For program codes:

e-mail: [email protected]

subject: assignment# NAMES

(#: number of the assignment, NAMES: names of students)

(e.g.: assignment1 J. Smith, K. Park)

Homework is due to the beginning of the tutorials

Consultation:

Noemi Friedman (after the lecture, office hours by arrangement, please, take

appointment first by e-mail: [email protected])

Jaroslav Vondřejc (will be assigned on the tutorial

Page 5: Introduction to PDEs and Numerical Methods Lecture 1 ... · Introduction to PDEs and Numerical Methods Lecture 1: Introduction. 28. 10. ... Boundary Value Problem ... =0is a solution

28. 10. 2015. | PDE lecture | Seite 5

Definition: ODEs PDEs

Partial differential equation:

Equation specifying a relation between the partial derivative(s) of an unkown

multivariable function and maybe the function itself:

𝐹 𝑢 𝑥, 𝑦, 𝑧, 𝑡 ,𝜕𝑢 𝑥, 𝑦, 𝑧, 𝑡

𝜕𝑥,𝜕𝑢 𝑥, 𝑦, 𝑧, 𝑡

𝜕𝑦, …

𝜕2𝑢 𝑥, 𝑦, 𝑧, 𝑡

𝜕𝑥𝑦, … = 𝑓(𝑥, 𝑦, 𝑧, 𝑡)

Ordinary differential equation:

Equation specifying a relation between the derivative(s) of an unkown univariable

function and maybe the function itself:

𝐹 𝑢 𝑡 ,𝑑𝑢 𝑡

𝜕𝑡,

𝑑2𝑢 𝑡

𝑑𝑡2 , … = 𝑓(𝑡)

Boundary Value Problem (BVP), Initial Boundary Value Problem (IBVP):

PDE with initial/boundary conditions

Page 6: Introduction to PDEs and Numerical Methods Lecture 1 ... · Introduction to PDEs and Numerical Methods Lecture 1: Introduction. 28. 10. ... Boundary Value Problem ... =0is a solution

28. 10. 2015. | PDE lecture | Seite 6

Motivation – simulation of planets

Page 7: Introduction to PDEs and Numerical Methods Lecture 1 ... · Introduction to PDEs and Numerical Methods Lecture 1: Introduction. 28. 10. ... Boundary Value Problem ... =0is a solution

28. 10. 2015. | PDE lecture | Seite 7

Motivation – heat convection

Source:

ANSYS http://www.ansys.com/staticassets/ANSYS/staticassets/product/16-highlights/underhood-simulation-surface-temps-heat-

transfer-manifold-2.jpg

computed surface temperatures due to

convective and radiative heat transfer from

the exhaust manifold to surrounding

objects

Page 8: Introduction to PDEs and Numerical Methods Lecture 1 ... · Introduction to PDEs and Numerical Methods Lecture 1: Introduction. 28. 10. ... Boundary Value Problem ... =0is a solution

28. 10. 2015. | PDE lecture | Seite 8

Motivation – structural analysis

Source: ANSYS

http://wildeanalysis.co.uk/system/photos/838/preview/ansys_ex

plicit_str.png?1273430962

Page 9: Introduction to PDEs and Numerical Methods Lecture 1 ... · Introduction to PDEs and Numerical Methods Lecture 1: Introduction. 28. 10. ... Boundary Value Problem ... =0is a solution

28. 10. 2015. | PDE lecture | Seite 9

Motivation – flow problems

The Stokes equation

Source:

FENICS documentation:

http://fenicsproject.org/documentation/dolfin/1.6.0/python/demo/documented/stokes-taylor-hood/python/documentation.html

−𝛻 ⋅ 𝛻 𝑢 + 𝑝 𝐼 = 𝑓 in Ω∇⋅ 𝑢 = 0 in Ω

𝑝(x)𝑢(x)

Page 10: Introduction to PDEs and Numerical Methods Lecture 1 ... · Introduction to PDEs and Numerical Methods Lecture 1: Introduction. 28. 10. ... Boundary Value Problem ... =0is a solution

Motivation – flow problems

28. 10. 2015. | PDE lecture | Seite 10

Source: https://33463d8ba37cd0a930f1-

eb07ed6f28ab61e35047cec42359baf1.ssl.cf5.rackcdn.com/ugc/entry/5

44867a78ef07-133981577813387476428_0129_fast15.jpg

Source: TU Braunschweig SFB 880

Page 11: Introduction to PDEs and Numerical Methods Lecture 1 ... · Introduction to PDEs and Numerical Methods Lecture 1: Introduction. 28. 10. ... Boundary Value Problem ... =0is a solution

28. 10. 2015. | PDE lecture | Seite 11

Motivation – highly coupled systems

Page 12: Introduction to PDEs and Numerical Methods Lecture 1 ... · Introduction to PDEs and Numerical Methods Lecture 1: Introduction. 28. 10. ... Boundary Value Problem ... =0is a solution

28. 10. 2015. | PDE lecture | Seite 12

Overview of the course

Introduction (definition of PDEs, classification, basic math,

introductory examples of PDEs)

Analitical solution of elementary PDEs (Fourier series/transform,

seperation of variables, Green’s function)

Numerical solutions of PDEs:

Finite difference method

Finite element method

Page 13: Introduction to PDEs and Numerical Methods Lecture 1 ... · Introduction to PDEs and Numerical Methods Lecture 1: Introduction. 28. 10. ... Boundary Value Problem ... =0is a solution

28. 10. 2015. | PDE lecture | Seite 13

Overview of this lecture

Basic definitions, motivation

Differential operators: basic notations, divergence, Laplace, curl, grad

Classification of PDEs

Introductory example: heat flow in a bar

Page 14: Introduction to PDEs and Numerical Methods Lecture 1 ... · Introduction to PDEs and Numerical Methods Lecture 1: Introduction. 28. 10. ... Boundary Value Problem ... =0is a solution

28. 10. 2015. | PDE lecture | Seite 14

Differential operators – partial derivative

Partial derivative:

𝜑(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝜑

𝜕𝑥, 𝜕𝑥𝜑, 𝜑𝑥 ,

𝜕

𝜕𝑥𝜑, 𝜑,𝑥 , (𝜑′)

(Image source: Wikipedia)

𝑧 = 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑥𝑦 + 𝑦2𝜕𝜑

𝜕𝑥= 2𝑥 + 𝑦

𝜕𝜑

𝜕𝑥𝑥=1,𝑦=1

= 3

𝜕𝜑

𝜕𝑡= 𝜑

Example:

Page 15: Introduction to PDEs and Numerical Methods Lecture 1 ... · Introduction to PDEs and Numerical Methods Lecture 1: Introduction. 28. 10. ... Boundary Value Problem ... =0is a solution

28. 10. 2015. | PDE lecture | Seite 15

Differential operators – mixed derivative

Mixed derivative:

𝜑(𝑥, 𝑦)

𝜕2𝜑

𝜕𝑥𝜕𝑦=

𝜕2𝜑

𝜕𝑦𝜕𝑥

𝑓(𝑥, 𝑦, 𝑧) = 𝑥𝑦2cos(𝑧)

𝜕𝑓

𝜕𝑥= 𝑦2cos(𝑧)

𝜕𝑓

𝜕𝑦= 2𝑥𝑦 cos(𝑧)

𝜕2𝜑

𝜕𝑥𝜕𝑦= 2𝑦cos(𝑧)

𝜕2𝜑

𝜕𝑦𝜕𝑥= 2𝑦cos(𝑧)

Example:

Page 16: Introduction to PDEs and Numerical Methods Lecture 1 ... · Introduction to PDEs and Numerical Methods Lecture 1: Introduction. 28. 10. ... Boundary Value Problem ... =0is a solution

28. 10. 2015. | PDE lecture | Seite 16

Differential operators – total derivative

Total derivative:

Total differential (differential change of f):

𝑑𝜑

𝑑𝑡=

𝜕𝜑

𝜕𝑡

𝑑𝑡

𝑑𝑡+

𝜕𝜑

𝜕𝑥

𝑑𝑥

𝑑𝑡+

𝜕𝜑

𝜕𝑦

𝑑𝑦

𝑑𝑡+

𝜕𝜑

𝜕𝑧

𝑑𝑧

𝑑𝑡

𝜑 𝒓 = 𝜑 𝑥, 𝑦, 𝑧, 𝑡

𝑑𝜑 =𝑑𝜑

𝑑𝑡+

𝜕𝜑

𝜕𝑥𝑑𝑥 +

𝜕𝜑

𝜕𝑦𝑑𝑦 +

𝜕𝜑

𝜕𝑧𝑑𝑧

𝜑 𝑥, 𝑦 = 𝑥2 + 2𝑦

𝑑𝜑

𝑑𝑥=

𝜕𝜑

𝜕𝑥

𝑑𝑥

𝑑𝑥+

𝜕𝜑

𝜕𝑦

𝑑𝑦

𝑑𝑥= 2𝑥 + 2𝑦 𝑥 = 𝑥

𝜕𝜑

𝜕𝑥= 2𝑥

total derivative

partial derivative

Example:

Page 17: Introduction to PDEs and Numerical Methods Lecture 1 ... · Introduction to PDEs and Numerical Methods Lecture 1: Introduction. 28. 10. ... Boundary Value Problem ... =0is a solution

28. 10. 2015. | PDE lecture | Seite 17

Differential operators – gradient

Nabla operator:

Gradient:

𝜑 𝒓 = 𝜑 𝑥, 𝑦, 𝑧 : ℝ3 → ℝ (vector-scalar function)

𝛻 =

𝜕

𝜕𝑥𝜕

𝜕𝑦𝜕

𝜕𝑧

Example:

• direction: greatest rate of increase of

the function

• magnitude: the slope of the function in

that direction

Page 18: Introduction to PDEs and Numerical Methods Lecture 1 ... · Introduction to PDEs and Numerical Methods Lecture 1: Introduction. 28. 10. ... Boundary Value Problem ... =0is a solution

28. 10. 2015. | PDE lecture | Seite 18

Differential operators – directional derivative

𝜑 𝒓 = 𝜑 𝑥, 𝑦, 𝑧 : ℝ3 → ℝ (vector-scalar function)

𝐷𝒗𝑓 𝒓 = limℎ→0

𝜑 𝒓 + ℎ𝒗 − 𝜑 𝒓

ℎ= 𝒗 ∙ 𝛻 𝑓 𝒓 = 𝒗𝑇 𝛻 𝑓 𝒓 = 𝑣𝑥 𝑣𝑦 𝑣𝑧

𝜕𝜑 𝑥, 𝑦, 𝑧

𝜕𝑥𝜕𝜑 𝑥, 𝑦, 𝑧

𝜕𝑦

𝜕𝜑 𝑥, 𝑦, 𝑧

𝜕𝑧

Directional derivative:

(normalised):

𝐷𝒗𝑓 𝒓 = limℎ→0

𝑓 𝒓 + ℎ𝒗 − 𝑓 𝒓

ℎ 𝒗=

𝒗

𝒗∙ 𝛻 𝑓 𝒓

𝑡

𝑥

𝑢What is the differential equation to define a wave

traveling with speed 𝑐?

In the direction 𝑥 − 𝑐𝑡 𝑢 is constant→ directional

derivative is zero:

𝐷𝒗𝑢 𝑥, 𝑡 =𝒗

𝒗∙ 𝛻 𝑢 𝑥, 𝑡 = 0 (𝒗 ∙ 𝛻 𝑢 𝑥, 𝑡 = 0)

Example 1:

Page 19: Introduction to PDEs and Numerical Methods Lecture 1 ... · Introduction to PDEs and Numerical Methods Lecture 1: Introduction. 28. 10. ... Boundary Value Problem ... =0is a solution

28. 10. 2015. | PDE lecture | Seite 19

Differential operators – directional derivative

𝒗 ∙ 𝛻 𝑢 𝑥, 𝑡 = 𝒗𝑇 𝛻 𝑢 𝑥, 𝑡 = 𝑐 1

𝜕𝑢

𝜕𝑥𝜕𝑢

𝜕𝑡

= 0

𝑡

𝑥

𝑢 𝒗 =𝑐1 𝒗 ∙ 𝛻 𝑢 𝑥, 𝑡 = 0

Let’s suppose 𝑢 = sin(𝑥 − 𝑐𝑡) is a solution of the transport equation.

What is its directional derivative in the direction:

𝑢𝑡 + 𝑐𝑢𝑥 = 0Transport equation:

𝒗 =𝑐1

𝒗 ∙ 𝛻 𝑢 𝑥, 𝑡 = 𝒗𝑇 𝛻 𝑢 𝑥, 𝑡 = 𝑐 1cos(𝑥 − 𝑐𝑡)

−𝑐 cos(𝑥 − 𝑐𝑡= 0

Example 2:

Page 20: Introduction to PDEs and Numerical Methods Lecture 1 ... · Introduction to PDEs and Numerical Methods Lecture 1: Introduction. 28. 10. ... Boundary Value Problem ... =0is a solution

28. 10. 2015. | PDE lecture | Seite 20

Differential operators - divergence

of 𝒈(𝑥, 𝑦, 𝑧): ℝ3 → ℝ3((of a vector field):

𝒈 𝑥, 𝑦, 𝑧 =

𝑔𝑥(𝑥, 𝑦, 𝑧)𝑔𝑦(𝑥, 𝑦, 𝑧)

𝑔𝑧(𝑥, 𝑦, 𝑧)

=

𝑔𝑥

𝑔𝑦

𝑔𝑧

𝑑𝑖𝑣𝒈 𝑥, 𝑦, 𝑧 = 𝛻 ∙ 𝒈 𝑥, 𝑦, 𝑧 =𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑔𝑥

𝑔𝑦

𝑔𝑧

=𝜕𝑔𝑥

𝜕𝑥+

𝜕𝑔𝑦

𝜕𝑦+

𝜕𝑔𝑧

𝜕𝑧

Example:

Divergence:

Page 21: Introduction to PDEs and Numerical Methods Lecture 1 ... · Introduction to PDEs and Numerical Methods Lecture 1: Introduction. 28. 10. ... Boundary Value Problem ... =0is a solution

28. 10. 2015. | PDE lecture | Seite 21

Differential operators - Laplace

Example:

Laplace operator:

Page 22: Introduction to PDEs and Numerical Methods Lecture 1 ... · Introduction to PDEs and Numerical Methods Lecture 1: Introduction. 28. 10. ... Boundary Value Problem ... =0is a solution

28. 10. 2015. | PDE lecture | Seite 22

Differential operators – rotation (curl)

of 𝒈(𝑥, 𝑦, 𝑧): ℝ3 → ℝ3((of a vector field):

𝒈 𝑥, 𝑦, 𝑧 =

𝑔𝑥(𝑥, 𝑦, 𝑧)𝑔𝑦(𝑥, 𝑦, 𝑧)

𝑔𝑧(𝑥, 𝑦, 𝑧)

=

𝑔𝑥

𝑔𝑦

𝑔𝑧

𝑟𝑜𝑡𝒈 𝑥, 𝑦, 𝑧 = 𝛻 × 𝒈 𝑥, 𝑦, 𝑧 = 𝑑𝑒𝑡

𝒊 𝒋 𝒌𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧𝑔𝑥 𝑔𝑦 𝑔𝑧

=

𝜕𝑔𝑧

𝜕𝑦−

𝜕𝑔𝑦

𝜕𝑧𝜕𝑔𝑥

𝜕𝑧−

𝜕𝑔𝑧

𝜕𝑥𝜕𝑔𝑦

𝜕𝑥−

𝜕𝑔𝑥

𝜕𝑦

Example:

Rotation (curl):

• direction: axis of rotation

• magnitude: magnitude of rotation

Page 23: Introduction to PDEs and Numerical Methods Lecture 1 ... · Introduction to PDEs and Numerical Methods Lecture 1: Introduction. 28. 10. ... Boundary Value Problem ... =0is a solution

28. 10. 2015. | PDE lecture | Seite 23

Classification of PDEs

Constant/variable coefficients

Stationary/instationary (not time dependent/time dependent)

Linear/nonlinear

linearity condition:

order

order of the highest derivative

homogeneous/inhomogenous

inhomogeneous: additive terms which do not depend on unknown function

homogenous: 𝑢 = 0 is a solution of the equation

elliptic/parabolic/hyperbolic (only for second order PDEs)

𝐴𝑢𝑥𝑥 + 2𝐵𝑢𝑥𝑦 + 𝐶𝑢𝑦𝑦 + lower order derivatives = 0

• 𝐴𝐶 − 𝐵2 = 0 parabolic

• 𝐴𝐶 − 𝐵2 < 0 hyperbolic

• 𝐴𝐶 − 𝐵2 > 0 elliptic

Page 24: Introduction to PDEs and Numerical Methods Lecture 1 ... · Introduction to PDEs and Numerical Methods Lecture 1: Introduction. 28. 10. ... Boundary Value Problem ... =0is a solution

28. 10. 2015. | PDE lecture | Seite 24

Classification of PDEs, examples of PDEs

Wave equation

𝑢𝑡𝑡 − 𝒄𝟐𝑢𝑥𝑥 = 0Laplace equation

𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0Heat equation

𝑢𝑡 − 𝑢𝑥𝑥 = 0

Order 2 2 2

Constant

coefficient?

yes yes yes

Linear? yes yes yes

Homogenous? yes yes yes

Class A=1, B=0, C=−𝒄𝟐

𝐴𝐶 − 𝐵2 = −𝒄𝟐

Hyperbolic

A=1, B=0, C=1𝐴𝐶 − 𝐵2 =1

Elliptic

A=-1, B=0, C=0𝐴𝐶 − 𝐵2 = 0

Parabolic

Page 25: Introduction to PDEs and Numerical Methods Lecture 1 ... · Introduction to PDEs and Numerical Methods Lecture 1: Introduction. 28. 10. ... Boundary Value Problem ... =0is a solution

28. 10. 2015. | PDE lecture | Seite 25

Classification of PDEs, examples of PDEs

Linearity:

Page 26: Introduction to PDEs and Numerical Methods Lecture 1 ... · Introduction to PDEs and Numerical Methods Lecture 1: Introduction. 28. 10. ... Boundary Value Problem ... =0is a solution

28. 10. 2015. | PDE lecture | Seite 26

Classification of PDEs, examples of PDEs

Page 27: Introduction to PDEs and Numerical Methods Lecture 1 ... · Introduction to PDEs and Numerical Methods Lecture 1: Introduction. 28. 10. ... Boundary Value Problem ... =0is a solution

28. 10. 2015. | PDE lecture | Seite 27

Introductory example: heat flow in a bar

Basic assumptions:

Uniform cross-section

Temperature varies only in the longitudinal direction

Relationship between heat energy and temperature is linear

𝑐𝐽

𝑔𝐾: cpecific heat capacity Energy [𝐽]

𝑐𝐽 energy is required to raise the tempreture by 1𝐾 of 1𝑔 material

Homogenous material properties along the bar (𝜌 and 𝑐 are constants along the bar)

𝜌[𝑔

𝑚3]: density of the material of the bar

Problem description 𝑢 𝑥, 𝑡 =? (temparature)

0 𝑙𝑥 𝑥 + ∆𝑥

∆𝑥

𝑞(0, 𝑡) 𝑞(𝑙, 𝑡)

𝐴

Page 28: Introduction to PDEs and Numerical Methods Lecture 1 ... · Introduction to PDEs and Numerical Methods Lecture 1: Introduction. 28. 10. ... Boundary Value Problem ... =0is a solution

28. 10. 2015. | PDE lecture | Seite 28

Introductory example: heat flow in a bar

0 𝑙𝑥 𝑥 + ∆𝑥

∆𝑥

𝑞(0, 𝑡) 𝑞(𝑙, 𝑡)

𝐴

∆𝑥Total energy in the bar section of length ∆𝑥 is:

𝐸𝑡𝑜𝑡 = 𝐸0 + 𝑥

𝑥+∆𝑥

𝐴𝜌𝑐(𝑢 𝑠, 𝑡 − 𝑇0))𝑑𝑠 =

𝐸0 + 𝑥

𝑥+∆𝑥

𝐴𝜌𝑐𝑢 𝑠, 𝑡 𝑑𝑠 − 𝑥

𝑥+∆𝑥

𝐴𝜌𝑐𝑇0𝑑𝑠

𝐴𝜌𝑐𝑇0𝑑𝑠But I’m only interested in:

𝜕

𝜕𝑡 𝑥

𝑥+∆𝑥

𝐴𝜌𝑐𝑢 𝑠, 𝑡 𝑑𝑠 = 𝑥

𝑥+∆𝑥

𝐴𝜌𝑐𝜕𝑢 𝑠, 𝑡

𝜕𝑡𝑑𝑠

Page 29: Introduction to PDEs and Numerical Methods Lecture 1 ... · Introduction to PDEs and Numerical Methods Lecture 1: Introduction. 28. 10. ... Boundary Value Problem ... =0is a solution

28. 10. 2015. | PDE lecture | Seite 29

Introductory example: heat flow in a bar

∆𝑥

𝜕

𝜕𝑡 𝑥

𝑥+∆𝑥

𝐴𝜌𝑐𝑢 𝑠, 𝑡 𝑑𝑠 = 𝑥

𝑥+∆𝑥

𝐴𝜌𝑐𝜕𝑢 𝑠, 𝑡

𝜕𝑡𝑑𝑠

Change of heat energy by time in the section of length ∆𝑥

𝑞(𝑥, 𝑡) 𝑞(𝑥 + ∆𝑥, 𝑡)

Change of energy by time in the section of length ∆𝑥 from heat flux:

𝑞 𝑥, 𝑡𝐽

𝑚2𝑠: heat flux

𝐴𝑞 𝑥 + ∆𝑥, 𝑡 − 𝐴𝑞 𝑥, 𝑡 = 𝑥

𝑥+∆𝑥

𝐴𝜕𝑞 𝑠, 𝑡

𝜕𝑥𝑑𝑠

Fundamental

theorem of calculus:

Conservation of energy:

𝑥

𝑥+∆𝑥

𝐴𝜕𝑞 𝑠, 𝑡

𝜕𝑥𝑑𝑠 = −

𝑥

𝑥+∆𝑥

𝐴𝜌𝑐𝜕𝑢 𝑠, 𝑡

𝜕𝑡𝑑𝑠

𝑥

𝑥+∆𝑥

𝐴𝜕𝑞 𝑠, 𝑡

𝜕𝑥+ 𝐴𝜌𝑐

𝜕𝑢 𝑠, 𝑡

𝜕𝑡𝑑𝑠 = 0

Page 30: Introduction to PDEs and Numerical Methods Lecture 1 ... · Introduction to PDEs and Numerical Methods Lecture 1: Introduction. 28. 10. ... Boundary Value Problem ... =0is a solution

28. 10. 2015. | PDE lecture | Seite 30

Introductory example: heat flow in a bar

∆𝑥

𝑞(𝑥, 𝑡) 𝑞(𝑥 + ∆𝑥, 𝑡) 𝑥

𝑥+∆𝑥

𝐴𝜕𝑞 𝑠, 𝑡

𝜕𝑥+ 𝐴𝜌𝑐

𝜕𝑢 𝑠, 𝑡

𝜕𝑡𝑑𝑠 = 0

𝜕𝑞 𝑥, 𝑡

𝜕𝑥+ 𝜌𝑐

𝜕𝑢 𝑥, 𝑡

𝜕𝑡= 0 0 < 𝑥 < 𝑙

𝜕𝑢 𝑥,𝑡

𝜕𝑥: change of temperature with increasing 𝑥

Assumption: Fourier’s law of heat conduction: 𝑞 𝑥, 𝑡 = −𝜅𝜕𝑢 𝑥, 𝑡

𝜕𝑥

𝜌𝑐𝜕𝑢 𝑥, 𝑡

𝜕𝑡− 𝜅

𝜕2𝑢 𝑥, 𝑡

𝜕𝑥2 = 0Heat equation

𝜌(𝑥)𝑐(𝑥)𝜕𝑢 𝑥, 𝑡

𝜕𝑡−

𝜕

𝜕𝑥𝜅(𝑥)

𝜕𝑢 𝑥, 𝑡

𝜕𝑥= 0 (for inhomogenous material

properties)

(for homogenous material properties)

Page 31: Introduction to PDEs and Numerical Methods Lecture 1 ... · Introduction to PDEs and Numerical Methods Lecture 1: Introduction. 28. 10. ... Boundary Value Problem ... =0is a solution

28. 10. 2015. | PDE lecture | Seite 31

Introductory example: heat flow in a bar

∆𝑥

𝑞(𝑥, 𝑡) 𝑞(𝑥 + ∆𝑥, 𝑡) 𝑥

𝑥+∆𝑥

𝐴𝜕𝑞 𝑠, 𝑡

𝜕𝑥+ 𝐴𝜌𝑐

𝜕𝑢 𝑠, 𝑡

𝜕𝑡𝑑𝑠 =

𝑥

𝑥+∆𝑥

𝐴𝑓(𝑠, 𝑡) 𝑑𝑠

𝜕𝑞 𝑥, 𝑡

𝜕𝑥+ 𝜌𝑐

𝜕𝑢 𝑥, 𝑡

𝜕𝑡= 𝑓(𝑥, 𝑡) 0 < 𝑥 < 𝑙

𝜌𝑐𝜕𝑢 𝑥, 𝑡

𝜕𝑡− 𝜅

𝜕2𝑢 𝑥, 𝑡

𝜕𝑥2= 𝑓(𝑥, 𝑡)

Heat equation

𝜌(𝑥)𝑐(𝑥)𝜕𝑢 𝑥, 𝑡

𝜕𝑡−

𝜕

𝜕𝑥𝜅(𝑥)

𝜕𝑢 𝑥, 𝑡

𝜕𝑥= 𝑓(𝑥, 𝑡) (for inhomogenous material properties)

(for homogenous material properties)

The heat equation with source or sink (inhomogenous heat equation)

Page 32: Introduction to PDEs and Numerical Methods Lecture 1 ... · Introduction to PDEs and Numerical Methods Lecture 1: Introduction. 28. 10. ... Boundary Value Problem ... =0is a solution

28. 10. 2015. | PDE lecture | Seite 32

Introductory example: heat flow in a bar

0 𝑙

𝑞(0, 𝑡) 𝑞(𝑙, 𝑡)

𝐴

𝜌𝑐𝜕𝑢 𝑥, 𝑡

𝜕𝑡− 𝜅

𝜕2𝑢 𝑥, 𝑡

𝜕𝑥2 = 𝑓(𝑥, 𝑡)

Boundary conditions:

a) Perfect isolation at the end (flux across the boundaries is zero):

−𝜅𝜕𝑢 0, 𝑡

𝜕𝑥= 0 −𝜅

𝜕𝑢 𝑙, 𝑡

𝜕𝑥= 0 ∀𝑡

b) Perfect thermal contact:

𝑢 0, 𝑡 = 0 𝑢 𝑙, 𝑡 = 0 ∀𝑡