inluence surface for support moments

Upload: abhijeet-khasnis

Post on 05-Jul-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/15/2019 Inluence Surface for Support Moments

    1/15

    Influence surfaces for support moments ofcontinuous slabs

    Autor(en): Thürlimann, Bruno

    Objekttyp: Article

    Zeitschrift: IABSE publications = Mémoires AIPC = IVBH Abhandlungen

    Band (Jahr): 16 (1956)

    Persistenter Link: http://dx.doi.org/10.5169/seals-15079

    PDF erstellt am: 24.05.2016

    NutzungsbedingungenDie ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte anden Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke inLehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oderAusdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und denkorrekten Herkunftsbezeichnungen weitergegeben werden.Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigungder Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebotsauf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

    HaftungsausschlussAlle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftungübernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder

    durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebotzugänglich sind.

    Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

    http://www.e-periodica.ch

    http://dx.doi.org/10.5169/seals-15079http://dx.doi.org/10.5169/seals-15079

  • 8/15/2019 Inluence Surface for Support Moments

    2/15

    Influence Surfaces for Support Moments of Continuous Slabs

    Aires d'influencepour moments aux appuis dans les dalles continues

    Einflußflächen für Stützmomente kontinuierlicherPlatten

    Bruno Thürlimann,Fritz Engineering Laboratory,Lehigh University,Bethlehem, Penna

    1. Introduction

    The firstSolutions to the problemofinfluencesurfaces forbending momentsof slabs were presented by Westergaard [l]1). Realizing the reciprocitybetween the bending moment Mx at point (u,v) produced by a unit loadP 1 at point (x,y) and the bending moment Mx at point (x, y) caused by a

    unit load P=l at point (u,v) of a simply supported plate strip (see fig. 1)he was able to determine the moment influence surface for a point (u, v) ofsuch a plate. Subsequent investigators [2, 3] based their Solutions on the same reciprocitylaw . Unfortunatelythis law is not sufficientlygeneral and holdsonly for a restricted number of cases such as, simplysupported plate strip [1],simply supported rectangular plate [3], etc. Reference may be made to theproblem ofinfluence lines ofbeams. Onlyfor the simplysupported beam is thebending moment diagram for P 1 at (u) equal to the influence line of thebending moment at (u).

    Pucher. [4, 5, 6] was the first to derive the general theory for influence

    £¦

    TI

    \ui

    *(*./)

    -^ k

  • 8/15/2019 Inluence Surface for Support Moments

    3/15

    486 Bruno Thürlimann

    surfaces of slabs. Many new cases have since been solved. Reference [7] pre-sents a collection of these Solutions in graphical form readily applicable todesign problems. However, to the author's knowledge, no Solutions for thesupport moments of continuous slabs have previouslybeen presented.

    2. Fundamental Theorems

    Before developing the Solutions the fundamental theorems derived byPucher [4, 5, 8] are restated withoutproof:1. The influence function f(x,y) for any effect in a slab (such as bending

    moment, shearing force, etc.) at a given point (u, v)2) is a Solution of thebiharmonic equation AAf(x,y) 0*) with a singularity at the influencepoint (u,v).

    2. The boundary conditions on f(x,y) are identical with the boundary con¬ditions for the deflection w of the given plate; e. g. a built-inboundaryhaving w —^ 0 willhave f —t 0,n being the normal to the boundaryline. dn dn

    On the basis of these two theorems the followingSolutions willbe derived.

    3. Plate Strip Continuous Over RigidCross Beam

    Consider an infiniteplate stripwithsimplysupported paralleledges (fig. 2).Aty 0 the plate is continuous over a rigidsupport beam. The problem is toderive the influence function for the bending moment My*)over this crosssupport, hence for Myat y 0. To distinguish the influence functionfrom thebending moment My the influence functionis labeled my. The functionmy isnow taken in the form

    my my0+ myl (1)0 £n(u,o) *(*,y) i

    X (u, v)

    I

    RigidCross Beam j.

    Fig. 2

    being) Subsequently this point (u, v) willbe referred to as the influence point'the point for which the influence functionis determined.

    d2 d23) A being the Laplace Operator —- -f ——z.dx2 dy24) The notation is consistent with the usual engineering notation, especially with

    reference [9].

  • 8/15/2019 Inluence Surface for Support Moments

    4/15

    Influence Surfaces for Support Moments of Continuous Slabs 487

    my0 being the influence functionfor the simplysupported plate strip withoutthe cross beam and myl being a regulär integral ofAAmyl 0, chosen in sucha manner that the sum (my0-\-myl)fulfillsall the boundary conditions.Accord¬ing to theorem (2) my is required to fulfillthe same boundary conditions asthe deflectionw of the plate. The boundary conditionscan then be formulatedin the followingmanner:

    For x 0 1x a J

    d2my0myO-myl- g 2 - d2myldy2 U* (2)

    For y 0 myQ+myl 0, (3)dmyl _ 0 (4)dy

    Of these conditions, (3) assures that thesupport

    providedby

    the crossbeam is rigid. (4) expresses the continuityof the slab for the regulär Solutionmyl. No such condition on my0 is required as it is a Solution for the infiniteplate strip and hence continuous.

    The influencefunctionmy0 (x, y) for the bending moment MySit point (u, v)of an infiniteplate strip (fig. 1) is given by [1]:

    1mv»- 277^ n

    00

    4-J n,n7r(y— v)l+v±(l-v) ±nn(y-v) ^ n ^ ^ ^ n ^ %e a sm sm

    In the case of the double sign the upper applies for y ^ v, the lower for y v.The constant v Stands for Poisson's ratio. Using the followingdimensionlesscoordinates:

    TTU^

    7TV^_ O.

    7TX £.a

    ~~ a' a P' a

    a

    the expression becomes

    iry ttc x— rj; — y\ (used later on)(5)

    my0 —V— [1 +v±(l -v)(nr) -nß)]e±(n7)-nfrsmn

  • 8/15/2019 Inluence Surface for Support Moments

    5/15

    488 Bruno Thürlimann

    00

    myl 2 (an + bn n r))e~nrisin not-sinng (8)for rj 0. The coefficients an and bn are determined from the boundary con¬

    ditions (3) and (4) such that the sum (my0+myl) fulfils the condition of arigidsupport at 77 0.dmyl 77 dmyl t7—^- -r-±- 0 -Y,n(an-bn)s\nn*>s\nn%öy a c rj 1

    or an bn. (9)

    Makinguse of eqs. (7) and (9) in condition (3) gives:

    an=-^--[l+v-(l-v)nß]e- ß. (10)1 2 tt nThe general Solution for the influence surface is the sum (my0+ myl) or

    00

    my — Y^—{[1+v± (1 -v)(n 7] -nß)]e±(n7J-nß)1 (11)

    — [1 +v—(1 —v)nß]e~nß-(1 +W77)e-n77}sinwa-sinw£for 77 0. The supper sign is for 77 ß, the lower for 77 j8. To determine theinfluencefunctionm^ fora pointover the support v -ß 0 in eq. (11) or:

    For ß 0 (lower sign in (11) applies):00

    m =—-/ e~nr) sinn

  • 8/15/2019 Inluence Surface for Support Moments

    6/15

    Influence Surfaces for Support Moments ofContinuous Slabs 489

    ™v -J, (15)Actualcomputations of my do not offer any particular difficultiesand can

    readily be made on a desk calculator. A typicalexample of an influence sur¬face for (u ^,v o\ or (a |,j8 0) respectively is shown in figure 5. Itshould be mentioned that followingPucher [7] the plotted values are 877times the influencevalues.

    4. Plate Strip Continuous Over Two RigidCross Beams

    As a second example the influence function for the support moment of aplate strip continuous over two rigid cross beams is considered (fig. 3). Inthe limitingcase for c 0 — c being the distance between the two cross beams— this problem willgive the influence function for a semi-infiniteplate stripwithbuilt-inedge, already presented by Pucher [7]. Byvaryingthe distance cdifferentdegrees of restraint can be obtained.

    j n(u.O)RigidCross Beam I*

    Fig. 3

    The method of attack follows the pattern of the previous Solution. Theinfluence function for the bending moment My over the right support y 0for point (u, 0) is determined from the sum

    my my0+ myl+ my2 (16)

    my0 is the Solution for the case of an infiniteplate strip continuous over arigid support at y 0, hence is given in series form by eq. (12) or in finiteformby eq. (14). myland my2 are regulär Solutionsfor an unloaded plate stripexcept for reactive forces along y 0 and y=—crespectively:

    myi 2(ain+blnn r])eTnrisinnot-sinn£.

    Upper sign for 77 ^ 0Lower sign for 77 0.

    (17)

    (See eq. (5) for dimensionless coordinates).

  • 8/15/2019 Inluence Surface for Support Moments

    7/15

    490 Bruno Thürlimann

    my2 Yla2n+b2n(ny+nr1)]e^ny+^sinn(x'sinn^. (18)Upper sign 77 —y

    Lowersign 77 —y.The three parts my0, myl and my2 fulfilindividuallythe boundary conditionsfor a simple support along £ 0 and £ 77. The continuityof slope over thetwo cross beams requires that for

    fl rYY) et ^*? -y; -g-JL ° -2(«2rl+&2J

    or ^1« -«m,h - n' (19)

    The finalconditions imposed by the two rigid cross supports are given by thevanishingof my at 77 0 and 77 —y

    V 0; my0(f,0)+myl(f,0)+my2(|,0) 0. (20)As my0 (f,0) 0 it followsthat

    00

    Z[aln+a2n(l+ny)e-nv]sinnot-sinn£; 0. (21)1

    For the left cross beam the conditionbecomesv -y; ™yo(£,-y)+™

  • 8/15/2019 Inluence Surface for Support Moments

    8/15

    Influence Surfaces for Support Moments of Continuous Slabs 491

    Ofspecial interest is the case y 0, i. e. the edge 77 0 is fullyrestrained. As

    lim n2y2 1y_+0e2ny-(l+ny)'

    it followsfrom eq. (12) that00

    y 0; my my0—-} e~n ^ sin not*sin n£ 2m,2/0- (26)

    In words, the influence functionfor the bending moment at the built-inedgeof a semi-infiniteplate strip takes double the value of the influence functionfor the support moment of a plate strip continuous over a rigid cross beam.The value for (| a, 77 0) is twice the value of eq. (15) or my= —1/77 whichchecks the result previouslypresented by Pucher [7].

    Table 1

    Comparison between eq. (25) and approximate expression eq. (27)Eq. (25)

    JlY.77 L*K

    n2y2- e~nrfsin n

  • 8/15/2019 Inluence Surface for Support Moments

    9/15

    492 Bruno Thürlimann

    Going back to the general case given by eq. (25), it is possible to closelyapproximate the second term of the right-hand side by a finite expression.The factor — 7^ ^ can be approximated by e~1-25ny as Table 1 showse,2ny—(i+UyY rr Jfor a number of values of n y. Hence

    00

    my^my0-—^e~{nv+1'*5ny)smn oc- sinn£. (27)77 1Makinguse of the summation formula, eq. (13), it followsthat

    my m^o-^-Sinh(77 + 1.25 y)..1-1 1 1 \ (28)\Cosh (77 + 1.25 y)- cos (f- a) Cosh (77 + 1.25 y)- cos (£ + a)/

    It is interesting to note the behaviour of the influence function at theinfluence point, given by £ a, 77 0. As long as y> 0 the second term on theright-hand side disappears such that my (£ a, 77 0) takes the value ofmyo(€ oc>r] Q)= —1l27T- However, for y 0 the second term becomes at firstindeterminate ¦=, taking the final value —1l2rr, such that my= —1/77. It istherefore evident that a sudden jump occurs as y approaches zero.

    To complete the Solution the expression for 77 2n[l± (ny+ nr))]eT(ny+nv)sinna-sinng.(29)

    In the case of double sign the upper and lower signs hold for 77 ^ —y and77 fg —y respectively. In the preceding equation my0 is given by eq. (14) andthe constants alm and a2n by eq. (24). Unfortunatelyno summationnor simpleapproximationof the second and third terms in eq. (29) could be developed;hence their computation in series form becomes necessary. In figure 6 the re¬sults for computations taking c a (or y ot) are presented. Again the plottedvalues are 877 times the influence ordinates. In this particular instance theseries were found to converge very rapidlygivingsufficientlyaccurate resultsusing'onlyone term.

    5. Two-Span Continuous Plate

    The influence function for the support moment at (u, 0) of the two-spancontinuous plate shown in figure 4 is taken as the sum

    my my0+myl (30)my0 is givenby eq. (12) or eq. (14) fulfillingthe boundary conditionsalong £ 0,

    | 77 and 77 0. Due to symmetry, only the portion 77 0 must be considered.

  • 8/15/2019 Inluence Surface for Support Moments

    10/15

    Influence Surfaces for Support Moments of Continuous Slabs 493

    The Solution of myl — myl being an integral of AAmyl 0 — is given by([9], p. 199)

    (31)

    myl ^(anSinhnrj+ bn Cosh nrj+ cnn rj Sinh n 77 -f-

    +dnnr)Coshn rj) sinnot•sinn£.The constants an to dn are determined fromthe followingboundary conditions:

    For 77 0; myl 0, (32)

    (33)/1cy

    0.

    As my0 already assures continuityover the support the two equations aboveexpress this conditionfor my1.For 77 y; my my0+myl 0,

    + ¦7yi

    dy2 dy2 dy 0.

    (34)

    (35)

    It may be once more remembered that the influence function should fulfilthe same boundary conditions as the deflections which explains the form ofeq. (34) and (35).

    c aJ-t_^rr

    H(u.O)

    -*£-

    RigidCross Beam ^xFig. 4

    Making use of these conditions (32) to (35) the constants are as follows:

    e~ny yn n Sinhn y Cosh n y —ny tt [Sinhn y +

    Cosh ny],(36)

    c„e-ny y_

    ^n Sinh7iy Cosh/iy — ny ttThe Solution takes the final form:

    Sinhny+ Cosh ny Sinhn yny r\

    my my0+^An[Bn(Sinh 77 —n 77 Cosh nrj)+ CnnrjSinhn 77] sin n ot • sin n £ (37)

  • 8/15/2019 Inluence Surface for Support Moments

    11/15

    494

    in which A„ —

    Bruno Thürlimann

    e~nyn SinhnyCoshny— ny '

    Bn — (Sinhny + Cosh n y),77CL — I Sinhny-{-Cosh w y Sinh ny),tt \ r r ny r)

    (38)

    A numerical Solution of eq. (37) for the case of two continuous square plates— c aory 77 respectively— was computed. The influence point was fixedat mid span over the cross beam, hence u 7z, v 0 or a ^, ß 0. Excellentconvergence of the series was observed requiring the computationof the firstterm only. The results are presented in form of an influence surface in figure 7(again times 877).

    6. Applicationof Influence Surfaces

    In case of point loads the ordinate of the influence surface below the loadmultipliedby the load represents directly8 77 times the moment at the influencepoint produced by this load. For uniformlydistributed loads the volume ofthe influence surface below the loaded area times the load intensityyields 8 77times the bending moment at the influence point. As such numerical compu-tations are beyond the objective of this paper reference is made to the perti-nent üterature [4, 7].

    /Six ^\ \/ \X\ \ \N \1 H +.Q5^ 0.4- 0.3/ / 0.2Vnl y y /\L y y^N.

    x

    Fig. 5. m^-influencesurface for moment over cross beam (8w times).

  • 8/15/2019 Inluence Surface for Support Moments

    12/15

    Influence Surfaces for Support Moments of Continuous Slabs 495

    **,k

    -+~

    /© 4^

    i.l® cöS rÖ

  • 8/15/2019 Inluence Surface for Support Moments

    13/15

    496 Bruno Thürlimann

    7. Acknowledgement

    The author would like to express his appreciation for the help he receivedin the preparation of this paper. Mr. TadahikoKawai, Research Assistant atFritz Engineering Laboratory, indicated to him the possibilityof summingup the series in eq. (12) resulting in a finite expression as given in eq. (14).The checking of the theoretical derivations, the numerical computations andthe drawing of the influence surfaces presented in figures 5 to 7 were doneby Mr.ArthurJ. Romanelli,Instructorin the DepartmentofCivilEngineering.

    AppendixDerivationof eq. (13)

    Ifz is a complex variable and \z\

    <1, the

    followingexpansionholds

    X oo

    \+z+z2+... =]TZn. (A)\-Z VExpressing z in polar form

    z rel$ r (cos (f> + isin cf>)and its conjugate

    z re-lb r(cos

    l-z (l-z)(l-z) l-2rcosc/>+r2

    and

    (B)

    2zw 2/™c°s n +*iynsm n - (C)

    Comparingeqs. (A), (B) and (C) the followingexpressions can be derived, pro¬vided 0 r < 1.

    ® \—rcos 62jrneosn(p -— -tt~21 — 2 r cos cp + r*and S n l-rcosl i i_

    1 / l-e~2^ \__~4\l-2e-^cos(|-a)+ e-2^ ~ /

    -If ^^ i\4\l-2e-^cos( +̂ a) + e-2^ /'1 Sinh 77 1 Sinh 774 Cosh 77 — cos (| — a) 4 Cosh 77 — cos (£ + a)

  • 8/15/2019 Inluence Surface for Support Moments

    14/15

    Influence Surfaces for Support Moments of Continuous Slabs 497

    provided 77 > 0. Therefore00 / 1 1 \Ye~nrisinn ot sinn£ \ Sinh 77 ——= -r — -=—= Tr (E)X \Cosh 77 - cos (f- ot) Cosh 77 - cos (| + a)/ v '

    which corresponds to eq. (13).List of References

    1. Westergaard, H. M., ComputationofStresses in Bridge Slabs Due to Wheel Loads' ,Public Roads, Vol. II, 1930, p. 1.

    2. Baron, F. M., Influence Surfaces for Stresses in Slabs , ASMETransaktion«,Vol. 63,1941, p. A-3.

    3. Bittner, E., ,,Momententafeln und Einflußflächenfür kreuzweise bewehrte Eisen¬beton-Platten , Springer, Vienna, 1938.

    4. Pucher, A., ,,Momenteneinflußflächenrechteckiger Platten , Deutscher Ausschuß

    für Eisenbetonbau, Heft 90, 1938.5. — „Über die Singularitätenmethode an elastischen Platten , Ing. Archiv. 12, 1941,p. 76.

    6. — „Rechteckplattenmit zwei eingespannten Rändern , Ing. Archiv. 14, 1943, p. 246.7. — „Einflußfelderelastischer Platten , Springer, Vienna, 1951.8. Girkmann, K., „Flächentragwerke , First Edition, Springer, Vienna, 1946, pages

    225 to 238.9. Timoshenko, S., Theory of Plates and Shells , McGraw-Hill,New York, 1940.

    Summary

    In the present paper the theory of influencefunctions for bending momentsin slabs is extended to the case of continuous plates. An expression for thebending moment over a rigidcross beam across a simplysupported plate strip,is derived. By summing the series Solution into a finiteexpression it becomespossible to accurately compute the values even in the neighborhood of theinfluencepoint (pointforwhichinfluencefunctionis derived). A series Solutionwouldnot allowsuch a computationas this influencepoint exhibits a singula-rity. On the basis of this Solution two other cases are treated, namely theinfiniteplate strip with two rigid cross beams and the two span continuousplate. Expressions for the influence function of the support moments arederived. Graphical representations of influence surfaces are given for threespecific examples which are directlyapplicable to actual design problems.

    Resume

    La theorie des fonctions d'influencepour les moments flechissants dans lesplanchers est etendue au cas des dalles continues. L'auteur etablit une expres¬sion pour le moment flechissant sur une poutre transversale rigide, apparte-nant a un platelage reposant librement sur ses appuis. Par sommation de laSolution de la serie sous forme d'une

    expression finie, ilest

    possiblede calculer

  • 8/15/2019 Inluence Surface for Support Moments

    15/15

    498 Bruno Thürlimann

    exactement les valeurs correspondantes, meme au voisinage du point d'appui(pour lequel la fonetion d'influence est calculee). Une Solution de serie nepermettrait pas un tel calcul, car ce point represente une singularite. Sur labase de cette Solution, l'auteur traite deux autres cas, celui d'un platelageinfinicomportant deux poutres transversales rigides et celui d'une dalle con¬tinue ä deux travees. II etablit des expressions pour la fonetion d'influencedes moments aux appuis. Pour trois exemples determines, il donne des repre-sentations graphiques, qui peuvent etre appliquees directement aux calculs.

    Zusammenfassung

    In diesem Aufsatz wird die Theorie der Einflußfunktionenfür Biege-momente in Decken erweitert für den Fall der durchlaufenden Platten. Ein

    Ausdruck für das Biegemoment über einem steifen Querträger eines frei-aufliegenden Plattenstreifens wird abgeleitet. Durch Summieren der Reihen¬lösung zu einem endlichen Ausdruckwird es möglich, die Werte sogar in derUmgebung des Aufpunktes (fürden die Einflußfunktionabgeleitet wird)genauzu berechnen. Eine Reihenlösungwürde eine solche Berechnungnichterlauben,da dieser Aufpunkteine Singularität darstellt. Aufder Basis dieser Lösungwerden zwei andere Fälle behandelt, der unendliche Plattenstreifen mit zweisteifen Querträgern und die zweifeldrige, durchlaufende Platte. Es werdenAusdrücke für die Einflußfunktionder Stützmomente abgeleitet. Für dreibestimmte Beispielewerden graphische Darstellungender Einflußflächenange¬geben, die direkt für die Berechnungen anwendbar sind.