image processing - ch 05 - image restorationbarner/courses/eleg675/image processing...1 image...

12
1 Image Restoration Image Processing with Biomedical Applications ELEG-475/675 Prof. Barner Image Processing Image Restoration Prof. Barner, ECE Department, University of Delaware 2 Image Restoration Image enhancement is subjective Heuristic and ad hoc Image restoration is more theoretically motivated A priori knowledge of image degradation utilized Optimality criteria used to formulate restoration Image Processing Image Restoration Prof. Barner, ECE Department, University of Delaware 3 Preliminaries: Correlation and Power Spectrum Note self-convolution Correlation results if we do not reflect one term Note maximum at Τ=0; also Power Spectral Density (PSD) Cross correlation and PSD Assume ergotic signals (RVs) – interchange time/ensemble averages, e.g., () () () ( ) f t ft ftf t dt τ −∞ = () () ( ) () ( ) f R ft f t ftft dt τ τ −∞ = = + 2 () () f R d f t dt τ τ −∞ −∞ = { } { } 2 () () () ( ) () ( ) () () | ( )| f f P s R ft f t FsF s FsF s Fs τ =ℑ =ℑ = = = () () ( ) () ( ) fg R ft g t ftgt dt τ τ −∞ = = + () { ( )} fg fg P s R τ =ℑ { ( )} () x t x t dt ε −∞ = Image Processing Image Restoration Prof. Barner, ECE Department, University of Delaware 4 Degradation and Restoration Model Degradation is taken to be a linear spatially invariant operator (, ) (, ) (, ) (, ) g xy hxy fxy xy η = + (,) (,) (,) (,) Guv HuvFuv Nuv = +

Upload: hoangquynh

Post on 28-Apr-2018

262 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Image Processing - Ch 05 - image restorationbarner/courses/eleg675/Image Processing...1 Image Restoration Image Processing with Biomedical Applications ELEG-475/675 Prof. Barner Image

1

Image Restoration

Image Processing with Biomedical Applications

ELEG-475/675Prof. Barner

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 2

Image Restoration

Image enhancement is subjective Heuristic and ad hoc

Image restoration is more theoretically motivated

A priori knowledge of image degradation utilizedOptimality criteria used to formulate restoration

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 3

Preliminaries:Correlation and Power Spectrum

Note self-convolution

Correlation results if we do not reflect one term

Note maximum at Τ=0; also

Power Spectral Density (PSD)

Cross correlation and PSD

Assume ergotic signals (RVs) – interchange time/ensemble averages, e.g.,

( ) ( ) ( ) ( )f t f t f t f t dtτ∞

−∞∗ = −∫

( ) ( ) ( ) ( ) ( )fR f t f t f t f t dtτ τ∞

−∞= ∗ − = +∫

2

( ) ( )fR d f t dtτ τ∞ ∞

−∞ −∞

⎡ ⎤= ⎢ ⎥⎣ ⎦∫ ∫

{ } { } 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) | ( ) |f fP s R f t f t F s F s F s F s F sτ ∗= ℑ = ℑ ∗ − = − = =

( ) ( ) ( ) ( ) ( )fgR f t g t f t g t dtτ τ∞

−∞= ∗ − = +∫

( ) { ( )}fg fgP s R τ= ℑ

{ ( )} ( )x t x t dtε∞

−∞= ∫

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 4

Degradation and Restoration Model

Degradation is taken to be a linear spatially invariant operator

( , ) ( , ) ( , ) ( , )g x y h x y f x y x yη= ∗ +

( , ) ( , ) ( , ) ( , )G u v H u v F u v N u v= +

Page 2: Image Processing - Ch 05 - image restorationbarner/courses/eleg675/Image Processing...1 Image Restoration Image Processing with Biomedical Applications ELEG-475/675 Prof. Barner Image

2

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 5

Noise Properties

Arises in acquisition, digitization, and transmission/storage processesCCD cameras are affected by:

Light levelsSensor temperatureBad sensors

Transmission noise can be due to interferenceWireless transmission interferenceLost networking packets

Statistics depend on sourceCommon assumption: White Spectrum

Correlation: R(Τ)=Aδ(Τ)Power spectrum: P(s)=A

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 6

Noise Probability Density Functions

Gaussian (normal) PDF

Typically models electronics and sensor noiseRayleigh PDF

Skewed distribution typically models range imaging noise

2 2( ) / 21( )2

zp z e μ σ

πσ− −=

2( ) /2 ( ) for

0 for ( )

z a bz a e z ab

z ap z

− −− ≥

<

⎧= ⎨⎩

2 (4 )/ 4, 4

ba b πμ π σ −= + =

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 7

Noise Probability Density Functions II

Gamma PDF

Exponential PDF

Both appropriate for laser imagingHeavy-tailed distributions

samples contain frequent outliers

1( ) for 0

( 1)!

0 for 0( )

b baza z z a e z

b

zp z

−−− ≥

<

⎧⎪= ⎨⎪⎩

22, b b

a aμ σ= =

{ for 00 for 0( )

azae zzp z

− ≥<=

22

1 1, a a

μ σ= =

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 8

Noise Probability Density Function III

Uniform PDF

Impulsive (salt and pepper) PDF

Shot or spike notice appropriate faulty sensor or electronics, transmission error/drop

1 if

0 otherwise( )

a z bb ap z

≤ ≤−

⎧= ⎨⎩

22 ( ),

2 12a b b aμ σ+ −

= =

for ( ) for

0 otherwise

a

b

P z ap z P z b

=⎧⎪= =⎨⎪⎩

Page 3: Image Processing - Ch 05 - image restorationbarner/courses/eleg675/Image Processing...1 Image Restoration Image Processing with Biomedical Applications ELEG-475/675 Prof. Barner Image

3

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 9

PDF Plots

Gaussian distribution is most widely used

Central Limit TheoremDesirable propertiesIndependence and correlated

Other distributions appropriate for specific cases

Simplicity of uniform enables derivation of results

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 10

Test Pattern Corruption Example

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 11

Test Pattern Corruption Example II

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 12

Noise Parameter Determination

Generate statistics from uniform regionHistogram matchingQuantile-Quantile (Q-Q) plot

Determined defining statistics, e.g.2 2( ), ( ) ( )

i i

i i i iz S z S

z p z z p zμ σ μ∈ ∈

= = −∑ ∑

Page 4: Image Processing - Ch 05 - image restorationbarner/courses/eleg675/Image Processing...1 Image Restoration Image Processing with Biomedical Applications ELEG-475/675 Prof. Barner Image

4

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 13

Q-Q Plot ExampleAre samples x1, x2,…, xN, and y1, y2,…, yN governed by the same distribution?

Order the samples: x(1), x(2),…, x(N), and y(1), y(2),…, y(N)

Plot (x(1), y(1)), (x(2), y(2)),…,(x(N), y(N))Samples governed by the same distribution will lie (approximately) along a line

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 14

Additive Noise Degradation Case

Gaussian case: mean (averaging) filter is ML optimal (previously derived)Laplacian (double exponential) case: median filter is ML optimal (previously derived)Both assume iid noise, constant signal

See book for Sample filtering resultsAdditional simple spatial filters

We consider arbitrary noise PSD

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 15

The Wiener Estimator

Assume no channel distortionDerived in one dimension for simplicityMean Square Error (MSE) optimality criteria:

h(t) ( )y t( )s t ( )x t

( )n t

2 2MSE { ( )} ( )

( ) ( ) ( )

e t e t dt

e t s t y t

ε∞

−∞= =

= −∫

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 16

Rearrangement of MSE

Calculus of variations approach:Obtain a functional expression of MSE in terms of h(t)Obtain an expression for the optimal impulse response, ho(t), in terms of known power spectraDevelop an expression for the MSE that results when ho(t) is used

Rewriting the MSE:2 2 2 2

2 21 2 3

MSE { ( )} {[ ( ) ( )] } { ( ) 2 ( ) ( ) ( )}MSE { ( )} 2 { ( ) ( )} { ( )}

e t s t y t s t s t y t y ts t s t y t y t T T T

ε ε ε

ε ε ε

= = − = − +

= − + = + +

Page 5: Image Processing - Ch 05 - image restorationbarner/courses/eleg675/Image Processing...1 Image Restoration Image Processing with Biomedical Applications ELEG-475/675 Prof. Barner Image

5

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 17

MSE Components

Consider the first component:

Express the second component by writing the output as a convolution

2 21 { ( )} ( ) (0)sT s t s t dt Rε

−∞= = =∫

{ }{ }

2

2

2

2 ( ) ( ) ( )

2 ( ) ( ) ( )

2 ( ) ( )xs

T s t h x t d

T h s t x t d

T h R d

ε τ τ τ

τ ε τ τ

τ τ τ

−∞

−∞

−∞

= − −

= − −

= −

∫∫

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 18

MSE Components II

Express the third component as the product of two convolutions:

utilizing change of variables: v=t-u

which is the autocorrelation evaluated at u-Τ

Final result:

Function of: filter impulse response, known autocorrelation and crosscorrelation

{ }{ }

3

3

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T h x t d h u x t u du

T h h u x t x t u d du

ε τ τ τ

τ ε τ τ

∞ ∞

−∞ −∞

∞ ∞

−∞ −∞

= − −

= − −

∫ ∫

∫ ∫

{ } { }( ) ( ) ( ) ( )x t x t u x v u x vε τ ε τ− − = + −

3 ( ) ( ) ( )xT h h u R u d duτ τ τ∞ ∞

−∞ −∞= −∫ ∫

MSE (0) 2 ( ) ( ) ( ) ( ) ( )s xs xR h R d h h u R u d duτ τ τ τ τ τ∞ ∞ ∞

−∞ −∞ −∞= − + −∫ ∫ ∫

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 19

MSE Minimization (I)

Define arbitrary impulse response:

inserting into MSE expression

First three terms: optimal MSE (MSEo)Autocorrelation Rx(u-Τ) is an even function

Fourth and fifth terms are equalCombine fourth, fifth, and sixth terms

( ) ( ) ( )oh t h t g t= +

MSE (0) 2 [ ( ) ( )] ( ) [ ( ) ( )][ ( ) ( )] ( )s o xs o o xR h g R d h g h u g u R u d duτ τ τ τ τ τ τ τ∞ ∞ ∞

−∞ −∞ −∞= − + + + + −∫ ∫ ∫

MSE (0) 2 ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 ( ) ( ) ( ) ( ) ( )

s o xs o o x

o x o x

xs x

R h R d h h u R u d du

h g u R u d du h u g R u d du

g R d g g u R u d du

τ τ τ τ τ τ

τ τ τ τ τ τ

τ τ τ τ τ τ

∞ ∞ ∞

−∞ −∞ −∞

∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞

∞ ∞ ∞

−∞ −∞ −∞

= − + −

+ − + + −

− + −

∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 20

MSE Minimization (II)

Show T5 is nonnegativeExpanding autocorrelation

Define z(t)= g(t)*x(t)

Independent of ho

4 5

MSE MSE 2 ( ) ( ) ( ) ( ) ( ) ( ) ( )

MSE

o o x xs x

o

g u h R u d R u du g g u R u dud

T T

τ τ τ τ τ τ∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞

⎡ ⎤= + − − + −⎢ ⎥⎣ ⎦= + +

∫ ∫ ∫ ∫

5

5

( ) ( ) ( )

( ) ( ) ( ) ( )

T g g u x t dtdud

T g x t u du g x t dtd

τ τ τ

τ τ τ τ

∞ ∞ ∞

−∞ −∞ −∞

∞ ∞ ∞

−∞ −∞ −∞

= −

= − −

∫ ∫ ∫∫ ∫ ∫

25 ( ) 0T z t dt

−∞= ≥∫

Page 6: Image Processing - Ch 05 - image restorationbarner/courses/eleg675/Image Processing...1 Image Restoration Image Processing with Biomedical Applications ELEG-475/675 Prof. Barner Image

6

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 21

MSE Minimization (III)

Expression to minimize

Necessary and sufficient condition:Make term in brackets 0 for all u

Note that for linear systems: [equation 48]Since the above is a convolution

In terms of PSD

5MSE MSE 2 ( ) ( ) ( ) ( )o o x xsg u h R u d R u du Tτ τ τ∞ ∞

−∞ −∞

⎡ ⎤= + − − +⎢ ⎥⎣ ⎦∫ ∫

( ) ( ) ( )xs o xR h u R u duτ τ∞

−∞= −∫

( ) ( ) ( ) ( )xs o x xyR h u R u Rτ τ= ∗ =

( ) ( ) ( ) ( )xs o x xyP s H s P s P s= =( )( )( )

xso

x

P sH sP s

=

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 22

Wiener Filter Design

To determine

Obtain an observation signal sample (x(t))Determine autocorrelation and PSD

Obtain a signal sampled without noise (s(t))Cross correlate x(t) and s(t); determine PSD

Implement filter in the frequency domain or take inverse transform to get impulse response

If statistics are unknown or can’t be measured, assume functional form

Example: white PSD

( )( )( )

xso

x

P sH sP s

=

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 23

Uncorrelated Signal and Noise Case

In this case: Crosscorrelation:

Autocorrelation:

Optimal filter:

{ } { } { }( ) ( ) ( ) ( )s t n t s t n tε ε ε=

{ } [ ]{ }( ) ( ) ( ) ( ) ( ) ( )xsR x t s t s t n t s tτ ε τ ε τ= + = + +

{ } { }( ) ( ) ( ) ( ) ( )xsR s t s t n t s tτ ε τ ε τ= + + +

{ } { }( ) ( ) ( ) ( ) ( ) ( ) ( )xs s sR R n t s t R n t dt s t dτ τ ε ε τ τ τ τ∞ ∞

−∞ −∞= + + = + +∫ ∫

( ) ( ) (0) (0)xs sR R N Sτ τ= +

( ) ( ) ( ) 2 (0) (0)x s nR R R N Sτ τ τ= + +

( ) (0) (0) ( )( )( ) ( ) 2 (0) (0) ( )

so

s n

P s N S sH sP s P s N S s

δδ

+=

+ +( )( )

( ) ( )s

os n

P sH sP s P s

=+

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 24

Analysis of Optimal MSE

Recall: For the uncorrelated case (see previous)

Further assuming zero means

Substituting for the optimal filter (even function)

MSE (0) ( ) ( )o s o xsR h R dτ τ τ∞

−∞= − ∫

( ) ( ) (0) (0)xs sR R N Sτ τ= +

{ }1MSE (0) ( ) ( )o s o sR h P s dτ τ∞ −

−∞= − ℑ∫

2MSE (0) ( ) ( ) j so s s oR P s h e d dsπ ττ τ

∞ ∞

−∞ −∞= − ∫ ∫

MSE ( ) ( ) ( )o s s oP s ds P s H s ds∞ ∞

−∞ −∞= − −∫ ∫

( )MSE ( ) ( )( ) ( )

so s s

s n

P sP s ds P s dsP s P s

∞ ∞

−∞ −∞= −

+∫ ∫( ) ( )MSE ( ) ( )

( ) ( )s n

o n os n

P s P s ds P s H s dsP s P s

∞ ∞

−∞ −∞= =

+∫ ∫

Page 7: Image Processing - Ch 05 - image restorationbarner/courses/eleg675/Image Processing...1 Image Restoration Image Processing with Biomedical Applications ELEG-475/675 Prof. Barner Image

7

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 25

Wiener Filter Examples (I)

The Wiener filter transfer function Bandlimited signal

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 26

Wiener Filter Examples (II)

Separable signal and noise case

MSE is zero

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 27

Wiener Deconvolution

Combine deconvolution (system inversion) and noise filteringCombination of two linear operations

Spectrum of observed signal: Input to Wiener filter: For uncorrelated signal and noise (previous result)

Wiener (MSE optimal) deconvolution filter:

( ) ( ) ( ) ( )X s F s S s N s= +( )( ) ( ) ( ) ( )( )

N sY s S s S s K sF s

= + = +

2

22

( ) | ( ) |( )( ) ( ) ( )| ( ) |

( )

so

s k

P s S sH sP s P s N sS s

F s

= =+

+

( ) ( ) ( ) ( )1( )( ) ( ) ( ) ( ) | ( ) | ( ) ( )o s s

s k s n

H s P s F s P sG sF s F s P s P s F s P s P s

∗⎡ ⎤= = =⎢ ⎥+ +⎣ ⎦

( )F s1( )F s

( )oH s( )s t ( )w t ( )x t

( )n t

( )y t ( )z t

( )G s

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 28

Wiener Deconvolution Examples

Wiener deconvolutionexample: (a) signal and noise power spectra; (b) blurring function; (c) Wiener deconvolutiontransfer function

Example of two-dimensional Wiener deeconvolution: (a) signal power spectrum; (b) noise power spectrum; (c) blurring function; (d) transfer function

Page 8: Image Processing - Ch 05 - image restorationbarner/courses/eleg675/Image Processing...1 Image Restoration Image Processing with Biomedical Applications ELEG-475/675 Prof. Barner Image

8

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 29

Wiener Generalization (I)

The two-dimensional Wiener filter:

Often used approximation:

2

2

1 | ( , ) |ˆ ( , ) ( , )( , ) | ( , ) | ( , ) / ( , )f

H u vF u v G u vH u v H u v S u v S u vη

⎡ ⎤= ⎢ ⎥

+⎢ ⎥⎣ ⎦

2

2

1 | ( , ) |ˆ ( , ) ( , )( , ) | ( , ) |

H u vF u v G u vH u v H u v K⎡ ⎤

= ⎢ ⎥+⎣ ⎦

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 30

Wiener Generalization (II)

Geometric Mean Filter generalization:

Special casesα=1: inverse filterα=0: parametric of Wiener filter (standard if β=1)α=1/2; β=1: referred to as the Spectrum equalization filter

The product of two quantities raised to the same powerDefinition of the geometric mean

Trade-off between inverse filtering and Wiener filtering controlled by α

1

22

( , ) ( , )ˆ ( , ) ( , )| ( , ) | ( , )

| ( , ) |( , )f

H u v H u vF u v G u vH u v S u v

H u vS u v

α

α

ηβ

∗ ∗

⎡ ⎤⎢ ⎥

⎡ ⎤ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎡ ⎤⎣ ⎦ ⎢ ⎥+ ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 31

Degradation Function Estimation

Recall: In the no (low) noise case

Estimation by observation:

Estimation by experimentation:Input impulse of strength A

Estimation by modeling:Example: atmospheric interference

( , ) ( , ) ( , ) ( , )G u v H u v F u v N u v= +

( ,. )( , ) ˆ ( , )s

ss

G u vH u vF u v

=

( , )( , ) G u vH u vA

=

2 2 5 / 6( )( , ) k u vH u v e− +=

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 32

Estimation by Experiment Example

Experimentally determined point spread function (PSF)

Page 9: Image Processing - Ch 05 - image restorationbarner/courses/eleg675/Image Processing...1 Image Restoration Image Processing with Biomedical Applications ELEG-475/675 Prof. Barner Image

9

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 33

Modeling Image Motion

Systems most often consider motionCamera and/or subject motion

If T is the exposure duration:

Blurred image: g(x,y)Planar motion trajectories: xo(t) and yo(t)

Fourier transform evaluation yields

where

[ ]0 00( , ) ( ), ( )

Tg x y f x x t y y t dt= − −∫

( , ) ( , ) ( , )G u v H u v F u v=

[ ]0 02 ( ) ( )

0( , )

T j ux t vy tH u v e dtπ− += ∫Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 34

Motion Example

If xo(t)=at/T and yo(t)=0

Two dimensional linear (xo(t)=at/T and yo(t)=bt/T) motion

02 ( ) 2 /

0 0( , ) sin( )

T Tj ux t j uat T j uaTH u v e dt e dt ua eua

π π πππ

− − −= = =∫ ∫

[ ] ( )( , ) sin ( )( )

j ua vbTH u v ua vb eua vb

πππ

− += ++

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 35

Atmospheric Turbulence Degradation

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 36

Inverse Filtering Example

Direct application of

Amplifies noisePossible solution:

Limit cutoff frequency

( , )ˆ ( , )( , )

G u vF u vH u v

=

Page 10: Image Processing - Ch 05 - image restorationbarner/courses/eleg675/Image Processing...1 Image Restoration Image Processing with Biomedical Applications ELEG-475/675 Prof. Barner Image

10

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 37

Inverse and Wiener Filtering Comparison

Wiener parameter K set experimentallyWiener result much sharper than the band limited inverse filterFull inverse filter results is useless

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 38

Motion Blur with Additive Noise Example

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 39

Mean in Geometric Mean Example

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 40

Multiple Applications of the Median

Page 11: Image Processing - Ch 05 - image restorationbarner/courses/eleg675/Image Processing...1 Image Restoration Image Processing with Biomedical Applications ELEG-475/675 Prof. Barner Image

11

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 41

Mixed NoiseExample

Image corrupted byUniform noiseUniform and salt and pepper noise

Filtering methodsArithmetic meanGeometric meanMedianAlpha-trimmed mean

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 42

Mean, Arithmetic Mean, and Adaptive Approach

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 43

Median and Adaptive Median

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 44

Periodic Interference

Band reject filtersStraightforward extension from a high/low pass case

Ideal, Butterworth, Gaussian

Page 12: Image Processing - Ch 05 - image restorationbarner/courses/eleg675/Image Processing...1 Image Restoration Image Processing with Biomedical Applications ELEG-475/675 Prof. Barner Image

12

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 45

Sinusoidal Corruption Example

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 46

Periodic Scan LineInterference

Note horizontal scan line “striping”

Vertical spectral comment

Notch pass filter and spatial interferenceImage with interference rejected

Image ProcessingImage Restoration

Prof. Barner, ECE Department, University of Delaware 47

NASA Image, Spectrum, and Filtering Result