iii. wet and dry etching

18
Applied Physics 298r 1 E. Chen (4-12-2004) III. Wet and Dry Etching Vacuum Chamber Atmosphere, Bath Environment and Equipment Anisotropic Isotropic (Except for etching Crystalline Materials) Directionality 1) High cost, hard to implement 2) low throughput 3) Poor selectivity 4) Potential radiation damage 1) Inadequate for defining feature size < 1um 2) Potential of chemical handling hazards 3) Wafer contamination issues Disadvantage 1) Capable of defining small feature size (< 100 nm) 1) Low cost, easy to implement 2) High etching rate 3) Good selectivity for most materials Advantage Ion Bombardment or Chemical Reactive Chemical Solutions Method Dry Wet

Upload: buidiep

Post on 04-Jan-2017

250 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: III. Wet and Dry Etching

Applied Physics 298r 1 E. Chen (4-12-2004)

III. Wet and Dry Etching

Vacuum ChamberAtmosphere, BathEnvironment and Equipment

AnisotropicIsotropic

(Except for etching Crystalline Materials)

Directionality

1) High cost, hard to implement

2) low throughput3) Poor selectivity4) Potential radiation damage

1) Inadequate for defining feature size < 1um2) Potential of chemical handling hazards 3) Wafer contamination issues

Disadvantage

1) Capable of defining small feature size (< 100 nm)

1) Low cost, easy to implement2) High etching rate3) Good selectivity for most materials

Advantage

Ion Bombardment or Chemical ReactiveChemical SolutionsMethod

DryWet

Page 2: III. Wet and Dry Etching

Applied Physics 298r 2 E. Chen (4-12-2004)

Pattern Generation (Transfer): Etch vs. Liftoff

Etching Liftoff Mask MaskMask

Etching

StripMask (Resist)

Film

SubstrateLithography

Film

Substrate

Mask

Film

Substrate

Film

LithographySubstrate

Film

Substrate

Mask Mask

Film Film

DepositFilm

Film

SubstrateRemove

Mask (Resist)(Liftoff)

Page 3: III. Wet and Dry Etching

Applied Physics 298r 3 E. Chen (4-12-2004)

Isotropic vs. Anisotropic Etching

Mask

Mask

Mask

RL = 1

0 < RL < 1

RL = 0

Isotropic Etching: Etching rate is the same in both horizontal and vertical direction

Anisotropic Etching: Etching rate is different in horizontal and vertical direction

Lateral Etch Ratio:

( )( )V

HL rRateEtchVertical

rRateEtchHorizontalR =

Isotropic Etching: RL = 1

Anisotropic Etching: 0 < RL < 1

Directional Etching: RL = 0

Bias: the difference in lateral dimensions between the feature on mask and the actually etched pattern

smaller RL results in smaller bias

Page 4: III. Wet and Dry Etching

Applied Physics 298r 4 E. Chen (4-12-2004)

“Under Cut” and “Over Etch”

Bias Bias

Over-Etch results in more vertical profile

but larger bias

Mask

FilmFilm

Mask

Substrate“Under Cut”

Good for Lift-off Substrate

(Rl = 0.5, pattern dimension is better defined)

(Rl = 1, pattern dimension is poorly defined)

Mask

Substrate

Mask

Substrate

Worse in thick filmPoor CD control in

thick film using wet etch

Page 5: III. Wet and Dry Etching

Applied Physics 298r 5 E. Chen (4-12-2004)

Mask Erosion: Film-Mask Etching Selectivity

1) film horizontal etch rate (rfh) < mask horizontal etch rate (rmh):

Film

Mask

Maskθ

Film

( ) ( )mfmf

RSh

W+= θcot2% Substrate

mV

mHmL r

rR = W/2 (Bias)(mask lateral etch ratio)

hf

mV

fVfm r

rS =

(ratio of film and mask vertical etching rate– selectivity)

1 Substrate

Substrate

W/2 (Bias)

Film

Mask

2

2) If film horizontal etch rate (rfh) > mask horizontal etch rate (rmh):

( ) mf

RhW 2% =

Page 6: III. Wet and Dry Etching

Applied Physics 298r 6 E. Chen (4-12-2004)

Film-Mask Selectivity (Sfm) vs. Etching Bias

Selectivity vs Mask Lateral Etch Ratio Rm Selectivity vs Mask Wall angle θ

0

20

40

60

80

100

0 2 4 6 8 10

W/h (%)

Sele

ctiv

ity

θ = 90θ = 60θ = 30

Rm = 100% 0

20

40

60

80

100

0 2 4 6 8 10

W/h (%)

Sele

ctiv

ity

Rm = 100%

Rm = 50%

Rm = 10%

θ = 90º

Most mask material etches isotropically

Selectivity > 20:1

Page 7: III. Wet and Dry Etching

Applied Physics 298r 7 E. Chen (4-12-2004)

Wet Etch Crystalline Materials

• Typically, wet etching is isotropic• However on crystalline materials,

etching rate is typically lower on the more densely packed surface than on that of loosely packed surface

(100)

{110}

{100}

{111}

Si:Diamond Lattice Structure

Surface Atom Density:{111} > {100} > {110}

Etching rate:R(100) ~ 100 x R(111)

(100) Si Wafer

Page 8: III. Wet and Dry Etching

Applied Physics 298r 8 E. Chen (4-12-2004)

Si Wet Etch – (100) Wafer, Mask Aligned in <110> Direction

(100)

{110}

{100}

{111}

(100)

{110}

Mask

(111)54.7º

(100) (100)54.7º

(111)(200-nm size pyramidal pit on (100) Si substrate)

Page 9: III. Wet and Dry Etching

Applied Physics 298r 9 E. Chen (4-12-2004)

Si Wet Etch – (100) Wafer, Mask Aligned in <100> Direction

(100)

{110}

Mask

(100)

{110}

{100}

{111}

<111>

<110>

Etching on (110) Si

<100>

<100>

(Undercut!)

Page 10: III. Wet and Dry Etching

Applied Physics 298r 10 E. Chen (4-12-2004)

GaAs Wet Etch – (100) Wafer

(100)

{110}

{100}

{111}Ga

{111}Ga

{111

}As

{111

}As

<100><100>

(100)

Mask

(100)

Mask

<100>

<100

>

ZincblendeStructure

Etching Rate:

R({111}As)

> R({100})

> R({111}Ga)

Page 11: III. Wet and Dry Etching

Applied Physics 298r 11 E. Chen (4-12-2004)

Typical Wet Etchants

> 50:1Resist~ 500 nm/min1) HCl + H2O2) NaOH

Al

~ 40 nm/min~ 1 um/min

~ 10 um/min

~ 100 nm/min~ 100 nm/min~ 10 nm/min

~ 10 – 1000 nm/min

~ 6 – 600 nm/min (anisotropic)

~ 100 nm/min

Etching Rate

> 50:1Resist1) HCl + HNO3

2) KI + I2 +H2OAu

> 50:1Resist1) H2SO4 + H2O2

+H2O2) Br + CH3OH

GaAs

> 50:1ResistSiO2

1) HF2) BHF3) H3PO4

SI3N4

> 50:1Resist1) HF2) BHF

SiO2

> 50:1Resist1) KOH2) HNO3 + H2O +

HFSi (a-Si)

SelectivityMaskGasMaterial

Page 12: III. Wet and Dry Etching

Applied Physics 298r 12 E. Chen (4-12-2004)

Dry Etching+

Problems with wet etching:Isotropic unable to achieve pattern size smaller than film thickness

Main Purpose of Developing Dry Etching is to Achieve Anisotropic Etching

Type of Dry Etching TechnologyPhysical Sputtering- Physical bombardment

• Ion Mill• Plasma sputtering

Plasma Etching- Plasma-assisted chemical reactionReactive Ion Etching (RIE)- Chemical reaction + ion bombardment

R

+ R

Page 13: III. Wet and Dry Etching

Applied Physics 298r 13 E. Chen (4-12-2004)

Dry Etching Comparison

ChamberPressure

Anisotropy Selectivity

Physical Sputtering(Ion Mill)

• physical bombardment

Reactive Ion Etching• Physical bombardment

+ chemical reaction

Plasma Etching• Plasma assisted chemical reaction

Dry EtchingBeam

Energy

Medium

High

Low

Low10 ~ 100

mtorr

Very Low< 10

mtorr

High> 100Mtorr

Medium

High

Low

Good

Poor

VeryGood

Page 14: III. Wet and Dry Etching

Applied Physics 298r 14 E. Chen (4-12-2004)

Reactive Ion Etching (RIE) • Etching gas is introduced into the chamber

continuously • Plasma is created by RF power• Reactive species (radicals and ions) are

generated in the plasmaradicals: chemical reactionions: bombardment

• Reactive species diffused onto the sample surface

• The species are absorbed by the surface• Chemical reaction occurs, forming volatile

byproduct• Byproduct is desorbed from the surface• Byproduct is exhausted from the chamber

Substrate

e-

Ar

e-

Ar+ t

Shaw Heads

Gases

~ RFGas Selection:1) React with the material to be etched

2) Result in volatile byproduct with low vapor pressure

Page 15: III. Wet and Dry Etching

Applied Physics 298r 15 E. Chen (4-12-2004)

Typical RIE Gases

~ 50:1SI3N4

Metal (Cr, Ni)~ 5001) O2Resist / Polymer

~ 10:1ResistSI3N4

~ 3001) Cl22) BCl3 + Cl2

Al

~ 200

~ 200

~ 100

~ 200

~ 500

Etching Rate (A/min)

~ 40:1SI3N4

Metal (Cr, Ni, Al)1) CH4/H2InP

~ 10:1~ 20:1

SI3N4

Metal (Cr, Ni)1) Cl22) Cl2 + BCl3

GaAs

~ 10:1~ 20:1

ResistMetal (Cr, Ni, Al)

1) CF4 + O2 (H2)2) CHF3

SI3N4

~ 10:1~ 30:1

ResistMetal (Cr, Ni, Al)

1) CHF3 + O22) CF4 + H2

SiO2

~ 20:1~ 40:1

ResistMetal (Cr, Ni, Al)

1) CF42) SF63) BCl2 + Cl2

Si (a-Si)

SelectivityMaskGasMaterial

Page 16: III. Wet and Dry Etching

Applied Physics 298r 16 E. Chen (4-12-2004)

Arts of Nanofabrication: Nano-Dots, -Holes and -Rings

Page 17: III. Wet and Dry Etching

Applied Physics 298r 17 E. Chen (4-12-2004)

Arts of Nanofabrication : Nano-Gratings

Page 18: III. Wet and Dry Etching

Applied Physics 298r 18 E. Chen (4-12-2004)

Arts of Nanofabrication : Nano-Fluidic Channels