ieor 4004 midterm review (part ii) march 12, 2014

16
IEOR 4004 Midterm review (Part II) March 12, 2014

Upload: kolby-moxley

Post on 14-Dec-2015

214 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: IEOR 4004 Midterm review (Part II) March 12, 2014

IEOR 4004 Midterm review(Part II)

March 12, 2014

Page 2: IEOR 4004 Midterm review (Part II) March 12, 2014

Summary

• Matrices, Tableaux, and Dictionaries• Duality– Shadow prices– Complementary slackness

• Sensitivity analysis• Multiple solutions• Goal Programming

Page 3: IEOR 4004 Midterm review (Part II) March 12, 2014

Matrices, Tableaux and Dictionaries

x1 − 2x2 + x3 + x4 = 1 − x1 + 3x2 + 2x3 + x4 = 2max z = 2x2 − 3x3

x1, x2, x3, x4 ≥ 0

3 21 1B-1=−B-1N = −5 −8−2 −3B-1b = 73

x1 = 7 − 5x3 − 8x4 x2 = 3 − 2x3 − 3x4 z = 6 − 7x3 − 6x4 cN − cBB-1N = (−7, −6)

Basis: {x1, x2}B NcB cN bxB xN1 −2−1 3B= 1 211

N=

cBB-1b = 6

x1 x2 x3 x4 z 0 0 7 6 6 x1 1 0 5 8 7 x2 0 1 2 3 3

Page 4: IEOR 4004 Midterm review (Part II) March 12, 2014

Duality

• Normal formmax 3x1 + 2x2x1 + x2 ≤ 802x1 + x2 ≤ 100x1, x2 ≥ 0

y1 + 2y2 ≥ 3y1 + y2 ≥ 2y1y2 x1x2min 80y1 + 100y2

y1, y2 ≥ 0PRIMAL

DUAL

Primal max Dual min ≤ constraint ≥ 0 variable ≥ constraint ≤ 0 variable= constraint unrestricted var ≥ 0 variable ≥ constraint ≤ 0 variable ≤ constraintunrestricted var = constraint

Page 5: IEOR 4004 Midterm review (Part II) March 12, 2014

Duality• (Weak duality) the value

of every dual solution is an upper bound on the value of every primal solution (for maximization)

• (Strong duality) if both primal and dual are feasible, then each have an optimal solution of the same value (no gap)

DUAL(min)

PRIMAL(max)

Simplex

DualSimplex

Optimalsolution

objectivevalue

Page 6: IEOR 4004 Midterm review (Part II) March 12, 2014

max 3x1 +2x2x1 + x2 + s1 = 802x1 + x2 + s2 = 100x1, x2, s1, s2 ≥ 0

Duality graphically

20 40 60 800

20

40

60

80

x1 x2s2

s1

max 3x1 +2x2x1 + x2 ≤ 802x1 + x2 ≤ 100x1, x2 ≥ 0 min 80y1 +100y2y1 + 2y2 − t1 = 3y1 + y2 − t2 = 2y1, y2, t1, t2 ≥ 0

min 80y1 + 100y2y1 + 2y2 ≥ 3y1 + y2 ≥ 2y1, y2 ≥ 0

1 2 30

1

2

y1 y2t2t1

100

feasible

optimal

duallyfeasible

complementarysolution

(shadow prices)

Page 7: IEOR 4004 Midterm review (Part II) March 12, 2014

Complementary slackness(x1,…,xn) a primal solution, (y1,…,ym) a dual solution are complementary to one another if for every i:a) If i-th constraint in primal is not tight for values (x1,…,xn),

then yi=0b) if xi is positive, then the corresponding dual constraint is tight

for values (y1,…,ym)(Complementary slackness) If both (x1,…,xn) and (y1,…,ym) are optimal, then they are complementary to one another.80y1 + 100y2 = vy1 + 2y2 ≥ 3y1 + y2 ≥ 2y1, y2 ≥ 0

DUAL (min)

3x1 + 2x2 = zx1 + x2 ≤ 802x1 + x2 ≤ 100x1, x2 ≥ 0PRIMAL (max)

x1 : 20x2 : 60y1 : 1y2 : 1

50001.5010002

Complementary sol’s

Page 8: IEOR 4004 Midterm review (Part II) March 12, 2014

Shadow prices

• πi = shadow price of i-th constraint– change in the value of z when bi changed to bi+1

• every solution yields different shadow prices• shadow prices = complementary dual solution

PRIMAL(max)

DUAL(min)

x πx π

feasible

infeasible feasible

infeasible

If both feasiblethen both optimal

max 3x1 + 2x2π1: x1 + x2 ≤ 80π2: 2x1 + x2 ≤ 100x1, x2 ≥ 0x1 = 20x2 = 60z = 180

solution

complementary

complementary

π1 = 1π2 = 1

Page 9: IEOR 4004 Midterm review (Part II) March 12, 2014

Pricing-out variables

• pricing-out = calculating cost in shadow prices“multiplying the column of xi by shadow prices”

• reduced cost = coefficient ci in z minus cost

• If reduced cost positive, increasing xi increases zmax 3x1 + 2x2 x1 + 1x2 ≤ 80 2x1 + 1x2 ≤ 100x1, x2 ≥ 0

x1 = 50x2 = 0z = 150solutionπ1 = $0π2 = $1.5Price out x2:

Reduced cost of x2:

increasing x2 yields a better solution positive

1 × $0 + 1 × $1.5$2 − $1.5 = $0.5

opportunitycost

Page 10: IEOR 4004 Midterm review (Part II) March 12, 2014

x1 = 20 + s1 − s2

x2 = 60 − 2s1 + s2

z = 180 −s1 − s2

Complementary dictionary

x1x2s1s2

t1t2y1y2

values objective

BasicNon-basic

Non-basicBasic

rotate

replacecomplementary

variables

− y1 =− y2 =

t2 t1

−1 − 2t2 +t1−1 +t2 − t1y1 = 1 + 2t2 − t1y2 = 1 − t2 + t1

(min) v = 180+60t2+20t1Complementarydual dictionary

(dual basis)

x1 = 20 + s1 − s2x2 = 60 − 2s1 + s2z = 180 −s1 − s2

Primaldictionary

(basis)(max)primal

vars

primalslack

dualslack

dualvars

Complementarityrules

Page 11: IEOR 4004 Midterm review (Part II) March 12, 2014

Complementarity - summary

Max cx Min by Ax + s = b yA − t = c x, s ≥ 0 y, t ≥ 0• primal and dual bases are complementary• If (xB,sB) is a primal basis then (yN,tN) is the

corresponding complementary dual basis.xi × ti = 0 yj × sj = 0(complementarity)• values and reduced costs switch roles

Page 12: IEOR 4004 Midterm review (Part II) March 12, 2014

Sensitivity analysis

• Determining the effect of changes in the input (coefficients) on the (optimal) solution

Problem

Modifiedproblem

Optimal(modified)

basis

Optimalsolution

Optimal(modified)

solution

Optimalbasis

Page 13: IEOR 4004 Midterm review (Part II) March 12, 2014

Sensitivity analysis

x1 − 2x2 + x3 + x4 = 1 − x1 + 3x2 + 2x3 + x4 = 2max z = 2x2 − 3x3

x1, x2, x3, x4 ≥ 03 21 1B-1= −B-1N = −7 −5−3 −2B-1b = 73

x1 = 7 − 7x3 − 5x4 x2 = 3 − 3x3 − 2x4 z = 2x2 − 3x3= 6 − 9x3 − 4x4

x1 = 7 + 3Δ ≥ 0x2 = 3 + 1Δ ≥ 0Changing rhs b1=1 to (1+Δ)

− 9 − 3Δ ≤ 0− 4 − 2Δ ≤ 0

Changing z from 2x2 to (2+Δ)x2

cN − cBB-1N = (−9, −4)

1 −2−1 3B= Optimal basis:{x1, x2}

− 9 + Δ ≤ 0− 3x3 to (− 3+Δ)x3

Page 14: IEOR 4004 Midterm review (Part II) March 12, 2014

Alternative solutions• Every LP has 0, 1, or ∞ optimal solutions• If (x1,x2) and (x1’ , x2’) are optimal solutions

then so is every convex combination(x1’’,x2’’) = λ(x1,x2) + (1 − λ) (x1’ , x2’)where 0 ≤ λ ≤ 1

max 2x1 + 2x2 x1 + x2 ≤ 80 2x1 + x2 ≤ 100x1, x2 ≥ 0

optimal (basic) solutions: (0,80) and (20,60) x1 = 20 + s1 − s2x2 = 60 − 2s1 + s2z = 180 − 2s1

x1 = 20 − Δx2 = 60 + Δ 0 ≤ Δ ≤ 20

(x1, x2) = λ(0,80)+(1 − λ) (20,60)x1 = 20 − 20 λ x2 = 60 + 20 λ

Page 15: IEOR 4004 Midterm review (Part II) March 12, 2014

Goal ProgrammingConstraints:x1 + x2 ≤ 802x1 + x2 ≤ 100x1, x2 ≥ 0

Goals#1: 3x1 + 2x2 ≥ 140#2: 3x1 + 4x2 ≤ 130#3: x1 ≤ 40Penalties:

#1: pay $1.2/unit#2: pay $0.8/unit#3: pay $3/unitfor each missing unit

Introduce slack (unrestricted)#1: 3x1 + 2x2 − s1 = 140#2: 3x1 + 4x2 + s2 = 130#3: x1 + s3 = 40

We pay penalty onlyif slack is negative

s1 = s1+ − s1−s2 = s2+ − s2−s3 = s3+ − s3−

Penalties:1.2s1−0.8s2−3s3−Positive part

Negative part

Minimize total penalty!

Minimize 1.2s1− + 0.8s2− + 3s3−3x1 + 2x2 − s1+ + s1− = 1403x1 + 4x2 + s2+ − s2− = 130x1 + s3+ − s3− = 40x1 + x2 ≤ 802x1 + x2 ≤ 100x1, x2, s1+, s1−, s2+, s2−, s3+, s3− ≥ 0

Page 16: IEOR 4004 Midterm review (Part II) March 12, 2014

Notes• Substitute variables if it helps• Use variants of Simplex if it helps• Solve the dual if it is easier• Optimal basis is all you need to find out• Shadow prices = dual variables• Pricing out = checking dual constraints• Any feasible dual solution is an upper (lower)

bound if we maximize (minimize) in primal• LP has 0,1,or ∞ solutions• If both primal and dual are feasible then they both

have optimal solutions

Write your answers clearly !!!(for the questions asked)